直流电动机的PWM调压调速原理
直流电机-PWM调速

PWM调速
脉冲宽度调制 - Pulse Width Modulation
• 利用微处理器的数字输出来对模拟电路进行控制的 一种非常有效的技术 • 应用:测量、通信、功率控制与变换
PWM
V T T/2
0
t
PWM
PWM变换器和PWM-M系统开环机械特性 脉宽调制原理
脉冲宽度调制(PWM)是通过功率管的开关作用,将恒定 直流电压转换成频率一定,宽度可调的方波脉冲电压,通过 调节脉冲电压的宽度而改变输出电压平均值的一种功率变换 技术。由脉宽调制器向电机供电的系统称为脉宽调速系统, 简称PWM-M调速系统。
(二)可逆PWM变换器 其主电路结构有H型,T型等,常用H型变换器,它由4个 电力晶体管和 4个续流二极管组成桥式电路。在控制方式上 分双极式、单极式和受限单极式三种。着重分析双极式H型 PWM变换器,然后再简要说明其它方式的特点。 1、双极式可逆PWM变换器
+
Us
(1)构成特点 4个VT的基极驱动分两组。 VTl 和 VT4 同时导通和关断,
n0
U s
Ce
调速系统的空载转速,与占空比成正比;
n
Id R 负载电流造成的转速降。 Ce
9
2、有制动作用的PWM变换器 (1)电路组成 需制动时须有反向电流-id的通路,应设置控制反向的第 二个电力晶体管,形成VT1和VT2交替开关的电路,如图(a) 所示。电路由VT1和VT2,VD1和VD2组成。VT1是主管,起 控制作用;VT2是辅助管,构成电机的制动电路。
8
Ud
ton U s U s T
图3-2(b)中绘出了电枢的脉冲端电压ud、平均电压Ud和 电枢电流id的波形。id 是脉动的。因开关频率较高,电流脉 动幅值不会很大,影响到转速n和反电动势E的波动就更小了。
《直流电机调速》课件

直流电机调速的分类
直流电机调速可以分为线性调速和PWM调速两种方式。线性调速是通过改变电 机的输入电压或电流来实现调速的,而PWM调速则是通过改变电机输入电压的 占空比来实现调速的。
PWM调速具有更高的调速精度和更小的电机发热量,因此在许多应用中得到了 广泛的应用。
02
直流电机调速的方法
改变电枢电压调速
总结词
通过改变电枢两端的电压,可以调节直流电机的转速。
详细描述
当电枢两端电压增加时,电机转速相应增加;反之,当电压减小时,电机转速 相应降低。这种方法调速范围广,但需要可调直流电源,控制电路相对复杂。
改变励磁电流调速
总结词
通过改变励磁绕组的电流,可以调节 直流电机的磁场强度,进而调节电机 转速。
详细描述
02
直流电机调速是一种常见的电机 调速方式,具有调速范围广、调 速线性度好、动态响应快等优点 。
直流电机调速的原理
直流电机调速的原理基于直流电机的电磁转矩与电枢电流成 正比的特性。通过改变电枢电流的大小,可以改变电机的输 出转矩,从而调节电机的转速。
另外,直流电机还具有电枢反电动势,它与电枢电流的大小 成正比。改变电机的输入电压或电流,可以改变电机的输入 功率,进一步调节电机的转速。
控制复杂度较高
直流电机调速系统的控制算法相对复 杂,需要专业的技术人员进行维护和 调试。
05
直流电机调速的发展趋势
高性能直流电机调速系统的研究
总结词
随着工业自动化水平的提高,对直流电机调 速系统的性能要求也越来越高,高性能直流 电机调速系统的研究成为重要的发展趋势。
详细描述
为了满足高精度、高动态响应的调速需求, 研究者们不断探索新的控制算法和优化策略 ,以提高直流电机调速系统的调节精度、稳 定性和动态响应能力。
直流电机PWM控制

直流电机PWM控制
参照原理图如下所示: 1)查询式键盘原理图
2)6位串行静态显示原理图
直流电机PWM控制
3)直流电机控制原理图
PWM基本原理及其实现措施
• PWM基本原理 • PWM是经过控制固定电压旳直流电源开关频率,
从而变化负载两端旳电压,进而到达控制要求旳 一种电压调整措施。PwM能够应用在许多方面, 如电机调速、温度控制、压力控制等。 • 在PWM驱动控制旳调整系统中,按一种固定旳频 率来接通和断开电源,并根据需要变化一种周期 内“接通”和“断开”时间旳长短。经过变化直 流电机电枢上电压旳“占空比”来变化平均电压 旳大小,从而控制电动机旳转速。所以,PWM又 被称为“开关驱动装置”。
•
* 经过本例程了解PWM 旳基本原理和使用
*
•
*
*
•
* 请将直流电机线接在+5V P12相应旳端子上(步进马达接口出)
*
•
*
*
•
* 请学员仔细消化本例程
*
•
*********************************************************************************/
•
------------1000/(0.02ms*250)=200Hz
•
*************************************/
•
void T1zd(void) interrupt 3 //3 为定时器1旳中断号 1 定时器0旳中断号 0 外
部中断1 2 外部中断2 4 串口中断
•
main()
直流伺服电动机脉宽调制的工作原理

直流伺服电动机是一种广泛应用于工业控制系统中的电动机,其主要特点是控制精度高、速度范围广、响应速度快等。
而脉宽调制(PWM)技术是一种常用的电力控制技术,通过调整脉冲宽度来控制输出电压,被广泛应用于直流伺服电动机的速度和位置控制中。
本文将介绍直流伺服电动机脉宽调制的工作原理,包括脉宽调制原理、直流伺服电动机的工作原理、脉宽调制在直流伺服电动机中的应用等内容。
一、脉宽调制原理脉宽调制技术是一种通过调制脉冲信号的宽度来控制输出电压或电流的技术。
其基本原理是将输入信号与一个高频的载波信号进行调制,通过改变调制信号的脉冲宽度,来实现对输出信号的控制。
脉宽调制技术可以实现对输出信号的精确控制,并且具有简单、成本低廉、效率高等优点,因此被广泛应用于各种电力控制领域。
二、直流伺服电动机的工作原理直流伺服电动机是一种能够精确控制角度、速度和位置的电动机,其主要由电动机、编码器和控制器组成。
控制器通过不断地监测编码器反馈的位置信息,计算电机与期望位置之间的误差,并输出控制信号来调节电机的速度和位置,从而实现对电机的精确控制。
三、脉宽调制在直流伺服电动机中的应用脉宽调制技术被广泛应用于直流伺服电动机的速度和位置控制中,其工作原理如下:控制器根据输入的期望速度或位置信号,计算出电机的转速或角度误差,然后将误差信号传递给脉宽调制模块。
脉宽调制模块通过调整输出脉冲信号的宽度和周期,控制电机的转速和位置,从而实现对电机的精确控制。
四、脉宽调制在直流伺服电动机中的优势脉宽调制技术在直流伺服电动机中具有以下优势:1. 精确控制:脉宽调制技术可以实现对电机的精确控制,包括速度、角度和位置的精确控制。
2. 响应速度快:脉宽调制技术可以实现对电机的快速响应,提高了系统的动态性能。
3. 节能减排:脉宽调制技术可以实现能效优化,降低了能耗,减少了环境污染。
4. 成本低廉:脉宽调制技术成本低廉,便于大规模应用。
五、总结脉宽调制技术在直流伺服电动机中的应用,实现了对电机的精确控制和高效能运行。
无刷直流电机pwm调速原理

无刷直流电机pwm调速原理
无刷直流电机(BLDC)是一种电动机,其转子上没有传统的电刷。
相比传统的有刷直流电机,BLDC电机拥有更高的效率和可靠性。
为了实现BLDC电机的调速,通常使用PWM(脉宽调制)技术。
PWM调速原理如下:在电机电源上加上一个有特定占空比的方波信号,即PWM信号。
PWM信号的占空比决定了电机的平均电压,从而决定了电机的转速。
当PWM信号的占空比增加时,电机的平均电压也会增加,电机的转速也会随之增加。
反之,当PWM信号的占空比减小时,电机的平均电压也会减小,电机的转速也会减小。
BLDC电机的控制主要包括两个方面:判断当前转子位置和根据位置控制电机。
判断转子位置通常采用霍尔传感器或反电动势感应法。
在控制电机时,可以采用开环控制或闭环控制。
开环控制指直接根据PWM信号控制电机转速;闭环控制则需要通过传感器反馈来调整PWM信号的占空比,使电机达到预期转速。
PWM调速技术不仅可以用于BLDC电机,也可以用于其他类型的电机调速。
通过合理的PWM信号设置,可以实现电机的精确调速和控制。
- 1 -。
直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理
直流电动机的PWM调压调速是指通过调节脉宽调制(PWM)信号的占空比,控制直流电动机的电压和转速。
其原理是利用数字信号的高低电平与时间的对应关系,通过高电平和低电平的时间比例来控制脉冲信号的平均值,从而实现对电动机的调压和调速。
具体来说,PWM调压调速主要包括以下几个步骤:
1.信号发生器:使用微控制器或其他信号发生器产生一个固定频率的方波信号,通常频率为几千赫兹到几十千赫兹。
这个信号称为PWM基准信号。
2.调制器:通过控制占空比,将PWM基准信号转换为调制后的PWM信号。
占空比是指高电平持续的时间与一个周期的比值。
例如,占空比为50%的PWM信号表示高电平和低电平持续时间相等。
调制器可以是硬件电路或者软件控制的。
3.电压调节:将调制后的PWM信号经过滤波器平滑输出,形成电压调节信号。
滤波器通常使用低通滤波器,将PWM信号的高频成分滤除,得到平均电压。
4.转速控制:通过调节占空比,改变PWM信号的高电平时间,从而改变直流电动机的平均电压。
占空比越大,输出电压就越高;占空比越小,输出电压就越低。
5.转速反馈:为了实现闭环控制,通常需要通过传感器获取直流电动机的转速,并将转速信息反馈给调速控制器。
调速控制器会根据反馈信号与设定的转速进行比较,调节占空比控制电动机的转速。
总结起来,PWM调压调速原理就是通过调节PWM信号的占空比控制直流电动机的电压和转速。
通过改变占空比,可以改变PWM信号的高电平时间,从而改变电动机的平均电压和转速。
同时,结合转速反馈,可以实现封闭环控制,使电动机的转速能够与设定值保持一致。
PWM调速原理

PWM调速原理
占空比:高电平时间比整个周期的时间。
PWM的占空比决定输出到直流电机的平均电压.
PWM不是调节电流的.PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压.所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节.
在使用PWM控制的直流无刷电动机中,PWM控制有两种方式:
1.使用PWM信号,控制三极管的导通时间,导通的时间越长,那么做功的时间越长,电机的转速就越高
2.使用PWM控制信号控制三极管导通时间,改变控制电压高低来实现
有用CPWM SPWM.....来调速
调速不只是改变电压(电源电压或者控制电压),改变电流也可以。
(控制回路的电流,而不是PWM信号的电流)
不知楼主是用几相PWM控制的直流电动机啊
PWM信号是一个矩形的方波,他的脉冲宽度可以任意改变,改变其脉冲宽度控制控制回路输出电压高低或者做功时间的长短,实现无级调速。
直流电机PWM调速基本原理

直流电机PWM调速基本原理
PWM方式是在大功率开关晶体管的基极上,加上脉冲宽度可调的方波电压,控制开关管的导通时间t,改变占空比,达到控制目的。
图3.3是直流PWM系统原理框图。
这是一个双闭环系统,有电流环和速度环。
在此系统中有两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。
核心部分是脉冲功率放大器和脉宽调制器。
控制部分采用AT89S52(脉宽调制芯片AT89S52具有欠压锁定、故障关闭和软起动等功能,因而在中小功率电源和电机调速等方面应用较广泛。
AT89S52是电压型控制芯片,利用电压反馈的方法控制PWM信号的占空比,整个电路成为双极点系统的控制问题,简化了补偿网络的设计。
)集成控制器产生两路互补的PWM脉冲波形,通过调节这两路波形的宽度来控制H 电路中的GTR通断时间,便能够实现对电机速度的控制。
为了获得良好的动、静态品质,调节器采用PI调节器并对系统进行了校正。
检测部分中,采用了霍尔片式电流检测装置对电流环进行检测,转速还则是采用了测速电机进行检测,能达到比较理想的检测效果。
图3.3 直流电动机PWM系统原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电动机的PWM调压调速原理
直流电动机转速N的表达式为:N=U-IR/Kφ
由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。
其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。
现在,大多数应用场合都使用电枢控制方法。
对电动机的驱动离不开半导体功率器件。
在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。
线性放大驱动方式是使半导体功率器件工作在线性区。
这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。
绝大多数直流电动机采用开关驱动方式。
开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。
在PWM调速时,占空比α是一个重要参数。
以下3种方法都可以改变占空比的值。
(1)定宽调频法
这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。
(2)调频调宽法
这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。
(3)定频调宽法
这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。
前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。
目前,在直流电动机的控制中,主要使用定频调宽法。
直流电动机双极性驱动可逆PWM控制系统
双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。
双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。
但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。
另一种称为H型。
H型双极性驱动
一、显示接口模块
方案一:液晶显示器也是一种常用的显示器件。
它的优点是功耗低,寿命长,本身无老化问题,显示信息量大(可以显示字母和数字),在显示字符上没有限制。
但价格高,接口电路较为复杂。
其只在一些(袖珍型)设备上作为显示之用。
方案二:数码管(LED)是一种简单而常用的显示器件,通常用来指示机器的状态和其他信息。
它的优点是价格低,寿命长,对电流,电压的要求低及容易实现电路的接口等;而有其亮度较低,温度依赖性较大等缺点。
但在其系统中只作为简单的显示,且从价格等方面考虑。
采用方案二来设计电路。
1.电动机控制电路模块
H桥电动机驱动电路的工作原理:
A:当单片机的P0.0脚输出高电平,而P0.1脚输出低电平时,通过光电耦合器后仍然输出为高电平,使Q4管导通,此时Q1也处于导通状态,但Q2管的基极的电位被强行拉低,Q2管处于截止状态。
由于单片机的P0.1脚输出低电平,
Q8处于截止状态,而此时Q7因为Q5的截止而处于导通状态,从而使电动机形成回路,电机正常工作。
B:同理可得,当P0.0脚输出低电平,而P0.1脚输出高电平时,三极管的状态与上述相反,电机同样处于正常工作状态。
C:当P0.0脚和P0.1同时为高电平或低电平,由于Q4与Q8和Q3与Q7的工作状态相同,同时处于导通或截止,使电机两断电位相同,无法使电机形成闭和回路,电机不工作,着就是所谓本设计所提及的刹车状态。
由于电路中在驱动功率管的发射极各添加了一个小电感,目的是为了使电机驱动电压更加稳定,得到较为平滑的驱动电压,从而增加了刹车时动作的准确性,减少电机的在起动和停止的瞬间产生过大的电压对功率管的冲击,导致功率管的损坏。
同时也提高了电机的刹车控制可靠性和准确性,不至于因惯性而导致控制上产生较大的误差。
该桥的优点是电路的原理简单、易控制、功耗低带负载能力强、刹车的精度很高而且价格低廉。
在驱动电路的控制信号输入断采用了光电隔离技术,减小H桥电机驱动电路对单片机的干扰,实现模拟电路与数字电路的隔离。
在单片机的配合下,通过PWM调节脉宽的方法,实现了对驱动电机的轻松调速,通过键盘的配置可以对体的参数进行修改,可以使电机适应各种不同的工作状态,而实现智能控制的目的。
正因为采取了PWM该技术,使我们完成基本要求的过程变得简单易行。
在电路中所采取的功率管为中功率管,其中将驱动功率管设计为灵活替换方式,可以根据实际驱动电路的需要,从而调整功率管的型号而不用另行更改电路,就可以满足电路控制的要求
三、软件模块部分
在速度控制方面,一般是能通过改变加在电机两端的电压来实现的,可以是连续改变(加直流电压),也可以是断续改变(加脉冲电压)。
为了简单用,我们采用了脉宽调速,脉宽的变化可以通过硬件或软件来实现。
方案一硬件实现是通过改变振荡电路中RC参数来调整充放电时间。
若用硬件电路来实现,在稳定性方面得不到保证。
方案三用软件的作法是通过设置高电平及低电平的保持时间来达到PWM的脉宽调制目的。
就比较而言,软件调整量化指标更高、调整更可靠、更方便、更准确。
因此在设计时,常考虑方案二。
脉冲频率对电机转机也有影响,脉冲频率高连续性好,但带负载能力差,频率低则反之。
经实验发现,脉冲频率在15━20HZ效果最佳。
在本设计中采用了20HZ进行设计。
脉冲调速实质上是调节加在电机两端的平均功率,通过计算可发现电机的速度与脉宽成正比。
软件编程的考虑是设置脉宽这个变量。
在P0.0,P0.1的输出控制信号来产生20HZ可调脉宽方波。