-概率与数理统计试题答案a

合集下载

概率论与数理统计-题库带答案

概率论与数理统计-题库带答案

概率论与数理统计-题库1、某人投篮命中的概率是0.8,直到投中为止,投篮次数为4次的概率是()A、)B、)C、)D、)答案: C2、袋中有5个球,3个新2个旧,每次取一个,无放回地取两次,则第二次取到新球的概率是()A、)B、 )C、 )D、 )答案: A3、设随机变量,且,则= ( )。

A、)0 ;B、 ) ;C、 ) (C) ;D、 ) (D)答案: B4、设随机变量的密度函数为:,则使成立的常数=( )。

A、)B、 )C、 )D、 )答案: D5、设两个随机变量和相互独立且同分布,则下列各式成立的是()A、 )B、 )C、 )D、 )答案: B6、答案:7、答案:8、答案:9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、如果某批产品有a 件次品,b件合格品.采用(1)有放回(2)不放回抽样方式从中抽取n次,每次一件产品.问正好有k件是次品的概率各是多少?答案:(1)有放回抽样,(2)不放回抽样,16、袋中有球12个,2白10黑,今从中取4个,试求(1)恰有一个白球的概率(2)至少有一个白球的概率。

答案:设A事件为恰有一个白球,B事件为至少有一个白球,17、设随机变量X的分布列为P{=k}=,k=1,2,...求:(1)参数a.(2)P{X>4} (3)Y=2X+1的分布列。

答案:(1)(2)(3),k=1,2,...18、一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X的分布列;(2)P(X<1)答案:(1),k=0,1,2,3,4(2)19、答案:解析:20、盒子中有3个黑球、2个白球、3个红球,在其中任意地取出4个,以X和Y分别表示取到的黑球、红球个数,求X和Y的联合分布。

答案:解析:21、设和是分别为来自总体X和Y的简单随机样本,X 与Y独立同分布,且,样本均值分别记为和,求。

()答案:∵∴∴22、总体A,是来自总体的样本。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。

解:32.04.08.0)()()(=⨯==B P A P B A P 。

(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。

解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。

(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。

解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。

(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。

解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。

(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。

解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。

(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。

(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。

概率论与数理统计试题-a_(含答案)

概率论与数理统计试题-a_(含答案)

第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分) 1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生(C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生答:选D ,根据A B 的定义可知。

2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。

3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

概率论与数理统计 期末试卷及答案 A

概率论与数理统计 期末试卷及答案 A

第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。

1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。

2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。

A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。

故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。

A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。

6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。

选择A。

7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。

计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。

8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。

福州大学《概率论与数理统计》试卷A及答案

福州大学《概率论与数理统计》试卷A及答案

福州大学《概率论与数理统计》试卷A附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t一、 单项选择(共18分,每小题3分)1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( )(A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且31)0()0(=≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )314. 设128,,,X X X 和1210,,,Y Y Y 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( )(A )222152S S (B ) 212254S S (C )222125S S (D )222145S S5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.256.设总体),(~2σμN X ,n X X X ,,,21 为X 的一组样本, X 为样本均值,2s 为样本方差,则下列统计量中服从)(2n χ分布的是( ).(A) 1--n s X μ (B) 22)1(σs n - (C) n s X μ- (D)∑=-ni iX122)(1μσ学院 专业 级 班 姓 名 学 号二.填空题(每空3分,共30分)1.某互联网站有10000个相互独立的用户,若每个用户在平时任一时刻访问网站的概率为0.2,则用中心极限定理求在任一时刻有1900-2100个用户访问该网站的概率为 .2. 已知c B A P b b B P a A p =≠==)(),1()(,)( ,则=)(B A P ,)(B A P = .3. 在区间)1,0(上随机取两点Y X ,,则Y X Z -=的概率密度为 . 4.设随机变量]2,1[~U X ,则23+=X Y 的概率密度()Y f y = .5.当均值μ未知时,正态总体方差2σ的置信度为α-1的置信区间是6.设随机变量 n X X X ,,,21相互独立且同分布,它的期望为μ,方差为2σ,令∑==n i i n X n Z 11,则对任意正数ε,有{}=≥-∞→εμn n Z P lim .7. 设)1(~P X (泊松分布),则==))((2X E X P .8. 设921,,,X X X 是来自总体]1,3[~N X 的样本,则样本均值X 在区间]3,2[取值的概率为 9. 设随机变量X 的分布为()()1,2,k P X k p k λ===,则λ= .三、计算题(每小题8分,共16分)1.城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台任购一台,求 (1)该顾客购到正品的概率.(2)若已知顾客购到的是正品,则已出售的两台都是次品的概率是多少?2.设顾客在银行的窗口等待服务的时间X (单位:min)服从参数为0.2的指数分布.假设某顾客在窗口等待时间超过10min 就离开.又知他一周要到银行3次,以Y 表示一周内未等到服务而离开窗口的次数,求).1(≥Y P四、计算题(每小题8分,共24分)1. 设二维随机变量),(Y X 的联合分布律为,),(22-===n qp n Y m X P ;,2,1 =m;,2,1 ++=m m n ,10<<p 1=+q p ,求关于X 与Y 的边缘分布律.2.设随机变量),(Y X 满足,1)0(==XY P 且X 与Y 边缘分布为,41)1(=±=X P ,21)0(==X P ,21)1()0(====Y P Y P XY Y X ρ相关系数求,,并判别X 与Y 是否相互独立?3. 设二维随机变量),(Y X 服从区域G 上的均匀分布,其中G 是由2,0=+=-y x y x 与0=y 所围成的三角形区域,求条件概率密度)(y x f Y X .五、计算题(每小题6分,共12分)1.总体X 的概率密度函数为⎪⎩⎪⎨⎧<<=-其它,010,1)()1(x x x f θθθ,其中为未知参数0>θ,nX X X ,,,21 为总体X 的简单随机样本,求(1)θ的极大似然估计量θˆ. (2)证明θˆ是θ的无偏估计.2.设某厂生产的电灯泡的寿命X 服从正态分布),(2σμN ,现测试了20只灯泡的寿命,算得样本均值1832=X (小时),样本方差4972=S (小时),问2000=μ(小时)这个结论是否成立()05.0=α?概率统计试题A 参考答案一.选择题1.B2.D3.B4.D5.A6.D 二.填空题1、0.9874 2.b bc b c ---1,3.⎩⎨⎧<<-=-=其他010)1(2)(z z z f Y X Z 4.⎪⎩⎪⎨⎧≤≤=其他08531)(y y f Y 5.))1()1(,)1()1((2212222-----n s n n s n ααχχ6.07.e218.0.4987 9.p p -1三.计算题1. 解: 设B={顾客买到的是正品},=i A {售出的两台有i 台次品},2,1,0=i,157)(210270==C C A P ,157)(21017131==C C C A P 151)(2=A P⑴107871518615785157)()()(2=⨯+⨯+⨯==∑=i i i A B P A P B P ⑵12110787151)()()(22=⨯==B P B A P B A P2..解:(1) 0.2102(15|5)(10)P X X P X e e -⨯->>=>==(2) 因为0.2102(10)P X ee -⨯->==假设Y 表示三次等待不到服务而离开窗口的次数,由题意得2~(3,)Y B e - 23(1)1(0)1(1)P Y P Y e -≥=-==--四.计算题1. 2211(),1,2,n m n m P X m p q pq m +∞--=+====∑122221()(1),2,3,n n n m P Y n p q n p q n ---====-=∑2. .由题可得(0)0P XY ≠=,因此联合分布律容易得出显然由 (1,1)0(1)(1)1/8P X Y P X P X =-==≠=-==,所以,X Y 不独立。

概率论与数理统计-A卷答案(2)

概率论与数理统计-A卷答案(2)

诚信应考,考试作弊将带来严重后果!期末考试《概率论与数理统计》A 卷注意事项:1. 开考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在试卷上; 3.考试形式:闭卷;4. 本试卷共八大题,满分100分, 考试时间120分钟。

注意: (1.67)0.9525(1.96)0.975(1.45)0.926Φ=Φ=Φ=()()()0.9750.950.9515 2.132,16 1.746,15 1.753t t t ===()()220.9750.025220.950.05220.9750.025(4)11.143(4)0.484(5)11.071(5) 1.145512.83350.831χχχχχχ======一、(12分)设有n 个人排成一行,甲与乙是其中的两个人,求这n 个人的任意排列中,甲与乙之间恰有r 个人的概率。

如果这n 个人围成一圈,试证明甲与乙之间恰有r 个人的概率与r 无关。

(甲到乙是顺时针) 解:()1221(2)!2(1)1)()!(1)(2)!!12)()(1)!1r n C n r n n r P A n n n C n r r P A n n ------==---==--二、(10分) 甲、乙、丙三车间加工同一产品,加工量分别占总量的25%、35%、40%,次品率分别为0.03、0.02、0.01。

现从所有的产品中抽取一个产品,试求 (1)该产品是次品的概率;(2)若检查结果显示该产品是次品,则该产品是乙车间生产的概率是多少? 解:设1A ,2A ,3A 表示甲乙丙三车间加工的产品,B 表示此产品是次品。

(1)所求事件的概率为112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.250.030.350.020.40.010.0185=⨯+⨯+⨯=(2)222()(|)0.350.02(|) = 0.38 ()0.0185P A P B A P A B P B ⨯=≈三、 (10分) 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障可获利润5万元;发生二次故障所获利润0元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?解 由条件知)2.0,5(~B X ,即5,,1,0,8.02.05}{5 =⎪⎪⎭⎫ ⎝⎛==-k k k X P kk⎪⎪⎩⎪⎪⎨⎧≥-=====3,2;2,0;1,5;0,10)(X X X X X g Y )(216.5057.02410.05328.010}]5{}4{}3{[2}2{0}1{5}0{10}{)()(5万元=⨯-⨯+⨯==+=+=⨯-=⨯+=⨯+=⨯====∑=X P X P X P X P X P X P k X P k g X Eg EY k四、(15分) 设随机变量和的联合分布在以点为顶点的三角形区域上服从均匀分布,试求 (1) 关于X 的边缘密度 (2) X 和Y 的协方差(3) 随机变量的方差.X Y ()()()0,1,1,0,1,1U X Y =+解 三角形区域为;随机变量和的联合密度为以表示的概率密度,则当或时, ;当时,有因此同理可得, .现在求和的协方差于是五、(12)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从2(0,2)N 分布. 求 (1)命中环形区域(){}22,12D x y xy =≤+≤的概率;(2)命中点到目标中心距离Z =.(){},:01,01,1G x y x y x y =≤≤≤≤+≥X Y ()()()2,,0,x y Gf x y x y G ∈⎧⎪=⎨∉⎪⎩当当()1f x X 0x ≤1x ≥()10f x =01x <<()()111,22xf x f x y dy dy x ∞-∞-===⎰⎰1122300212, 232EX x dx EX x dx ====⎰⎰()221412918DX EX EX =-=-=21,318EY DY ==X Y 11152212xGEXY xydxdy xdx ydy -===⎰⎰⎰⎰()541cov ,12936X Y EXY EX EY =-⋅=-=-()()11212cov ,18183618DU D X Y DX DY X Y =+=++=+-=X Y(1)(2).六、(10分)某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n只这种器件,在时刻0t=投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X,以11niiX Xn==∑作为μ的估计,为了使{}10.95P Xμ-<≥,问n至少为多少?解、由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭, 1.96≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.{,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y rDe dxdy e rdrdπθππ+--==⋅⎰⎰⎰⎰2221122888211()8r rre d e e e----=--=-=-⎰22818x yEZ E e dxdyπ+-+∞-∞-∞==⎰⎰2222880001184r rre rdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r rre e dr dr+∞---+∞+∞-∞=-+==⎰⎰七、(10分)(1) 设某机器生产的零件长度(单位:cm),今抽取容量为16的样本,测得样本均值,样本方差. 求的置信度为0.95的置信区间.(2) 某涤纶厂的生产的维尼纶的纤度(纤维的粗细程度)在正常生产的条件下,服从正态分布N(1.405 , 0.0482),某日随机地抽取5根纤维,测得纤度为1.32 ,1.55 ,1.36 ,1.40 ,1.44问一天涤纶纤度总体X的均方差是否正常(α=0.05)?解:(1)的置信度为下的置信区间为()()11221,1X n X nαα--⎛⎫--+-⎪⎝⎭()0.97510,0.4,16,0.05,15 2.132 x s n tα=====所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)()()()()()()()()()()()22222001022221220.97512220.0252222 222220.975012:0.048:.1~512.83350.83111.32 1.405 1.55 1.405 1.44 1.4050.04813.68313.683512.833niiH HX nnnn H ααασσσσχμχσχχχχχχχχ=--==≠=-====⎡⎤=-+-++-⎣⎦==>==∑,因为,所以拒绝,即这一天涤纶纤度ξ的均方差可以认为不正常。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安建筑科技大学考试试卷参考答案及评分标准(A 卷)
一.填空题(每空2分,共16分)
1.设C B A ,, 表示三个事件,利用C B A ,, 表达下列事件:
(1)A 出现,C B , 都不出现,表示为 C B A 。

(2)三个事件中至少有一个出现,表示为C B A ⋃⋃。

(3)三个事件都不出现,表示为C B A 。

2.设70=⋃40=.)(,.)(B A P A P ,若A 与B 互不相容,则=)(B P 0.3 ,若
A 与
B 相互独立,则=)(B P 0.5 。

3.设随机变量相互独立与的正态分布,均匀分布,Y X N Y U X )1,4(~)4,1(~,
则 =-)2(Y X E -11/2 ,=-)2(Y X D 19/4 。

4,设随机变量[]b a U X ,~的均匀分布,则X 的分布密度
⎪⎩
⎪⎨⎧<<-=其他,0,1)(b x a a b x f 。

二.单项选择题(每小题3分,共15分)
1,设事件A,B 为互斥事件,则下列各式正确的是( C )
(A )1=+)(B A P (B ))()()(B P A P AB P =
(C ) )()()(B P A P B A P +=+
(D ))()(A P B P -1=
(2)设总体为),(~21N X ,样本容量为10,则( B )
(A ))2,0(~N X (B ))2.0,1(~N X
(C ))102,
1(~N X (D ))1,0(~10
/21
N X - (3) 设 n X X X ,,,21 是来自正态总体 ),(~2σμN X 的一个样本 ,
样本均值为∑==n i i X n X 11,样本方差为∑=--=n i i X X n S 1
22
)(11,则服从自由度为 1-n 的2χ分布的随机变量是( B )
(A )
2
2
σnS (B )
2
2
)1(σ
S n -
(C )
2
2
σS
(D )2
2
)1(σ
-n S (4) 设随机变量X 与Y 相互独立且4=DX ,2=DY ,则=-)23(Y X D ( D )
(A) 8
(B) 16
(C) 28
(D) 44
(5). 下列函数中为随机变量的分布函数的是( B )
(A)⎩⎨⎧≥+<=-0,)1(0,
0)(1
2x x x x F (B)⎩⎨⎧-≥-<+=-1,
11,)1()(12x x x x F (C)⎩⎨⎧≥<=-0,e 0,
0)(x x x F x
(D)⎩
⎨⎧≥<+-=0,10
),1ln()(2x x x x F
三.(8分)设商场出售的某元件是由甲、乙、丙厂生产的,产量各占2.0,3.0,5.0,各厂生产的该元件在规定的时间内能正常工作的概率分别是7.0,8.0,9.0。

现从该商场买了这样一个元件,求该元件在规定的时间内能正常工作的概率。

解 用321,,A A A 分别表示买到的元件是由甲、乙、丙厂生产的,B 表示买到的元件在规定时间内能正常工作,则有
5.0)(1=A P ,
3.0)(2=A P ,
2.0)(3=A P ,
(2分) 9.0)|(1=A B P , 8.0)|(2=A B P , 7.0)|(3=A B P ,
(2分) 故有(1)∑==3
1
)|()()(n n n A B P A P B P
(2分) 83.07.02.08.03.09.05.0=⨯+⨯+⨯=
(2分)
四. (8分)设随机变量X 的分布函数为,
0,10.2,12()0.7,241,4x x F x x x <-⎧⎪-≤<⎪
=⎨
≤<⎪
⎪≥⎩
(1) 求)3(≤X P ,)32
1
(≤<X P 及)2(≥X P ;
解:(1)
(2) 求X 的分布律.
000()(0)(0)(1)0.200.2,(2)0.70.20.5,(4)10.70.3
2P X x F x F x P X P X P X ==+--=-=-===-===-=由于(分)
X 的分布律为:12
4~0.20.50.3X -⎛⎫ ⎪⎝⎭
(2分)
五.(8分)设),(Y X 的分布律为
(1)求X 及Y 的边缘分布律;
(3)(3)0.7(1P X F ≤==分)11
(3)(3)(0.70.20.5122
P X F F <≤=-=-=(分)(2)1(2)1(2)(2)1(2)(20)(20)10.70.50.82P X P X P X P X F F F ≥=-<=-≤+==-++--=-+=(分)
(2分)
六.(10分)
例:设总体X 服从参数为λ的指数分布,其中λ未知,)
,,,(2
1
n
X X X 为从总体抽取一个样本,),,,(21n x x x 为其样本观测值,试求参数λ的极大似然估计值和估计量.
解:总体X 服从参数为λ的指数分布,则有
所以似然函数为
取对数为

解得λ的极大似然估计值为)21
ˆ1
分(x
x
n
n
i i
=
=∑=λ
极大似然估计量为)21
ˆ1
分(X
X
n
n
i i
=
=∑=λ
⎪⎩


⎧≤>=-000);(x x e x f x λλλ)
2)(1
分(∑==-n
i i
x n e
L λ
λλ)
2ln )(ln 1
分(∑--=n
i i x n L λλλ)20)(ln 1
分(=-=∑=n
i i x n L d d λλλ
七.(10分)设随机变量),(Y X 的分布密度函数为
(34),0,0
(,)0,x y Ae x y f x y -+⎧>>=⎨⎩
其他
(1)求系数A ,
解: (34)0
1
1(,)12
x y f x y dxdy Ae dxdy A +∞+∞
+∞+∞
-+-∞-∞
==
=
⎰⎰
⎰⎰
(3分)
12A ∴= (2分)
(2)求:X 与Y 的边缘概率密度;并判断X 与Y 是否相互独立.
X 的边缘密度函数(34)
30123,0()0x y x X e
dy e x f x +∞
-+-⎧=>⎪=⎨⎪⎩
⎰其它 (2分)
同理Y 的边缘密度函数440
()0y y e y f y -⎧>=⎨⎩其它 (2分)
显然:)()(),(21y f x f y x f ∙=所以X 与Y 相互独立。

(1分)
八.(10分)已知某工厂生产的某种零件其长度
)06.0,(~μN X ,现从某日生产
的一批零件中随机抽取6只,测得直径的数据(单位:mm )为 1.15,2.15,8.14,9.14,1.15,
6.14
试求:该批零件长度的置信度为0.95置信区间.(其中已知0.0250.51.96, 1.65U U ==); 解:
/20.025/2/214.9521.96,214.95 1.9614.7514.95 1.9615.154x u u x x ααασ=======+
=经计算:。

(分)查表得(分)
经计算得:(分)
所求置信区间为:(14.75,15.15)(2分)
九(10分)已知某厂生产的导线电阻在正常情况下服从正态分布,其标准差为0050.(欧)
,今从某天生产的一批导线中抽出9根,测得0080=.S (欧),问在显著性水平05.0=α下这批导线电阻的方差是否正常。

解:设,005.0:2
2020==σσH 01:σσ≠H (2分)
μ未知,
用2
χ检验法,拒绝域)1()1(22
12
2
-≤--
n S n α
χ
σ

2
220
2
(1)(1)
(2)n S n αχσ
-≥-分
180.2)8()1(2
975.02
1==--
χχ
αn 535.17)8()1(2
025.022
==-χχαn (2分) 535.17)1(48.20005.0008.08)1(2
2
2
22
2
2
=->=⨯=-=
n S n αχσχ (2分) 故拒绝0H ,在05.0=α下认为这批导线的电阻方差不正常。

(2分)
十(5分)设X 与Y 相互独立,,0,0≠≠DY DX 证明X 与Y 互不相关。

证:因为X 与Y 相互独立,所以
0)(),(=-=-=EXEY EXEY EXEY XY E Y X Cov (2分) 即0),(==DY
DX Y X Cov XY
ρ (2分)
故X 与Y 互不相关。

(1分)。

相关文档
最新文档