高一数学子集全集补集3

合集下载

高一数学《子集、全集、补集 》教案模板

高一数学《子集、全集、补集 》教案模板

高一数学《子集、全集、补集》教案模板教学目标:1. 理解子集、全集和补集的概念;2. 掌握如何求解子集、全集和补集;3. 能够运用子集、全集和补集的概念解决实际问题。

教学重点:1. 子集、全集和补集的概念与求解方法;2. 运用子集、全集和补集解决实际问题的能力。

教学难点:运用子集、全集和补集解决复杂问题的能力。

教学准备:教师:PPT、教学实例、练习题;学生:课本、笔记工具。

教学过程:Step 1: 引入知识(5分钟)教师通过给出一个集合和两个子集的实例引出子集、全集和补集的概念,并与学生一起讨论。

Step 2: 学习概念(10分钟)教师通过PPT呈现子集、全集和补集的定义,并通过实例解释求解方法。

然后教师与学生一起进行讨论,梳理求解子集、全集和补集的步骤。

Step 3: 巩固练习(15分钟)教师出示几道练习题,由学生分组完成,并互相讨论答案。

教师点名几组学生上台解答,并给予评价和指导。

Step 4: 拓展运用(15分钟)教师提供一些实际问题,让学生应用所学的子集、全集和补集的概念解决问题。

学生在小组内讨论,然后进行答题和讨论。

Step 5: 总结归纳(5分钟)教师总结子集、全集和补集的概念和求解方法,并强调运用子集、全集和补集解决实际问题的重要性。

Step 6: 练习巩固(10分钟)教师提供一些小题目,供学生课后复习和巩固所学的知识。

教学资源:PPT、教学实例、练习题。

教学评价:通过学生的参与讨论、解答问题的过程,教师进行及时的评价和指导,及时纠正学生的错误,并给予鼓励和肯定;通过课后的小测验和作业的评价,检测学生对知识的掌握情况,并对学生的学习情况进行评估。

高一数学集合知识点总结_3

高一数学集合知识点总结_3

高一数学集合知识点总结高一数学集合知识点总结高一数学集合知识点总结一.知识归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(aA和aA,二者必居其一)、互异性(若aA,bA,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N某2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对某∈A 都有某∈B,则AB(或AB);2)真子集:AB且存在某0∈B但某0A;记为AB(或,且)3)交集:A∩B={某|某∈A且某∈B}4)并集:A∪B={某|某∈A或某∈B}5)补集:CUA={某|某A但某∈U}注意:①A,若A≠,则A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、的区别;(2)与的区别;(3)与的区别。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩=,A∩B=B∩A;②A∪A=A,A∪=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:【例1】已知集合M={某|某=m+,m∈Z},N={某|某=,n∈Z},P={某|某=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。

高一数学全集与补集知识点

高一数学全集与补集知识点

高一数学全集与补集知识点在高一数学中,全集与补集是重要的概念。

全集指的是特定问题所涉及的全部元素的集合,而补集则是全集中不属于某个子集合的元素的集合。

接下来,我们将详细介绍高一数学中的全集和补集的相关知识点。

1. 全集(Universal Set)全集是指一个问题所涉及的全部元素的集合,通常用大写字母U表示。

全集可以是有穷集合,也可以是无穷集合。

在解决问题时,我们需要明确全集,以确保所有的元素都能被考虑到。

2. 子集(Subset)子集是指全集中的一部分元素构成的集合。

如果集合A的所有元素都是集合B的元素,那么集合A是集合B的子集,用A⊆B 表示。

特别地,由于任何集合的元素都是它本身的子集,所以对于任意集合A而言,A⊆A恒成立。

3. 补集(Complement)补集是指在全集中不属于某个集合的元素构成的集合。

假设全集为U,集合A是U的子集,那么A在U中的补集,也称为相对补集,用A'表示。

可以将补集理解为“除了集合A中的元素,全集中的其他元素”。

4. 补集的性质- A∪A' = U,即集合A与其补集的并集等于全集U。

由于补集包含了全集中不属于A的元素,所以并集结果就是全集。

- A∩A' = φ,即集合A与其补集的交集等于空集φ。

由于补集包含了全集中不属于A的元素,所以交集结果为空集。

- (A')' = A,即A的补集的补集等于A本身。

即补集两次取反即可恢复为原集合。

- A⊆B当且仅当B'⊆A',即集合A是集合B的子集,当且仅当集合B的补集是集合A的补集。

这个性质可以通过对两个集合同时取补集来证明。

5. 补集的运算规律- De Morgan律是指关于补集的两个重要运算规律:- (A∪B)' = A'∩B',即集合A和B的并集的补集等于集合A的补集和集合B的补集的交集。

- (A∩B)' = A'∪B',即集合A和B的交集的补集等于集合A的补集和集合B的补集的并集。

高一数学集合、子集、全集、补集人教版知识精讲

高一数学集合、子集、全集、补集人教版知识精讲

高一数学集合、子集、全集、补集人教版【本讲教育信息】一. 教学内容:集合、子集、全集、补集二. 重点、难点:1. 重点:(1)集合的概念,用描述法表示集合。

(2)子集、补集的定义。

2. 难点:(1)用描述法表示集合时,对代表元素内涵的理解。

(2)元素与子集,属于与包含之间的区别。

【典型例题】[例1] 用适当的符号填空:(1)2Q (2)21*N (3)3.14Q (4)(1-,1)}|{2x y y = (5)}6|{≥x x }4|{>x x(6)φ}{φ解:(1)∉ (2)∉ (3)∈ (4)∉ (5)⊆ (6)∈或⊆或≠⊂[例2] 由直线12-=x y 上的点的坐标组成的集合可表示为?解:}12|),{(-=x y y x需注意的几种错误的表示方法}12|{-=x y y ,}12|{-=x y x ,}12{-=x y[例3] 设},36|{*N x xx A ∈Z ∈-=用列举法写出集合A 。

解:∵6|)3(x -∴13±=-x ,2±,3±,6±∴=x 2,4,1,5,0,6,3-,9 又 ∵*N x ∈ ∴=x 2,4,1,5,6,9 ∴ A={1,2,4,5,6,9}[例4] 设a ,b 是整数,集合}63)(|),{(2y b a x y x E ≤+-=点(2,1)∈E ,但点(1,0)∉E ,E ∉)2,3(,求a 、b 的值。

解:∵E ∈)1,2(∴63)2(2≤+-b a ①∵E ∉)0,1(,E ∉)2,3(∴03)1(2>+-b a ②123)3(2>+-b a ③由①、②得22)1()2(6a a -->-- 展开整理032>+a ∴23->a 类似由①、③得21-<a ∴2123-<<-a 又 ∵a 、b 为整数 ∴1-=a把1-=a 代入①、②得334-≤<-b ∴1-=b综上所述1-=a ,1-=b [例5] 数集},1,0{2x x -中实数x 的取值X 围是什么?解:∵ 集合中的元素是互异的 ∴⎪⎩⎪⎨⎧≠-≠-1022x x x x 解得:⎪⎩⎪⎨⎧+≠-≠≠≠25125110x x x x 且且 ∴x 的取值X 围是}251,1,0|{±≠≠≠x x x x [例6] 写出},,{c b a 的所有子集。

苏教版高中数学必修一知识讲解_子集、全集、补集_基础

苏教版高中数学必修一知识讲解_子集、全集、补集_基础

子集、全集、补集: :【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集;了解空集和全集的含义;2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.【要点梳理】要点一、集合间的“包含”关系1.子集集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释:(1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈.(2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”). 2.真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集.3.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二、全集、补集1.全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.2.补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A ð).【典型例题】类型一、集合间的“包含”关系例1. 请判断①0{0} ;②{}R R ∈;③{}∅∈∅;④∅{}∅;⑤{}0∅=;⑥{}0∈∅;⑦{}0∅∈;⑧∅{}0,正确的有哪些?【答案】②③④⑧【解析】①错误,因为0是集合{}0中的元素,应是{}00∈;②③中都是元素与集合的关系,正确;④⑧正确,因为∅是任何集合的子集,是任何非空集合的真子集,而④中的{}∅为非空集合;⑤⑥⑦错误,∅是没有任何元素的集合.【总结升华】集合的符号语言十分简洁,因而被广泛用于现代数学之中,但往往容易混淆,其障碍在于这些符号与具体意义之间没有直接的联系,突破方法是熟练地掌握这些符号的具体含义. 举一反三:【变式1】用适当的符号填空:(1) {x||x|≤1} {x|x 2≤1};(2){y|y=2x 2} {y|y=3x 2-1}; (3){x||x|>1} {x|x>1};(4){(x ,y)|-2≤x ≤2} {(x ,y)|-1<x ≤2}.【答案】 (1)= (2) (3) (4)【总结升华】区分元素与集合间的关系 ,集合与集合间的关系.例2. 写出集合{a ,b ,c}的所有不同的子集.【解析】不含任何元素子集为∅,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a ,b},{a ,c},{b ,c},含有3个元素的子集为{a ,b ,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d ,则以上8个子集仍是新集合的子集,再将第4个元素d 放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n 个元素的集合共有2n 个不同的子集.【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a 起,a 与每个元素搭配有{a ,b},{a ,c},然后不看a ,再看b 可与哪些元素搭配即可.同时还要注意两个特殊的子集:∅和它本身.举一反三:【变式1】(2014 广西桂林开学测)满足{1}⊆M ⊆{1,2,3,4,5}的集合M 的个数为()A . 4B .6C . 8D . 16【答案】D【解析】∵{1}⊆M ⊆{1,2,3,4,5},∴ 2,3,4,5共4个元素可以选择,即满足{1}⊆M ⊆{1,2,3,4,5}的集合M 的个数可化为{2,3,4,5}的子集个数;故其有16个子集,故选D .【总结升华】本题考查了集合间的包含关系及集合的子集个数,若一个集合中有n 个元素,则它有2n个子集,有(21)n -个真子集.【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有( )A. 16个B. 15个C. 7个D. 6个【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.【变式3】已知集合A={1,3,a}, B={a 2},并且B 是A 的真子集,求实数a 的取值.【答案】 a=-1, a=3±或a=0【解析】∵, ∴a 2∈A , 则有:(1)a 2=1⇒a=±1,当a=1时与元素的互异性不符,∴a=-1; (2)a 2=3⇒a=3± (3)a 2=a ⇒a=0, a=1,舍去a=1,则a=0 综上:a=-1, a=3±或a=0.注意:根据集合元素的互异性,需分类讨论.【集合的概念、表示及关系377430 例2】例3. 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足( ) A. M=N B. M N C. N M D. M ∩N=∅【答案】B【解析】当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N ,故选B.例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ = .A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性.【答案】D【解析】由M=N ,知M ,N 所含元素相同.由0∈{0,|x|,y}可知0∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x ≠0.若x ·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy ≠00,则x=y ,M ,N 可写为M={x ,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x|∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故 x ≠1当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1 ∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a ,b ∈R ,集合b {1,a+b,a}={0,,b}a,则b-a=( ) 【答案】2【解析】由元素的三要素及两集合相等的特征: b 1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+,又, ∴当b=1时,a=-1,b {0,b}={0,-1,1}a∴, 当b =1a时,∴b=a 且a+b=0,∴a=b=0(舍) ∴综上:a=-1,b=1,∴b-a=2.类型二、全集、补集【集合的运算 377474 例6】例5. 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B.【答案】A={1,3,5,8},B={2,3,5,6}【解析】全集U={1,2,3,4,5,6,7,8}由A ∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A ∩B中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}.例6.已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S C A ={a +3},求a 的值.【思路点拨】求a 的值,需要充分挖掘补集的含义, ,S A S C A S ⊆⊆.S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.【解析】由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.【总结升华】含参数问题要分类讨论,分类时要做到不重不漏.类型三、子集、全集、补集综合应用例7.(2014 福建南安期中)已知集合{}{}{}48,210,A x x B x x C x x a =≤<=<<=<. (Ⅰ)求A B ;()R C A B ; (Ⅱ)若A C ≠∅,求a 的取值范围.【思路点拨】(1)画数轴;(2)注意是否包含端点.【答案】(Ⅰ){}210x x <<,(Ⅱ)()4,+∞【解析】(Ⅰ)∵ {}{}48,210,A x x B x x =≤<=<<∴ 如图,{}210A B x x =<<;{4R C A x x =<或}8x ≥∴ ()R C A B {24x x =<<或}810x ≤<(Ⅱ)画数轴同理可得:()4,a ∈+∞.【总结升华】此问题从表面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式】集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},(1)若B ⊆A ,求实数m 的取值范围. (2)当x ∈Z 时,求A 的非空真子集个数.(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m +1>2m -1即m <2时,B =∅满足B ⊆A .当m +1≤2m -1即m ≥2时,要使B ≤A 成立,需⎩⎨⎧m +1≥-22m -1≤5 ,可得2≤m ≤3 综上m ≤3时有B ⊆A(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}所以,A 的非空真子集个数为:28-2=254(3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =∅即m +1>2m -1,得m <2时满足条件.②若B =∅,则要满足条件有:⎩⎨⎧m +1≤2m -1m +1>5 或⎩⎨⎧m +1≤2m -12m -1<2解之m >4 综上有m <2或m >4。

1.2 子集、全集、补集讲义

1.2 子集、全集、补集讲义

1.2 子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A”.(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A 是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a 的值为-1,2.2.真子集 (1)定义:如果A B ,并且A≠B ,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例: {1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C . ③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ”“ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合评点中.2.写出集合A ={p ,q ,r ,s }的所有子集.根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉.解:集合A 的子集分为5类,即 (1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m 个,真子集有(2m -1)个,非空真子集有(2m -2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.从子集、真子集的概念以及空集的特点入手,逐一进行判断. 解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集. 求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A .(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A . 4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ . 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}. 评点 评点(1)解答此题应首先根据子集与真子集的概念判断出集合M中含有元素的可能情况,然后根据集合M中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n } ,则A的个数为2n-m.若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n },则A的个数为2n-m -1.若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n },则A的个数为2n-m -2.要点二补集、全集[重点]1.补集设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作 S A(读作“A在S中的补集”),即S A={ x | x∈S,且x A}.C S A可用图1-2-22.全集.(1)定义:如果集合S包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.(2)举例:例如,在实数范围内讨论集合时,R便可看做一个全集U,在自然数范围内讨论集合时,N便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A在全集U中的补集的方法:从全集U中去掉所有属于A的元素,剩下的元素组成的集合即为A在U中的补集.如已知U= a,b,c,d,e,f ,A= b,f ,求C U A.该题中显然A U,从U中除去子集A的元素b、f ,乘下的a、c、d、e组成的集合即为 U A= a,c,d,e .求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题 例2 不等式组⎩⎪⎨⎪⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<x x ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1).C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A .在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍.6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}.(1)判断A 、B 的关系;(2)求C U B 、C U C ,并判断其关系.根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A .若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B . 1212评点若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A .要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论.解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a的取值范围:(1)B A ;(2)AB .紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系.解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P .解法二:对任意的x 0∈M ,有x 0=a 20+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P .而1<1+ a 20+1=(a 0∈N *),∴1 M ,从而M P .10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合B .求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用V enn 图来表示所给集合,将A 及C U A 填入即可得U解:借助V een 图,如图1-2-7.评点 (2)(1)由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用V een 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B .教材问题探究1.教材第8页“思考”对于集合A 、B ,如果A B ,同时B A ,那么A=B .这是因为由A B 可知,集合A 的元素都是集合B 的元素,又由B A 知,集合B 的元素也都是集合A 的元素,这就是说,集合A 和集合B 的元素是完全相同的,因而说集合A 与集合B 是相等的.当A=B 时,集合A 中的每一个元素都在集合B 中,集合B 中的元素也都在集合A 中,即A B 与B A 同时成立.综上所述,A B 与B A 同时成立的等价条件是A=B . 例 判断下列两个集合的关系: (1)A={x |(x -1)(x +1)= 0},B={x | x 2=1};(2)C={x | x =2n ,n ∈Z },D={x | x =2(n -1),n ∈Z }. 解:∵(1)A={-1,1},B={-1,1},∴A=B .(2)易知集合C 为偶数,∵n ∈Z ,n -1∈Z ,∴集合D 也为偶数集,∴C=D .2.教材第9页“思考”在(1)(2)(3)中除有A S ,B S 外,不难看出在S 中属于A 的所有元素均不属于B ,即x i∈S ,x i∈A ,但x iB ,在S 中属于B 的所有元素均不属于A ,即x i∈S ,xi ∈A ,但x iA ,也就是说,A 、B 两个集合没有公共元素,且它们的元素合在一起,恰好是集合S 的全部元素.探究学习1.教材第8页“?”集合{a 1,a 2,a 3,a 4}的子集有: ,{a 1},{a 2},{a 3},{a 4},{a 1,a 2},{a 2,a 3},{a 3,a 4},{a 1,a 4},{a 1,a 3},{a 2,a 4},{a 1,a 2,a 3},{a 1,a 2,a 4},{a 2,a 3,a 4},{a 1,a 3,a 4},{a 1,a 2,a 3,a 4}.拓展:集合{a 1,a 2,a 3,a 4}有多少个真子集?有多少个非空真子集?由上可知,集合{a 1,a 2,a 3,a 4}有15个真子集,有14个非空真子集. 一个集合含有n 个元素,则它的所有自己有2n 个,真子集有(2n-1)个(去掉集合本身),评点非空真子集有(2n -2)个(去掉集合本身及空集).典型例题解析例1 设A={x | ( x 2-16)( x 2+5x +4) = 0},写出集合A 的子集,并指出其中哪些是它的真子集?要确定集合A 的子集、真子集,首先必须清楚集合A 中的元素,由于集合A 中的元素是方程( x 2-16)( x 2+5x +4) = 0的根,所以要先解该方程.解:将方程( x 2-16)( x 2+5x +4) = 0变形,得( x -4)( x +1)( x +4)2=0,则可得方程的根为x =-4 或x =-1或x =4.故集合A={-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}写出一个集合的所有子集,首先要注意两个特殊的子集— 和自身;其次,依次按含有一个元素的子集,含有两个元素的子集,含有三个元素的子集等一一写处,就可避免重复和遗漏现象的发生.-2},A={| 3a -2 |,4},C U A={3},求实数a 的值.∵C U A={3},∴3∈U ,且3 A ,由补集的定义知A={1,4}. 解:∵C U A={3},说明3∈U ,且3 A ,∴a 2+4a -2=3,∴a =-5或a =1. ①当a =1时,| 3a -2 |=1≠3,此时A={1,4},满足题意. ②当a =-5时,| 3a -2 |=17,此时A={17,4} U ,不满足题意. ∴a 的值为1.例3 已知{1,2} M {1,2,3,4,5},则这样的集合M 有 8 .根据题目给出的条件可知,集合M 中至少含有元素1、2,至多含有元素1、2、3、4、5,故可按M 中所含元素的个数分类写出集合M ,解析:(1)当M 中含有两个元素时,M 为{1,2};(2)当M 中含有三个元素时,M 可能为{1,2,3},{1,2,4},{1,2,5}; (3)当M 中含有两个元素时,M 可能为{1,2,3,4},{1,2,3,5},{1,2,4,5}; (4)当M 中含有两个元素时,M 为{1,2,3,4,5};所有满足条件的M 为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.评点首先根据子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.例4 已知集合A={x | - 2 ≤ x ≤ 5},B={x |m +1≤ x ≤ 2m -1},若B A ,求实数m 的取 值范围.对B 要进行讨论,分B 为空集和非空集合两种情况.解:(1)若B ≠ ,则由B A (如图1-2-5),得 ⎩⎪⎨⎪⎧m +1≤ 2m -1,m +1≥ -2,2m -1≤ 5, 解的2 ≤ m ≤ 3.(2)若B= ,则m +1>2m -1,m <2,此时B A 也成立. 由(1)和(2),得m ≤ 3,所以实数m 的取值范围是{ m | m ≤ 3}. 求解.例5 已知集合A={x | 1 ≤ a x ≤ 2},B={x | | x | < 1},求满足A B 的实数a 的取 值范围.对参数进行讨论,写出集合A 、B ,使其满足,求a 的值. 解:(1)当a = 0时,A= ,满足A B .(2)当a > 0时,{}21A=.B=11,A B x x x x a a ⎧⎫⊂<<-<<=⎨⎬⎩⎭又.∴11 2.21a a a ⎧≥-⎪⎪∴∴≥⎨⎪≤⎪⎩(3)当a < 0时,{}2121A= B=11 2.1 1.ax x x x a a a a⎧≥-⎪⎧⎫⎪<<-<<⊆∴∴≤-⎨⎬⎨⎭⎩⎪≤⎪⎩,,又,A B .综上所述,a = 0,或a ≥2,或a ≤-2. 根据子集的定义,把形如A B 的问题转化为不等式组问题,使问题得以解决.在解决 问题的过程中,应首先考虑A= 的情况.在建立不等式的过程中,借助数轴,是解决本题 重要一环,若不等式中含有参数,一般需对参数进行讨论,进而正确解出不等式.评点 评点例6已知全集S={1,3,x3+3 x2+2x},集合A={1,|2x-1|},如果C S A={0},那么这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.由C S A={0}可知0∈S,但0 A,所以x3+3 x2+2x=0,且|2x-1|=3,从中求出x即可.解法一:∵S={1,3,x3+3 x2+2x},A={1,|2x-1|},C S A={0},∴0∈S,但0 A,∴323201. 213x x xxx++=⎧⎪=-⎨⎪-=⎩,解的,综上知,实数x存在,且x=-1.由C S A={0}可知0∈S,但0 A,由0∈S可求x,然后结合0 A来验证是否有A S及是否符合集合中元素的互异性,从而得出结论.解法二:∵C S A={0},∴0∈S,但0 A,∴x3+3 x2+2x=0,即x(x+1)(x+3)=0,∴x=0或x=-1或x=-2.当x=0时,|2x-1|=1,A中已有元素1,故不符合互异性,舍去;当x=-1时,|2x-1|=3,而3∈S,符合题意;当x=-2时,|2x-1|=5,而5 S,舍去.例7已知A={x|x<-1或x>5},B={x∈R|a<x<a+4},若AB,求实数a的取值范围.注意到B≠ ,将A在数轴上保释出来,再将B在数轴上表示出来,使得A B,即可得a的取值范围.解:如图-2-6,∵A B,∴a+4≤-1或a≥5,∴a≤-5或a≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,方法一数形结合思想1-4a+a4a+51-评点例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符合B A .解:集合A={3,5},当a =0时,B= ,满足B A .∴a =0符合题意. 当a ≠0时,B≠ ,1.x a = ∵B A ,∴综上,a 的值为0或13或15.当B A 时,B 中含有参数,而A 是一个确定的非空集合,要特别注意B= 的情况, 考点点击:高考中对子集、真子集、补集以及集合相等的概念考察较多,但难度不大,命题多为填空题.例1 (2010·重庆高考)设,若,则实数.{}{}{}2U U =0123.A=U 0A=12x x m x ∈+=,,,,若,,ð }{} U 0A=12 m x =,若,,ð则实数m = -3 .解析:{}{}2U A=12A=030 30 3.x mx m ∴∴+-∴=-,,,,,是方程的根,ð 例2 (2010·天津高考)设集合{}{}A=1R B=2R A Bx x a x x x b x -<∈->∈⊆,,,,若, }2R A B x >∈⊆,,若,则实数a ,b 满足 3 a b -≥ .解析:{}{}A=11B=22x a x a x x b x b -<<+>+<-,或,由A B ⊆得12a b +-≤或12a b +-≥,即3a b -≥或3a b --≤,即 3.a b -≥ 例3 (2007·北京高考)记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q .(1)若a =3,求P ;(2)若Q P ,求整数a 的取值范围. 解:{}3(1)0P =13.1x x x x -<-<<+由得方法二 分类讨论思想 评点{}{}(2)Q =11,02x x x x -≤=≤≤{}0P=1.Q P 2a x x a a >-<<⊆>由,得又,所以,即a 的取值范围是( 2,+ ∞). 学考相联判断两个集合之间的关系是集合中的重要题型,且是高考热点之一.下面举两例介绍几种常用的方法,帮助你开拓思想.1.对比集合的元素例1 {}{}*A =N 8B =2N05,x x x x k k k ∈≤=∈<<已知,,,且那么集合A 与B 的关系为( B A ).解析:因为A={1,2,3,4,5,6,7,8},B={2,4,6,8},集合B 中的元素2,4, 6,8都是集合A 中的元素,而集合A 中的元素1,3,5,7不是集合B 中的元素,所以 B A .2.数形结合比较范围例2 已知{}{}2A=y y=26R B=475x x x x x --∈->,,,那么集合A 与B 的关系为( B A ) .解析:对于二次函数{}{}2A =y y =26RB =475x x x x x --∈->,,,,{}4(6)47A =y y 7.4y ⨯---==-∴≥最小,又{}B=3x x >,由图1-2-7知,B A .3.利用传递性判断例3 已知集合11A B B=Z C =Z 4284k k x x k x x k ⎧⎫⎧⎫⊆=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,,那么集合A 与C 的关系为( A C ).解析:将B 、C 变形得242B =Z C =Z 88k k x x k x x k ⎧+⎫⎧+⎫=∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,可知B C .又A B C ,即A C .例4 已知集合(){}{}22A=4640B=0 6x x m x m -++=,,,若A B ,求实数m 的取值范围.解:{}{}{}{}A B B=0 6 A=A=0A=6A=0 6.⊆∴∅ ,,,或或或, (1)当A= 时,Δ=(4m +6)2-4×4m 2<0,解得m <- 34.(2)当A={0}时,由根与系数的关系得20+0=46004m m +⎧⎨⎩⨯=,,此方程组无解.(3)当A={6}时,由根与系数的关系得26+6=46664m m +⎧⎨⎩⨯=,,此方程组无解.(4)当A={0,6}时,由根与系数的关系得20+6=4606=4m m +⎧⎨⎩⨯,,解得m =0.综上知实数m 的取值范围为m <-34或m =0解决子集问题时,往往易溢漏“ ”和它“本身” ,所以杂解决有关子集的问题时,一定要考虑到两个特殊的子集:“ ”和它“本身” ,并注意单独验证它们是否符合题意.。

江苏省淮安中学高一数学《子集、全集、补集》教案

江苏省淮安中学高一数学《子集、全集、补集》教案

江苏省淮安中学高一数学《子集、全集、补集》教案教学目的:⒈了解集合间包含关系的意义;⒉理解子集、真子集的概念和意义;⒊了解全集的意义理解补集的概念和意义。

教学重点:了解子集、全集、补集的概念;会判断一个集合是否为另一个集合的子集;会求一个简单集合的补集。

教学过程:一、问题情境:针对2020年雅典奥运会分析下列集合间的关系:1、A={中国体育代表团成员} B={参加奥运会的中国运动员} C={获得金牌的中国运动员}2、D={奥运会的比赛项目} E={中国运动员参加的比赛项目} F={中国运动员获得奖牌的比赛项目}3、G={奥运会奖牌}H={奥运会金牌} I={奥运会银牌} M={奥运会铜牌}二、学生活动:用韦恩图把上面集合之间的关系反映出来 三、建构数学:如果集合A 中的任何一个元素都是集合B 的元素(若x∈A 则x∈B),则称集合A 为集合B 的子集。

记为: A B ,或 B A ,读作:“集合A 包含于集合B ”或“集合B 包含集合A”由子集的定义可知,任何集合是它本身的子集,即 A A 规定:空集是任何集合的子集,即Φ A中国体育代表参加奥运会的中获得金牌的中ABC中国运动员获得奖牌的比赛项目奥运会的中国运动员参加的比赛项目DE F奥运会奥运会金牌奥运会银牌奥运会铜牌MHIG如果 A B 且 B A ,那么我们就说集合A 与B 相等,记作A =B 如果 A B 且A≠B,这时集合A 称为集合B 的真子集,记为:A B 或 BA ,读作“集合A 真包含于集合B ”或“集合B 真包含集合A”设 A S ,由S 中不属于A 的元素组成的集合称为S 的子集A 的补集。

记为:S A (读作“A 在S 中的补集”),即 S A ={x | x∈S 且x A}容易由补集的定义得到:U U =Φ,U Φ=U ,U (U A )=A 四、教学运用:1、说出上面集合之间的包含关系; C B , C A ,B A F E , F D , E D H G ,I G ,M G2、A ={我校高一年级学生} , M ={我校高一年级的男生},W ={我校高一年级的女生},A 1={我班的学生},M 1={我班的男生},W 1={我班的女生}用韦恩图把上面五个集合的关系表示出来并用A M = N = N3、写出集合{1,2}的所有子集。

高中数学知识点精讲精析 子集.全集.补集

高中数学知识点精讲精析 子集.全集.补集

1.2 子集.全集.补集1.子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A B特别的: 2.真子集的定义:如果A B 并且,则称集合A 为集合B 的真子集.解读:(1)空集是任何集合的子集. 任何一个集合是它本身的子集.空集是任何非空集合的真子集.谈起子集,特别要注意的是空集,记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,故空集是任何非空集合的真子集.(2)元素与集合的关系是属于与不属于的关系,用符号""""∉∈表示;集合与集合之间的关系是包含,真包含,相等的关系.3.补集的定义:设A 为S 的子集,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记作:={x ∣x ∈S 且x A},如果集合S 包含我们所要研究的各个集合,就把S 称为全集.[例1].下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( )A .0个B .1个C .2个D .3个解析:空集合不含任何元素,与{0}不同,故(1)错;空集市本身的子集;(3)(4)是正确的.故选C.[例2] 已知集合且B A ,求a 的值. 解析:由已知,得:A ={-3,2}, 若BA ,则B =Φ,或{-3},或{2}.若B =Φ,即方程ax +1=0无解,得a =0. 若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = .若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = .综上所述,可知a 的值为a =0或a =,或a = .⊆B A ⊇或A AA ⊆∅⊆⊆B A ≠AC S ∉},01|{},06|{2=+==-+=ax x B x x x A 3121-3121-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hg0088 民事法律关系是指由民法确认和保护的关系。A.人身B.财富C.经济D.社会 干松土壤与紧湿土壤相比:C干松土<C紧湿土;λ干松土<λ紧湿土土壤的春季增温和秋季的降温比较:沙土春季升温比粘土,秋季降温,沙土比粘土,沙土温度日较差比粘土要。 《素问·六节藏象论》认为肺通于A.秋气B.夏气C.冬气D.春气E.土气 下列不是急性气管-支气管炎的常见致病原的是A.腺病毒B.肺炎球菌C.支原体D.MRSAE.流感嗜血杆菌 关于讲授法的特点,叙述错误的是A.是教师系统地传授知识的一种方法B.在传授知识方面与其他方法一样有效C.在促进学生的思维能力方面是最有效的教学方法D.在改变学生态度方面不如其他教学方法E.可以分讲述、讲解、讲演3种 皮带机的常见故障有哪些? 是否用金属结构作220V照明回路的危险性,如何判断是否用金属结构作220V电源的回路? [单选,共用题干题]男性,27岁,农民。11月23日以"发热、头痛、腰痛2天"入院,自行口服"感冒药"无好转。查体:醉酒貌,腋下见条痕状出血点,上腹部压痛。该病的传染源主要是。A.犬B.黑线姬鼠C.螨类D.东方田鼠E.黑家鼠 《矿山井巷工程施工及验收规范》(《矿山井巷施工规范》)关于“先探(水)后掘(进)”的重要规定,当掘进工作面遇有下列情况之一时必须先探水后掘进。A.接近溶洞、水量大的含水层B.接近可能与河流、湖泊、水库、蓄水池、含水层等相通的断层C.接近被淹井巷、老空或老窑D. 接近隔离矿柱E.长时间停头恢复掘进时 正中神经返支损伤,拇指则出现。A.不能屈曲B.不能内收C.不能外展D.不能对掌E.不能伸拇 矿山工程伤亡事故发生后的首要工作是。A.抢救伤员和现场保护B.组织调查组C.进行事故调查D.进行现场勘察 阳痿可分为__________和_________。两者的病因都可能是__________或___________。 计划生育药具供应站的职责是什么? 下列哪种败血症病死率最高A.金葡菌败血症B.绿脓杆菌败血症C.脆弱类杆菌败血症D.大肠杆菌败血症E.念珠菌败血症 按照机器的用途,可分为和工作机两种。A、发动机B、电动机C、驱动机D、发电机 有症状的先天性LQTS药物治疗临床上首选β肾上腺素能受体阻滞剂,如阿替洛尔。A.正确B.错误 月经期行经第2天时,可见成群的()A.子宫内膜细胞B.子宫颈内膜细胞C.表层细胞D.中层细胞E.底层细胞 对于大型、复杂的设备工程,其设计分为系统设计和单体设备设计,并且可能有多个设计单位参与设备工程的设计,设备监理工程师在进度控制方面根据已批准的需要审核各设计单位提出的设计进度计划,使设计单位的进度计划与设备工程总进度计划相协调,并对确定后的 设计进度计划的实施进行有效的控制,确保设备工程进度目标的实现。A.项目建议书B.可行性研究报告C.初步设计文件D.施工图设计文件 患者,男,20岁。伤寒,体温38.0℃,应禁用下列哪一种食物()A.豆腐B.蒸鸡蛋C.粥D.笋E.鱼 某行购入一台需要安装的设备,取得的增值税上注明设备买价为50000元,增值税额为8500元,支付的运输费为2500元,设备安装使用工程用材料价值2000元,该固定资产成本为元。A、50000B、58500C、61000D、63000 须按照《麻醉药品管理办法》存放的是A.川乌B.草乌C.雄黄D.罂粟壳E.斑蝥 菌痢的病变部位主要位于A.乙状结肠和直肠B.结肠C.回盲部D.回肠E.结肠和回肠 瓶头阀既是密封灭火器钢瓶的盖子,同时也是灭火器喷射的阀门.A.正确B.错误 关于心肌细胞静息电位的描述,不正确的是。A.静息时,K+可外渗而Na不能自由渗入B.膜外排列一定数量阳离子,而膜内排列相同数量的阴离子C.普通心肌细胞的静息电位大约在-90mVD.心肌细胞极化状态时是内负外正E.静息状态时细胞内液的K+浓度远低于细胞外液,而 Na+浓度相反 钩蚴可引起_____和______症状,钩虫成虫可引起_____、______、______为主的表现,严重者可致_____和_____。 修复体边缘强度最弱的边缘形式是A.135&deg;肩台B.带斜面90&deg;肩台C.刃状边缘D.90&deg;肩台E.深凹形 急性肾性肾功能衰竭主要病理损害形式是A.急性肾小球坏死B.急性肾小管坏死C.急性肾皮质坏死D.急性肾髓质坏死E.急性肾缺血 不属于β受体阻断药的抗高血压药是A.普萘洛尔B.噻吗洛尔C.吲哚洛尔D.美托洛尔E.米诺地尔 1932年到1972年间,美国研究者随访了400名贫穷的身患梅毒的非裔美国黑人,以了解梅毒的发展过程。虽然当时青霉素已经普遍使用,而且价格并不昂贵,但是研究人并不对其采用青霉素治疗,而是给予安慰剂,以观察在不用药物的情况下梅毒会如何发展。医学伦理的角 度,下列分析合理的是。A.研究人员为了医学科学的发展而进行研究,是道德的B.研究人员选择&quot;贫穷的患了梅毒的非裔美国黑人&quot;作为受试者,表明了对弱势人群的关注,是道德的C.研究人员没有让受试者使用青霉素治疗梅毒,违背了有利原则D.研究人员让受试 者服用&quot;安慰剂&quot;,所以实验是道德的E.研究人员的目的是为了了解梅毒的发展过程,因此,未给受试者使用青霉素治疗是道德的 组织文化是指组织在长期的实践活动中所形成的并为组织普遍认可和遵循的具有本组织特色的____,____,_____和____的总和. 下列哪项不是八纲的内容A.阴阳B.气血C.表里D.寒热E.虚实 年,教育部编订并颁发了新中国第一部《中小学体育教学大纲》。A、1952B、1954C、1950D、1956 下列哪项不是由原发肿瘤引起的症状。A.咳嗽B.咯血C.喘鸣D.胸闷、气急E.胸痛 高度正球面镜片可使物像放大A.5%~20%B.10%~25%C.10%~20%D.20%~35%E.25%~40% 甲状腺大部切除后48小时内,需注意最危急的并发症为。A.喉上神经内侧支损伤B.喉返神经单侧损伤C.呼吸困难和窒息D.甲状腺危象E.手足抽搐 1998年12月29日全国人大常委会通过的《关于惩治骗购外汇、逃汇和非法买卖外汇犯罪的决定》属于下列哪种刑事法律?()A.刑法立法解释B.单行刑法C.刑法修正案D.附属刑法 腹股沟疝检查时,压迫内环的部位应在。A.腹股沟韧带中点B.耻骨结节外侧C.肿块隆起最明显处D.腹股沟韧带中点上方2cmE.精索的前内方 蛛网膜下腔阻滞麻醉常见的并发症为和硬膜外腔阻滞麻醉的并发症为 神经垂体(垂体后叶)分泌的激素有A.抗利尿激素(ADH)B.泌乳素(PRL)C.催产素(OXT)D.&beta;-促脂素(&beta;-LPH)E.以上都不是 压力表量程应选择最大量程的:A、3/4;B、
相关文档
最新文档