地铁与隧道设计计算书

地铁与隧道设计计算书
地铁与隧道设计计算书

1 工程概况 (1)

1.1工程场地地层特征 (1)

2.2 工程水文特征 (1)

2 结构设计 (2)

2.1城市轨道交通地下工程类型 (2)

2.2 选定施工方法 (2)

2.3 隧道断面设计 (3)

3 结构计算 (3)

3.1荷载计算模式 (3)

3.2 荷载计算方法 (4)

3.3 围岩压力的计算 (6)

3.4 衬砌内力计算 (7)

3.5 衬砌强度检算及配筋 (9)

3.5.1 强度检算原理 (9)

3.5.2 强度检算及配筋 (11)

3.5.3 配筋结果 (13)

3.6 区间隧道复合式衬砌设计参数 (13)

4 小结 (14)

1 工程概况

1.1工程场地地层特征

场地的地层上而下划分为6层,各层特征及描述如表1-1,强度参数如表1-2。

2.2 工程水文特征

地下水主要赋存于卵石层中,属兰州断陷盆地松散岩类孔隙性潜水,是兰州市的主要水源地。水位埋深10.0m,水位具有由北西向南东缓慢降低的趋势,水位变化幅度一般2.0m-3.0m。

表1-1 地层特征表

表1-2 岩土抗剪强度指标建议值表

2 结构设计

2.1城市轨道交通地下工程类型

根据设计任务书要求,本次设计城市轨道交通地下工程的结构类型选取地下区间隧道。

2.2 选定施工方法

在隧道施工中,开挖方法是影响围岩稳定的重要因素。因此,在选择开挖方法时,应对隧道断面大小及形状、围岩的工程地质条件、支护条件、工期要求、机械配备能力、经济性等相关因素进行综合分析,在保证围岩稳定或减少对围岩扰动的前提下,采用恰当的开挖方法。

在本地下区间隧道的施工方法选取过程中,按照“安全、可靠、经济、适用”的原则,根据本工程的实际地质情况确定使用暗挖法施工。由于地层中主要是黄土,细砂、中砂、卵石,而且地下水较发育,岩体松散,透水,工程地质条件较差,确定该工程所处地质条件为V级围岩,故开挖时架立临时支撑,设置临时仰拱,采用暗挖法中较为安全的交叉中隔壁法(CRD法)。

交叉中隔壁法(CRD法)水平方向分两部,上下分三部开挖。先开挖中隔壁左侧的3部,及时支护并封闭临时仰拱,再开挖右侧分部及支护,形成左右两侧开挖及支护相互交叉的情形。同一层左右两部开挖工作面相距12m,上下层开挖工作面相距保持3.6m,且待喷射混凝土强度达到设计强度的70%后开挖相邻部位。根据监控量测结果,中隔壁及临时仰拱在仰拱浇筑前逐段拆除,每段拆除长度12m。仰拱的浇筑距开挖面18m,每次浇筑长度6m。为避免仰拱浇筑对开挖工作的影响,需架设临时仰拱栈桥。滞后仰拱12m进行拱墙二次衬砌的整体浇筑。CRD的爆破应缩短循环进尺,采用少装药、弱爆破,以减小爆破对中隔壁及临

时仰拱的影响。开挖步序见图2-1。

图2-1 CRD法施工步序图(单位:m)

I—超前支护;1—左侧上部开挖;II—左侧上部初期支护;

2—左侧中部开挖;III—左侧中部初期支护;3—左侧下部开挖;

IV—左侧下部初期支护;4—右侧上部开挖;V—右侧上部初期支护;

5—右侧中部开挖;VI—右侧中部初期支护成环;6—右侧下部开挖;

VII—右侧下部初期支护;VIII—仰拱及混凝土填充;IX—二次衬砌

2.3 隧道断面设计

该区间隧道采用单洞双线隧道,根据《铁路隧道设计规范》和《铁路工程建设通用参考图》,隧道断面采用的复合式衬砌的形式,该隧道处于V级围岩段,隧道预留变形量为12cm,因此隧道的开挖净高和净宽初步拟定见表2-1所示。除去预留变形量,隧道的断面宽14.38m,高12.24m。隧道断面图见附图。

表2-1 隧道开挖净高和净宽

3 结构计算

3.1荷载计算模式

隧道结构的设计计算包括对初期支护和二次衬砌的设计计算,本设计只对二次衬砌的设计检算,初期支护由工程类比法确定,不对其进行计算。二次衬砌的设计计算采用荷载—结构模型,将全部荷载施加到衬砌结构上,根据求得的衬砌内力对已拟定配筋的衬砌进行检算,并对检算未通过的衬砌调整截面配筋,直到检算通过为止。整个设计检算过程如下:

(1)确定隧道的围岩级别及相应埋深;

(2)根据围岩级别和衬砌内轮廓尺寸,由工程类比法初步拟定隧道的支护和衬砌参数,绘制复合式衬砌断面图;

(3)由《铁路隧道设计规范》,计算围岩压力并确定典型计算断面; (4)采用荷载—结构模型,利用ANSYS 建模进行衬砌内力的计算; (5)由计算求得的弯矩、轴力进行衬砌结构配筋的检算。 3.2 荷载计算方法

(1)隧道深浅埋的判定原则

深、浅埋隧道分界深度至少应大于坍方的平均高度且有一定余量。根据经验,这个深度通常为2~2.5倍的坍方平均高度值,即:

(3-1)

式中,p H ――深浅埋隧道分界的深度(m); q h ――等效荷载高度值(m);

系数2~2.5在松软的围岩中取高限,在较坚硬围岩中取低限。

当隧道覆盖层厚度q h h ≤时为超浅埋,p q H h h <<时为浅埋,p H h ≥时为深埋。

(2)当隧道埋深h 小于或等于等效荷载高度h q (q h h ≤)时,为超浅埋隧道,围岩压力按隧道顶部全土柱重量计算。

围岩垂直均布松动压力为:

(3-2)

式中,γ――围岩容重(kN/m 3),见表3-1; h ――隧道埋置深度(m); 围岩水平压力e 按朗金公式计算:

隧道顶部水平压力: ??? ??

-=245tan 0021φq e (3-3a)

隧道底部水平压力: ()??? ?

?

-+=245tan 0022φγt H q e (3-3b)

表3-1 围岩压力相关计算参数取值

()q p h H 5.2~2=h q γ=

(3)当隧道埋深h 大于等效荷载高度h q 且小于深浅埋分界深度(p q H h h <<)时,为一般浅埋隧道,围岩压力按谢家烋公式计算:

围岩垂直均布松动压力为:

??

? ??-==

B h h B Q q θλγtan 1 (3-4) ()[]θφθφββφβλtan tan tan tan tan 1tan tan tan 000

+-+-=

(3-5)

()

θ

φφφ

φβtan tan tan 1tan tan tan 00

2

0-++

= (3-6)

式中,B ――坑道跨度(m);

γ――围岩的容度(kN/m 3); h ――洞顶覆土厚度(m);

θ――岩体两侧摩擦角(°),见表2-2;

λ――侧压力系数;

0φ――围岩计算摩擦角(°),见表2-2;

β――产生最大推力时的破裂角(°

); t H ――隧道开挖高度(m)。

围岩水平压力按梯形分布,由下式确定:

隧道顶部水平压力: λγh e =1 (3-7a) 隧道底部水平压力: ()λγt H h e +=2 (3-7b) (4)当隧道埋深h 大于或等于深浅埋分界深度H p (p H h ≥)时,为深埋隧道,围岩压力按自然拱内岩体重量计算:

单线、双线及多线铁路隧道按破坏阶段设计,垂直均布压力为:

γωγ??==-1245.0S q h q (3-8)

式中,q h ――等效荷载高度值(m); S ――围岩级别,如III 级围岩3=S ; γ――围岩的容重(kN/m 3); ω――宽度影响系数,其值为:

()51-+=B i ω (3-9)

式中,B ――坑道宽度(m);

i ――B 每增加1m 时,围岩压力的增减率(以5=B m 为基准),当B <5m

时,取2.0=i ,B >5m 时,取1.0=i 。

围岩的水平均布松动压力按表3-2计算求得。

表3-2 围岩水平均布压力

3.3 围岩压力的计算

(1)隧道深浅埋判定

隧道开挖最大轮廓尺寸:B =14.62m ,t H =12.48m 等效荷载高度:

()s 14q h 0.452w 0.45210.114.62512.13m -=??=??+?-=????

深浅埋分界深度:

()()p q H 2 2.5h 28.2635.325m =-=-

由于围岩为Ⅴ级,岩体软弱破碎、节理发育、强-弱风化且含地下水,故取

m 325.355.2==q p h H 。

根据本区间隧道所处地质条件,设置隧道埋深约为13m ,且p q H h h <<故为一般浅埋隧道。

(2)V

级围岩压力的计算

一般浅埋隧道围岩压力按谢家烋公式计算:

对于Ⅴ级围岩,计算摩擦角0045?

= ,000.627θ=?=,则0tan 1?=,

510.0tan =θ

0tan tan 1 3.020β=?=

()0

00tan tan 0.224tan 1tan tan tan tan tan β-?λ=

=β+β?-θ+?θ????

垂直均布松动压力:

2

h tan 27.630.2240.51q h 118.527.631400.8kN/m B 14.62λθ??????=γ-=??-= ? ?????

水平松动压力:

隧道顶部:21e h 18.527.630.224114.5kN/m =γλ=??=

隧道底部:()22e H 18.527.6312.480.224166.22kN/m =γλ=?+?= 3.4 衬砌内力计算

衬砌内力的计算采用荷载—结构模型,利用有限元软件ANSYS 进行计算。ANSYS 加载求解过程如下:

(1)设置分析类型:隧道采用结构分析模型;

(2)前处理:设置单元类型、实常数、材料属性,建模并划分单元; (3)求解:施加边界条件、荷载并求解;

(4)后处理:显示并保存变形图、弯矩图、轴力图和单元结果表。

隧道的ANSYS 结构计算模型如图3-1,在该结构计算模型中,衬砌结构是承载主体,承受围岩的竖向、水平松动压力和结构自重,围岩对衬砌变形的约束作用通过弹簧单元来模拟。

图3-1 结构计算模型图

ANSYS建模时,各种材料参数取值如表3-3。

表3-3 衬砌及围岩计算参数

利用ANSYS建模求得的结果如下图3-2、图3-3分别是隧道弯矩图和轴力图。

图3-2 区间隧道衬砌弯矩图(单位:N·m)

图3-3 区间隧道衬砌轴力图(单位:N)

3.5 衬砌强度检算及配筋 3.5.1 强度检算原理

按照《铁路隧道设计规范》应按破损阶段法和容许应力法检算隧道衬砌的强度。

(1)素混凝土矩形截面的检算

①混凝土矩形截面中心及偏心受压构件的抗压强度应按下式计算:

(3-10)

式中,R a ――混凝土或砌体的抗压极限强度; K ――安全系数,见表3-4; N ――轴向力(MN ); B ――截面宽度(m); H ――截面厚度(m);

――构件的纵向弯曲系数,对于隧道衬砌、明洞拱圈及墙背紧密回填的

边墙,可取=1.0;

bh R KN a ?α≤?

?

――轴向力偏心影响系数,计算公式如下:

表3-4 混凝土和砌体结构的强度安全系数

②从抗裂要求出发,混凝土矩形截面偏心受压构件的抗拉强度按下式计算:

(3-11)

式中,1R ――混凝土的抗拉极限强度,见表3-5;

――截面偏心距(m);

表3-5 衬砌材料力学指标

对混凝土矩形构件,按《铁路隧道设计规范》规定的安全系数及材料强度竖直计算结果表明,当时,有抗压强度控制承载能力,不必检算抗裂;当

时,由抗拉强度控制承载能力,不必检算抗压。

(2)钢筋混凝土矩形截面的检算 ①大偏心受压构件的检算

钢筋混凝土矩形截面的大偏心受压构件()其截面强度应按下列公式计算:

(3-12) 或 (3-13) α()()()30200/444.15/569.12/648.0000.1h e h e h e +-+=α000.1≤α1/675.101-≤h e bh

R KN ?0e h e 2.00≤h e 2.00>055.0h x ≤()g g

g w A A R bx R KN -'+≤()()a h A R x h bx R KNe g

g w '-'+-≤002/

中性轴的位置按下式确定:

(3-14) 当轴向力作用于钢筋与的重心之间时,式中左边第二项取正号;当作用于和两重心以外时,则取负号。

如计算中考虑受压钢筋时,则混凝土受压区高度应符合,如不符合,则按下式计算:

(3-15)

式中,――轴向力(MN);

K ――钢筋混凝土结构强度安全系数,见表3-8;

,――钢筋和的重心至轴向力作用点的距离(m); 表3-6 钢筋混凝土结构的强度安全系数

②小偏心受压构件的检算

钢筋混凝土矩形截面小偏心受压构件(),其截面强度应按下式计算

(3-16) 当轴向力作用于钢筋和的重心之间,尚应符合下列要求: (3-17) 3.5.2 强度检算及配筋

按照要求应对V 级围岩的隧道衬砌进行配筋检算。首先根据衬砌厚度采用最小配筋率初配配筋,根据规范要求采用允许应力法反算强度安全系数K ,若安全系数大于规范要求的安全系数,则只需按最小配筋率配筋即可;若反算得出的安全系数小于规范要求,则需要增加配筋率,反复计算直至强度安全系数大于规范要求为止。

对于V 级围岩一般隧道衬砌结构,按偏心受压构件对称配筋,取每侧4Φ20

钢筋,则单侧的环向主筋筋面积21256mm g g

R R '==,混凝土用C35,保护层厚度取50mm ,纵向筋采用Φ12@250,箍筋采用Φ8@250。配筋结果检算见表3-7。

()()2/0x h e bx R e A e A R w g

g g +-='' N g A g

A 'N g A g A 'a x '≥2()a h A R e KN g g '-≤'0N e e 'g A g

A '055.0h x >()a h A R bh R KNe g

g a '-'+≤02

05.0N g A g

A '()a h A R h b R e KN g g a -''+'≤'020

5.0

表3-7 区间隧道衬砌配筋检算表

以上配筋对应的安全系数均能满足规范要求,故可采用上述配筋。经检算所有单元均为000.550e h -<,所以无需进行裂缝宽度检算。 3.5.3 配筋结果

最终配筋结果见表3-8所示。

表3-8配筋结果表

3.6 区间隧道复合式衬砌设计参数

本区间隧道采用暗挖交叉中隔壁法开挖,并采用复合式衬砌支护,复合式衬

砌设计支护参数采用工程类比法初步拟定通过与其它同等级隧道类比选取支护参数,见表3-9。

表3-9 区间隧道复合式衬砌设计支护参数

4 小结

(1)本次设计根据兰州相关地质条件,对地下区间隧道进行设计计算。

(2)先确定隧道所处地区为V级围岩,工程地质条件较差,选用CRD法开挖。设计区间隧道结构时,先根据《铁路隧道设计规范》和《铁路工程建设通用参考图》拟定隧道断面尺寸,判断该隧道为浅埋隧道,计算隧道水平松动压力和垂直均布松动压力,然后利用有限元软件ANSYS进行隧道结构内力计算,接着进行衬砌设计配筋并根据《铁路隧道设计规范》进行配筋检算,检算合格,最后设置区间隧道支护参数。

(3)相关设计图纸见附图。

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

交通工程毕业设计计算书

某省道兴化至泰州段建设工程设计 摘要:本设计为某省道兴化至泰州段建设工程设计,包括方案、路线、路基路面、排水系统以及沿线主要配套设施的设计。本工程设计速度为80km/h,本次设计包括道路平面设计, 道路纵断面设计, 道路横断面设计,路基设计,沥青路面设计,路基路面排水设计,桥涵及附属构造物设计等。 本设计的路线,纵断面设计共设3个边坡点,最大坡度为0.818%,最小坡度为0.33%。竖曲线半径分别有25000m,15000m,20000m(自己改)。路基宽度为26m,行车道宽度为3.75m,土路肩0.75m,硬路肩3m,中央分隔带3.5m。路面结构中,面层采用沥青混凝土(13cm),其中表面层采用细粒式密级配沥青混土(厚度3cm),中面层采用中粒式密级配沥青混凝土(厚度4cm),下面层采用粗粒式密级配沥青混凝土(厚度6cm);基层采用石灰土(厚度为45cm);底基层采用碎石灰土(厚度为25cm)。本路段设计桥涵2座桥,结合桥头地质情况综合考虑灌溉、排涝及地方出行的要求进行桥跨布置。 关键词:工程设计纵断面横断面路基设计沥青路面设计桥涵及附属构造物设计

Abstract:The design, construction and engineering design, including the design of programs, routes, subgrade and pavement, drainage systems, as well as along the main supporting facilities of the province Road Xinghua, Taizhou segment. This engineering design speed of 80km / h, this design includes the road graphic design, road vertical alignment design, road cross-sectional design, the design of embankment, asphalt pavement design, subgrade and pavement drainage design, bridge and subsidiary structures design. This design, too, Profile Design, 3 slope, the maximum gradient of 0.818%, the minimum slope of 0.33%. V ertical curve radius of 25000m, 15000m, 20000m (change). Roadbed width of 26m, the carriageway width of 3.75m, 0.75m soil shoulder hard shoulder 3m, the central median of 3.5m. Pavement structure, the surface layer of asphalt concrete (13cm), the surface layer is fine-grained type dense-graded asphalt mix soil (thickness 3cm) in the surface layer in grain-type dense-graded asphalt concrete (thickness 4cm), the following layer of coarse grain type dense-graded asphalt concrete (thickness 6cm); primary calcareous soil (thickness 45cm); sub-base gravel dust (thickness 25cm). The design of the sections of bridges and culverts 2 bridge, combined with the the bridgehead geological conditions considering the travel requirements of irrigation, drainage and local bridge span arrangement. Keywords:engineering design longitudinal cross-sectional roadbed design asphalt pavement design bridges and culverts and ancillary structures design

地铁车站结构设计方法探讨

地铁车站结构设计方法探讨 摘要:伴随着我国社会经济的快速发展,地面上的交通压力也逐渐得到社会各 界的广泛重视,为了减轻地面交通状况,各大城市开始修建地铁,在地铁车站建 造中,结构设计是一个主要的环节,对地铁的安全运转有着至关重要的影响。这 篇文章论述了城市轨道交通中地铁车站的规划原则、规划思路,对地铁车站的规 划提出了合理化的主张,对中国将来地铁工作的建造与开展,具有一定的参考价值。 关键词:地铁车站;结构设计;设计方法 引言 在城市交通日渐拥堵的局势下,加速地铁建造的呼声越来越高涨。现在,地 铁车站变成城市轨道交通的一个主要纽带,能够每天承载很多的乘客,一定程度 上减轻了城市交通压力。本文主要谈谈地铁车站结构设计办法,以供同行参考。 1 地铁车站的设计原则 车站是城市轨道交通路网中非常重要的建筑物,它是供旅客乘降、换乘和候 车的场所,给旅客提供舒适清洁的环境以保证旅客安全、迅速地进出车站。车站 应容纳主要的技术设备和运营管理系统,从而保证城市轨道交通的安全运行。地 铁车站由站台层、站厅层、设备层以及出入口组成。地铁站台按照线路分布情况,又可分为岛式站台、侧式站台以及混合式站台。地铁车站里的辅助设备包括自动 扶梯、直升电梯、卷帘门、防洪门、旅客引导、照明、售检票系统、车站设备自 控系统等。关于地铁车站的设计应当从线路、车站建筑、车站结构、动力照明系统、车站通风与空调系统、给排水及消防系统以及区间的角度考虑其设计原则。 2 地铁车站结构设计方法 2.1功能设计关注人的行为及需求 密集型流动是地铁车站、地铁站的基本特征,人们的行为也可分为两种,即 通过或保留。主要行为是“通过”,“保留行为是短的”。所以,通过这个过程,人 们期望通过路径应该是一个非阻塞的快速路径,尽可能避免“通过”和“保留”之间 的相互影响。例如在站外的人需要从入口进去然后去售票进入的通道,这些环节 过程并不困难,对于这部分的保留和聚集是最明显的,聚集的人群通过会有影响,所以设计的面积应尽可能满足宽敞的购票。若自动售票机设置在站在通道上,人 群通过影响更大。因此,在车站设计时,应考虑足够的综合性,如香港地铁在墙 上嵌入售票机可以很好的解决这个问题。可见深入了解人们的行为需要可以更好 地组织和规划出站的流量、创新地铁站建设的设计。 2.2雨水系统设计要点 将局部排水泵与集水井设置在车站风亭、出入口等敞开位置,主要用于收集 废水、雨水及结构渗漏水。为保证集水井正常工作,设置两台排污泵,一台备用,当出现暴雨或结构大量渗漏水时,可以同时开启两台排污泵,将雨水提升至地面 消能后,直接排入城市雨水管网,根据该市50年一遇特大暴雨强度计算露天出 入口雨水排水量;(2)废水系统设计要点。将废水泵房设计在沿线路坡度的最 低点,同样设有2台排污泵,平时一台备用,消防时同时开启,其中废水集水池 容积≤最大一台排水泵20min的出水量。废水提升到地面后排入市政排水系统中,地下结构渗水量各地情况不同,根据实际情况设计。本地铁站渗水量按照0.5L/ (m2?d)标准进行计算;(3)污水系统设计要点。前文已经提到,站厅层设有 一处工作人员卫生间,站台层设有一处污水泵房、一处公共卫生间,卫生间污水

地铁区间隧道结构设计计算书

地下工程课程设计 《地铁区间隧道结构设计计算书》

目录 一、设计任务 (3) 1、1工程地质条件 (3) 1、2其他条件 (3) 二、设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; (5) 2.2 计算作用在结构上的荷载; (5) 2.3 进行荷载组合 (8) 2.4 绘出结构受力图 (10) 2.5 利用midas gts程序计算结构内力 (10) 附录: (15)

地铁区间隧道结构设计计算书 一、设计任务 对某区间隧道进行结构检算,求出荷载大小及分布,画出荷载分布图,同时利用软内力。具体设计基本资料如下: 1、1工程地质条件 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1。 1、2其他条件 其他条件 地下水位在地面以下5m处;隧道顶部埋深6m;采用暗挖法施工。隧道段面为圆形盾构断面。断面图如下:

二、设计过程 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; 可以采用《铁路隧道设计规范》推荐的方法,即有 上式中s为围岩的级别;B为洞室的跨度;i为B每增加1m时的围岩压力增减率。 由于隧道拱顶埋深6m,位于杂填土、粉土层、细砂层中,根据《地铁设计规范》10.1.2可知 “暗挖结构的围岩分级按现行《铁路隧道设计规范》确定”。 围岩为Ⅵ级围岩。则有 因为埋深,可知该隧道为极浅埋。 2.2 计算作用在结构上的荷载;

1 永久荷载 A 顶板上永久荷载 a. 顶板(盾构上部管片)自重 b. 地层竖向土压力 由于拱顶埋深6 m,则顶上土层有杂填土、粉土,且地下水埋深5m,应考虑土层压力和地下水压力的影响。(粉土使用水土合算) B 底板上永久荷载 a. 底板自重 b. 水压力(向上): C 侧墙上永久荷载 地层侧向压力按主动土压力的方法计算,由于埋深在地下水位以下,需考虑地下水的影响。(分图层水土合算,砂土层按水土分算) a. 侧墙自重 b. 对于隧道侧墙上部土压力: 用朗肯主动土压力方法计算

隧道洞门设计

**隧道端洞门设计 一,技术标准及执行规范 1、技术标准 设计行车速度:40km/h 隧道主洞建筑限界净宽:1、50+0、25+2×3、5+0、25+1、50=10、50m 隧道建筑限界净高:5、0m 路基宽:8、5m 2、遵循规范 《公路工程技术标准》JTG B01-2003 《公路隧道设计规范》JTG D70-2004 《公路隧道通风照明设计规范》JTJ026、1-1999 《公路工程抗震设计规范》JTJ004-89 《锚杆喷射混凝土支护技术规范》GB50086-2001 《地下工程防水技术规范》GB50108-2001 二、工程概况 根据隧道需风量分析确定,本隧道采用自然通风。 隧道内的供电照明负荷与应急照明按一级负荷考虑。 1、地形、地貌 隧道区地貌属于丘陵低山地貌。隧道地处山体的左侧山坡地段,地形起伏较大,山高坡陡,山体走向近SN向,隧道走向与其基本平行。在隧道的进出口地段发育路线走向呈小角度相交的小冲沟,呈“U”字型沟谷。隧道轴线通过路段地面标高222~310m,相对高差约88m,隧道顶板上覆围岩最大厚度约87、0m。地形坡度25~55°左右。山坡植被稀少,主要为灌木丛,坡面多

出露基岩。隧道通城端洞口段地处冲沟附近的G106底下,地形较平缓,覆盖层较厚,洞口轴线与地形等高线呈小角度相交。黄泥界端洞口段地处SN向冲沟内的G106底下,地形较缓,基岩裸露,洞口轴线与地形等高线呈小角度相交。 2.围岩分级 根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩与花岗岩均为强风化,饱与抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。 根据计算结果,强风化片岩与花岗岩围岩分级均为Ⅴ级。 3、水文地质 根据调查,隧道区的山体上未发现地表水体,亦未发现地下水出露点。根据钻孔内抽水试验可知:其地下水量<0、20t/d,但雨季受降雨影响,地表水将沿陡裂隙下渗,富集在F断层内,严重影响洞室的稳定,施工时应特别注意。 根据《公路工程地质勘察规范》(JTJ064-98)附录D,隧道区地下水及地表水对混凝土结构均无腐蚀性。详细分析结果见工程地质报告。 三、洞门设计步骤 《公路隧道设计规范》关于洞口的一般规定: 1、洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定。 2、隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定。 3、洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并与路基排水系统综合考虑布置。 4、洞门设计应与自然环境相协调。

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

隧道设计

安徽省铜汤高速公路焦家山隧道设计 目录 一、设计资料 二、隧道断面布置 三、围岩压力计算 四、隧道衬砌设计与计算 五、施工组织设计

一、设计资料 1、工程概况: 安徽省铜汤高速公路要穿越黄山的焦家山,在该山建一隧道。隧道址区属构造剥蚀低山区,海拔105.2m —231.1m ,相对高差125.9m 。山脊走向35度左右,隧道轴线与山脊走向基本垂直。 2、地形地质等条件 工作区属亚热带湿润季风气候区,梅雨区40天左右,年平均气温为15.2—17.3度,最高日平均气温为42度,最低日平均气温为-20度。七、八月气温最高,一月气温最低。区内雨量充沛,多年平均年降雨量为1673.5mm ,最大为2525.7mm ,最小为627.9mm ,多锋面雨及地形雨,山区冬季风速较大,一般为4~5级。 地层岩性主要为志留系畈村组粉砂岩(fn S 2)和第四系全新统崩坡积成因碎 石土(1 4d e Q )。 3、设计标准 设计等级:高速公路双向四车道; 地震设防烈度:7级 4、计算断面资料: 桩号:K151+900.00; 地面高程:205.76m ; 设计高程:138.673m ; 围岩类别:Ⅲ类; 复合式衬砌类型:Ⅲ类; 工程地质条件及评价:该段隧道通过微风化粉砂岩地段,节理裂隙不发育,埋置较深,围岩稳定性较好。 5、设计计算内容 (1)确定隧道开挖方式及隧道断面布置图; (2)围岩压力计算; (3)隧道支护设计图; (4)隧道衬砌设计图。 6、设计依据 (1)《公路隧道设计规范》(JTG D70-2004); (2)《公路隧道施工技术规范》(JTJ042-94); (3)《隧道工程》王毅才 主编 人民交通出版社; (4)《地下结构静力计算》 天津大学建筑工程系地下建筑工程教研室 编 中国建筑工业出版社。 二、隧道断面布置 本公路设计等级为高速公路双向四车道,由《公路隧道设计规范》(JTG D70-2004)4.3.2有:高速公路、一级公路的隧道应设计为上、下行分离的独立双洞。对于Ⅲ类围岩,分离式独立双洞间的最小净距为2.0B ,B 为隧道开挖断面的宽度。 本隧道入口处桩号为:K151+818,出口处桩号为:K151+986,全长168米,

隧道洞门设计

**隧道端洞门设计 一,技术标准及执行规范 1.技术标准 设计行车速度:40km/h 隧道主洞建筑限界净宽:1.50+0.25+2×3.5+0.25+1.50=10.50m 隧道建筑限界净高:5.0m 路基宽:8.5m 2.遵循规范 《公路工程技术标准》JTG B01-2003 《公路隧道设计规范》JTG D70-2004 《公路隧道通风照明设计规范》JTJ026.1-1999 《公路工程抗震设计规范》JTJ004-89 《锚杆喷射混凝土支护技术规范》GB50086-2001 《地下工程防水技术规范》GB50108-2001 二、工程概况 根据隧道需风量分析确定,本隧道采用自然通风。 隧道内的供电照明负荷和应急照明按一级负荷考虑。 1、地形、地貌 隧道区地貌属于丘陵低山地貌。隧道地处山体的左侧山坡地段,地形起伏较大,山高坡陡,山体走向近SN向,隧道走向与其基本平行。在隧道的进出口地段发育路线走向呈小角度相交的小冲沟,呈“U”字型沟谷。隧道轴线通过路段地面标高222~310m,相对高差约88m,隧道顶板上覆围岩最大厚度约87.0m。地形坡度25~55°左右。山坡植被稀少,主要为灌木丛,坡

面多出露基岩。隧道通城端洞口段地处冲沟附近的G106底下,地形较平缓,覆盖层较厚,洞口轴线与地形等高线呈小角度相交。黄泥界端洞口段地处SN向冲沟内的G106底下,地形较缓,基岩裸露,洞口轴线与地形等高线呈小角度相交。 2.围岩分级 根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩和花岗岩均为强风化,饱和抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。 根据计算结果,强风化片岩和花岗岩围岩分级均为Ⅴ级。 3.水文地质 根据调查,隧道区的山体上未发现地表水体,亦未发现地下水出露点。根据钻孔内抽水试验可知:其地下水量<0.20t/d,但雨季受降雨影响,地表水将沿陡裂隙下渗,富集在F断层内,严重影响洞室的稳定,施工时应特别注意。 根据《公路工程地质勘察规范》(JTJ064-98)附录D,隧道区地下水及地表水对混凝土结构均无腐蚀性。详细分析结果见工程地质报告。 三、洞门设计步骤 《公路隧道设计规范》关于洞口的一般规定: 1、洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定。 2、隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定。 3、洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并和路基排水系统综合考虑布置。 4、洞门设计应与自然环境相协调。

(完整版)三级公路设计.docx

1绪论 1.1地理位置图 (略,详细情况见路线设计图) 1.2路线及工程概况 本路线是山岭重丘区的一条三级公路,路线设计技术指标为:路基宽度为7.5 米,双向车道,无中央分隔带,土路肩为 2 0.5 米,行车道为 2 3.250 米。设计速度为 30Km/h ,路线总长1981.451 米,起点桩号K0+000.00,终点桩号为K1+1981.451。设计路线共设置了 6 个平曲线,半径分别为 350m 210m 250m 337m 75m 58.460m,弯道处均设置缓和曲线,本次纵断面设计设置了8 个变坡点,5 个凸形竖曲线,3 个凹形竖曲线,半径依次为 1800、 4700、 18000、2500、2500 3000、1400、1000 米。 1.3线自然地理特征 安州区隶属四川省绵阳市,位于绵阳市西南部,四川盆地西北部,龙门山脉中段,介于北纬31°23~′31° 47,′东经 104° 05~′104° 38之′间,东与江油市,东南与本市的涪城区接壤;南与德阳市的罗江县,西南与绵竹市相连;北与本市的北川羌族自治县,西北与阿坝藏族羌族自治州的茂县毗邻 1.4研究主要内容 本毕业设计的任务就是在教师的指导下独立完成吉林白河—露水河三级公路的设 计工作,具体内容包括整理分析、平面设计、纵断面设计、横断面设计、公路排水规 划设计及设计文件的编制和图纸绘制。 1.4.1资料整理与分析 设计资料是设计的客观依据,必须认真客观地分析。首先要对设计任务书提供的 各种资料加以理解和必要的记忆,明确对设计的影响,在头脑中对工程要求、自然条 件、材料供应情况和施工条件等,构成一幅明晰的画面;其次要对资料进行分析、概 括和系统地整理,从中抽取、确定有关设计数据。 1.4.2路线平面、纵断面及横断面设计 1.4.3排水设计 1.4.4设计文件 毕业设计文件包括设计说明书和计算书。说明书交代设计内容、设计意图。计算 书交代设计中的具体计算方法和过程。 1.4.5设计图纸 一般要求绘制路线平面图、纵断面图、路基标准横断面图、横断面设计图、路面设 计图、路基排水设计图等主要图纸,编制直线、曲线及转角表、路基设计表、路基

地铁车站主体结构设计

地铁车站主体结构设计 (地下矩形框架结构) 西南交通大学地下工程系 目录 第一章课程设计任务概述 (3) 1.1 课程设计目的 (3)

1.2 设计规范及参考书 (3) 1.3 课程设计方案 (3) 1.4 课程设计的基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 2.1平面结构计算简图 (6) 2.2.荷载计算 (6) 2.3荷载组合 (7) 第三章结构内力计算 (11) 3.1建模与计算 (11) 本课程设计采用ANSYS进行建模与计算,结构模型如下图: (11) 3.2基本组合 (12) 3.2 标准组合 (16) 第四章结构(墙、板、柱)配筋计算 (21) 4.1 车站顶板上缘的配筋计算 (21) 4.2 负一层中柱配筋计算 (27) 4.3 顶纵梁上缘的配筋计算 (29) 4.4 顶纵梁上缘裂缝宽度验算 (31)

第一章 课程设计任务概述 1.1 课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2 设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS ) 1.3 课程设计方案 1.3.1方案概述 某地铁车站采用明挖法施工,结构为矩形框架结构,结构尺寸参数详见表1-1。车站埋深3m ,地下水位距地面3m ,中柱截面的横向(即垂直于车站纵向)尺寸固定为0.8m (如图1-1标注),纵向柱间距8m 。为简化计算,围岩为均一土体,土体参数详见表1-2,采用水土分算。路面荷载为2/20m kN ,钢筋混凝土重度3/25m kN co =γ,中板人群与设备荷载分别取2/4m kN 、2/8m kN 。荷载组合按表1-3取用,基本组合用于承载能力极限状态设计,标准组合用于正常使用极

高速公路隧道工程课程设计计算书

1初始条件 某高速公路隧道通过III 类围岩(即IV 级围岩),埋深H=30m ,隧道围岩天然容重γ=23 KN/m3,计算摩擦角ф=35o ,变形模量E=6GPa,采用矿山法施工;衬砌材料采用C25喷射混凝土,材料容重 322/h KN m γ=,变形模量25h E GPa =。 2隧道洞身设计 2.1隧道建筑界限及内轮廓图的确定 该隧道横断面是根据两车道高速公路IV 级围岩来设计的,根据《公路隧道设计规范》确定隧道的建筑限界如下: W —行车道宽度;取3.75×2m C —余宽;因设置检修道,故余宽取为0m J —检修道宽度;双侧设置,取为1.0×2m H —建筑限界高度;取为5.0m2L L —左侧向宽度;取为1.0m R L —右侧向宽度;取为1.5m L E —建筑限界左顶角宽度;取1.0m R E —建筑限界右顶角宽度;取1.0m h —检修道高度;取为0.25m 隧道净宽为1.0+1.0+7.50+1.50+1.0=12m 设计行车速度为120km/h,建筑限界左右顶角高度均取1m ;隧道轮廓线如下图:

图1 隧道内轮廓限界图 根据规范要求,隧道衬砌结构厚度为50cm(一次衬砌为15cm和二次衬砌35cm)通过作图得到隧道的尺寸如下:

图2 隧道内轮廓图 得到如下尺寸:11.2m R 5.6m R 9.47m R 321===,, 3隧道衬砌结构设计 3.1支护方法及衬砌材料 根据《公路隧道设计规范》(JTG-2004),本设计为高速公路,采用复合式衬砌,复合式衬砌是由初期支护和二次衬砌及中间防水层组合而成的衬砌形式。 复合式衬砌应符合下列规定: 1初期支护宜采用锚喷支护,即由喷射混凝土,锚杆,钢筋网和钢筋支架等支护形式单独或组合使用,锚杆宜采用全长粘结锚杆。 2二次衬砌宜采用模筑混凝土或模筑钢筋混凝土结构,衬砌截面宜采用连结圆顺的等厚衬砌断面,仰拱厚度宜与拱墙厚度相同。

隧道端洞门设计

隧道端洞门设计

**隧道端洞门设计 一,技术标准及执行规范 1.技术标准 设计行车速度:40km/h 隧道主洞建筑限界净宽:1.50+0.25+2×3.5+0.25+1.50=10.50m 隧道建筑限界净高:5.0m 路基宽:8.5m 2.遵循规范 《公路工程技术标准》JTG B01-2003 《公路隧道设计规范》JTG D70-2004 《公路隧道通风照明设计规范》JTJ026.1-1999 《公路工程抗震设计规范》JTJ004-89 《锚杆喷射混凝土支护技术规范》GB50086-2001 《地下工程防水技术规范》GB50108-2001 二、工程概况 根据隧道需风量分析确定,本隧道采用自然通风。 隧道内的供电照明负荷和应急照明按一级负荷考虑。 1、地形、地貌 隧道区地貌属于丘陵低山地貌。隧道地处山体的左侧山坡地段,地形起伏较大,山高坡陡,山体走向近SN向,隧道走向与其基本平行。在隧道的进出口地段发育路线走向呈小角度相交的小冲沟,呈“U”字型沟谷。隧道轴线通过路段地面标高222~310m,相对高差约88m,隧道顶板上覆围岩最大厚度约87.0m。地形坡度25~55°左右。山坡植被稀少,主要为灌木

丛,坡面多出露基岩。隧道通城端洞口段地处冲沟附近的G106底下,地形较平缓,覆盖层较厚,洞口轴线与地形等高线呈小角度相交。黄泥界端洞口段地处SN向冲沟内的G106底下,地形较缓,基岩裸露,洞口轴线与地形等高线呈小角度相交。 2.围岩分级 根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩和花岗岩均为强风化,饱和抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。 根据计算结果,强风化片岩和花岗岩围岩分级均为Ⅴ级。 3.水文地质 根据调查,隧道区的山体上未发现地表水体,亦未发现地下水出露点。根据钻孔内抽水试验可知:其地下水量<0.20t/d,但雨季受降雨影响,地表水将沿陡裂隙下渗,富集在F断层内,严重影响洞室的稳定,施工时应特别注意。 根据《公路工程地质勘察规范》(JTJ064-98)附录D,隧道区地下水及地表水对混凝土结构均无腐蚀性。详细分析结果见工程地质报告。 三、洞门设计步骤 《公路隧道设计规范》关于洞口的一般规定: 1、洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定。 2、隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定。 3、洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并和路基排水系统综合考虑布置。 4、洞门设计应与自然环境相协调。

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

公路工程毕业设计计算书

公路工程毕业设计计算书 第一章路线设计 路线设计就是根据道路的性质,任务,等级和标准,结合地形,地质及其沿线条件来进行线性设计。其设计内容主要包括道路平面设计,纵断面设计以及横断面设计。 1.1 道路等级确定 公路设计等级为高速公路,设计行车速度为120km/h;设计使用年限为15年。公路竣工后日交通量约为25350标准轴载(BZZ-100),交通量年增长率为8%,15年内累积交通量约为2.799×107标准轴载。 1.2 选线 1.2.1 高速公路几何指标的汇总 汇总见表1-1。 1.2.2 地形综述 地形条件:本路段有农田分布,渠道纵横交错,丘陵区地势较低。天然建筑材料基本为零,需要全部外运。 地质条件:该地区地势平坦,地下水埋深平均约-3.5m,地下水位以下土体饱和度大于90%。 气候条件:该地区属中纬度北亚热带气候、气候湿润、光照充足、雨量充沛,按公路自然区划,属东南湿热区。沿线水网密布、地质复杂、有软土分布的路段较长达92KM。年平均降雨量约为1013.4mm,降雨以梅雨、秋雨为主,全年平均气温(七日平均气温)约为26.4℃,最高月平均地表温度T≥35℃。春夏季为东南季风,不利季节时阴雨连绵。 1.2.3 选线原则 平原区地势平坦,选线以两点之内的直线为主导方向,既要力争路线顺直,又要节省工程投资,合理解决对障碍物的穿越或绕避。 1.正确处理道路与农业的关系

(1)新建道路要占用一些农田,不可避免,但要尽量做到少占农田和不占高产田。布线从路线对国民经济的作用、支农运输的效果、地形条件、工程数量、交通运输费用等方面全面分析比较,既不能片面求直占用大片良田,也不能片面强调不占某块田而使路线弯弯曲曲,造成行车条件恶化。 表1-1 高速公路几何指标汇总表 (2)路线应与农田水利建设相结合,有利于农田灌溉,尽可能少与灌溉渠道相

地铁车站主体结构设计.docx

地铁车站主体结构设计(地下矩形框架结构)

目录 第一章课程设计任务概述 (3) 1.1 课程设计目的 (3) 1.2 设计规范及参考书 (3) 1.3 课程设计方案 (4) 1.4 课程设计的基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 2.1平面结构计算简图 (6) 2.2.荷载计算 (7) 2.3荷载组合 (8) 第三章结构内力计算 (11) 3.1建模与计算 (11) 本课程设计采用ANSYS进行建模与计算,结构模型如下图: (11) 3.2基本组合 (12) 3.2 标准组合 (15) 第四章结构(墙、板、柱)配筋计算 (20) 4.1 车站顶板上缘的配筋计算 (20)

4.2 负一层中柱配筋计算 (26) 4.3 顶纵梁上缘的配筋计算 (28) 4.4 顶纵梁上缘裂缝宽度验算 (30) 第一章课程设计任务概述 1.1课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS)

(完整版)XX水库供水隧洞结构计算书.doc

龙洞河水电站有压引水隧洞结构计算书 1工程概况 公明供水调蓄工程供水隧洞是从鹅颈至公明水库连通隧洞L0+387 桩号接往石岩水库的一条供水隧洞,全长 6.397km,桩号为 G0+000~G6+397。根据初步设计报告供水隧洞为 2 级建筑物,设计流量为 10.24m3/s,采用圆型断面,内径为 3.4m。供水隧洞进口底高程为 29.60m,出口底高程为 27.50m,隧洞全段纵坡为 -0.0328%。供水隧洞Ⅱ类围岩 3576m、Ⅲ 类围岩 1836m、Ⅳ类围岩 345m、Ⅴ类围岩 310m。 2设计依据 2.1 规范、规程 《水工隧洞设计规范》( SL279-2002)(以下简称“隧洞规范”) 《水工隧洞设计规范》( DL/T 5195-2004)(电力行业标准,下称“电力隧洞规范”)《水工钢筋混凝土结构设计规范(试行)》(SDJ20-78)(以下简称“砼规” ) 《锚杆喷射混凝土支护技术规范》(GB 50086-2001) 2.2 参考资料 《深圳市公明水库调蓄工程初步设计报告》(深圳市水利规划设计院, 2007.05) 《G-12 隧洞衬砌内力及配筋计算通用程序》 《PC1500 程序集地下结构计算程序使用中的几个问题》(新疆水利厅,张校正) 《取水输水建筑物丛书-隧洞》 《水工设计手册-水电站建筑物》(水利电力出版社, 1989) 《水击理论与水击计算》(清华大学出版社, 1981) 《水力学-下册》(吴持恭,高等教育出版社,1982) 3计算方法 隧洞支护及衬砌结构按新奥法理论进行设计,支护型式采用锚喷支护通过工程类比确 定,喷锚支护类型及其参数参照电力隧洞规范附录 F 表 F.1 选取;衬砌型式采用钢筋混凝 土衬砌。根据隧洞规范 6.1.8 条第 2 点规定,围岩具有一定的抗渗能力、内水外渗可能造 成不良地质段的局部失稳,经处理不会造成危害者,宜提出一般防渗要求,本工程按限制

相关文档
最新文档