数学 圆的综合的专项 培优练习题及答案

数学 圆的综合的专项 培优练习题及答案
数学 圆的综合的专项 培优练习题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.

(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.

(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.

(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.

【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.

【解析】

试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;

(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则

可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;

(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.

试题解析:(1)相切,理由如下:

如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,

∵α=15°,A′C∥AB,

∴∠ABA′=∠CA′B=30°,

∴DE=A′E,OE=BE,

∴DO=DE+OE=(A′E+BE)=AB=OA,

∴A′C与半圆O相切;

(2)当BA′与半圆O相切时,则OB⊥BA′,

∴∠OBA′=2α=90°,

∴α=45°,

当O′在上时,如图2,

连接AO′,则可知BO′=AB,

∴∠O′AB=30°,

∴∠ABO′=60°,

∴α=30°,

(3)∵点P,A不重合,∴α>0,

由(2)可知当α增大到30°时,点O′在半圆上,

∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;

当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.

当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,

∴α<90°,

∴当45°≤α<90°线段BO′与半圆只有一个公共点B.

综上所述0°<α<30°或45°≤α<90°.

考点:圆的综合题.

2.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).

(1)当G(4,8)时,则∠FGE= °

(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.

要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).

【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.

【解析】

试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.

(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.

试题解析:(1)连接FE,

∵E(8,0),F(0 , 6),G(4,8),

∴根据勾股定理,得FG=,EG=,FE=10.

∵,即.

∴△FEG是直角三角形,且∠FGE=90 °.

(2)作图如下:

P(7,7),PH是分割线.

考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.3.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的

内心,CI的延长线交⊙O于点D,连结AD,BD.

(1)求证:AD=BD.

(2)猜想线段AB与DI的数量关系,并说明理由.

(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.

【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23

【解析】

分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;

(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得

△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出

ID=BD,再根据AB=BD,即可证得结论;

(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ?的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.

详解:(1)证明:∵点I是∠ABC的内心

∴CI平分∠ACB

∴∠ACD=∠BCD

∴弧AD=弧BD

∴AD=BD

(2)AB=DI

理由:∵∠ACB=120°,∠ACD=∠BCD

∴∠BCD=×120°=60°

∵弧BD=弧BD

∴∠DAB=∠BCD=60°

∵AD=BD

∴△ABD是等边三角形,

∴AB=BD,∠ABD=∠C

∵I是△ABC的内心

∴BI平分∠ABC

∴∠CBI=∠ABI

∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD

∴∠BID=∠IBD

∴ID=BD

∵AB=BD

∴AB=DI

(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧

∵∠ACB=120°,弧AD=弧BD

∴∠AED=∠ACB=×120°=60°

∵圆的半径为2,DE是直径

∴DE=4,∠EAD=90°

∴AD=sin∠AED×DE=×4=2

∵点E,F是弧AB ?的三等分点,△ABD是等边三角形,

∴∠ADB=60°

∴弧AB的度数为120°,

∴弧AM、弧BF的度数都为为40°

∴∠ADM=20°=∠FAB

∴∠DAI1=∠FAB+∠DAB=80°

∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°

∴∠DAI1=∠AI1D

∴AD=I1D=2

∴弧I1I2的长为:

点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.

4.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。

(1)如图1,如果点M是线段AB的中点,且⊙M的半径等于4,试判断直线OB与⊙M 的位置关系,并说明理由;

(2)如图2,⊙M与x轴,y轴都相切,切点分别为E,F,试求出点M的坐标;

(3)如图3,⊙M与x轴,y轴,线段AB都相切,切点分别为E,F,G,试求出点M的坐标(直接写出答案)

【答案】(1)OB与⊙M相切;(2)M(-24

7

24

7

);(3)M(-2,2)

【解析】

分析:(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;

(2)求出过点A、B的一次函数关系式是y=3

4

x+6,设M(a,﹣a),把x=a,y=﹣a代

入y=3

4

x+6得出关于a的方程,求出即可.

(3)连接ME、MF、MG、MA、MB、MO,设ME=MF=MG=r,根据

S△ABC=1

2

AO?ME+

1

2

BO?MF+

1

2

AB?MG=

1

2

AO?BO求得r=2,据此可得答案.

详解:(1)直线OB与⊙M相切.理由如下:

设线段OB的中点为D,如图1,连结MD,

∵点M是线段AB的中点,所以MD∥AO,MD=4,∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上.又∵点D在直线OB上,∴直线OB与⊙M相切;(2)如图2,连接ME,MF,

∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴

80

6

k b

b

-+=

?

?

=

?

,解

得:k=3

4

,b=6,即直线AB的函数关系式是y=

3

4

x+6.

∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M

(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=3

4

x+6,得:﹣a=

3

4

a+6,得:a=﹣

24 7,∴点M的坐标为(﹣

2424

77

,).

(3)如图3,连接ME、MF、MG、MA、MB、MO,

∵⊙M与x轴,y轴,线段AB都相切,∴ME⊥AO、MF⊥BO、MG⊥AB,设

ME=MF=MG=r,则S△ABC=1

2

AO?ME+

1

2

BO?MF+

1

2

AB?MG=

1

2

AO?BO.

∵A(﹣8,0),B(0,6),∴AO=8、BO=6,AB=22

AO BO

+=10,

∴1

2r?8+

1

2

r?6+

1

2

r?10=

1

2

×6×8,解得:r=2,即ME=MF=2,∴点M的坐标为(﹣2,

2).

点睛:本题考查了圆的综合问题,掌握直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解答此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,当d=r时,直线l和⊙O 相切.

5.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG

(1)判断CG与⊙O的位置关系,并说明理由;

(2)求证:2OB2=BC?BF;

(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.

【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2

【解析】

【分析】

(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即

OC⊥GC,据此即可得证;

(2)证△ABC∽△FBO得BC AB

BO BF

=,结合AB=2BO即可得;

(3)证ECD∽△EGC得EC ED

EG EC

=,根据CE=3,DG=2.5知

3

2.53

DE

DE

=

+

,解之可

得.

【详解】

解:(1)CG与⊙O相切,理由如下:如图1,连接CE,

∵AB是⊙O的直径,

∴∠ACB=∠ACF=90°,

∵点G是EF的中点,

∴GF=GE=GC,

∴∠AEO=∠GEC=∠GCE,

∵OA=OC,

∴∠OCA=∠OAC,

∵OF⊥AB,

∴∠OAC+∠AEO=90°,

∴∠OCA+∠GCE=90°,即OC⊥GC,

∴CG 与⊙O 相切;

(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC , ∴∠OAE =∠F , 又∵∠B =∠B , ∴△ABC ∽△FBO ,

∴BC AB

BO BF =,即BO ?AB =BC ?BF , ∵AB =2BO , ∴2OB 2=BC ?BF ;

(3)由(1)知GC =GE =GF , ∴∠F =∠GCF , ∴∠EGC =2∠F , 又∵∠DCE =2∠F , ∴∠EGC =∠DCE , ∵∠DEC =∠CEG , ∴△ECD ∽△EGC ,

EC ED

EG EC =, ∵CE =3,DG =2.5, ∴

32.53

DE

DE =+,

整理,得:DE 2+2.5DE ﹣9=0, 解得:DE =2或DE =﹣4.5(舍), 故DE =2. 【点睛】

本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.

6.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E

(1)判断直线PD 是否为⊙O 的切线,并说明理由;

(2)如果∠BED=60°,PA 的长;

(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析.

【解析】

【分析】

(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;

(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,

∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,PD=3,

∴0 tan30

OD

PD

=,解得OD=1,

∴22

PO PD OD

=+=2,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,

∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,

∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档

题,难度较大.

7.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ;

(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;

(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0

【答案】(1)22;(2)224r ≤≤;(3)25252t --<<--或6

(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求; (2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;

(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可. 【详解】

(1)过点O 作OD ⊥AB 交AB 于点D ,

根据“非常距离”的定义可知,

d (点O ,AB )=OD=2AB =22

442

+2; (2)如图,

当d(⊙O,AB)=0时,

过点O作OE⊥AB,则OE=22,OB=OA=4,

∵⊙O与线段AB的“非常距离”为0,

∴224

r

≤≤;

(3)当⊙T在△ABC左侧时,

如图,

当⊙T与BC相切时,d=0,

22

36

+35,

过点C作CE⊥y轴,过点T作TF⊥BC,则△TFH∽△BEC,

∴TF TH

BE BC

=,

即2

635

,

∴5

∵HO∥CE,

∴△BHO∽△BEC,∴HO=2,

此时5,0);当d=2时,如图,

同理可得,此时T (252--); ∵0

∴25252t --<<--; 当⊙T 在△ABC 右侧时,如图,

当p=0时,t=6,

当p=2时,t=8. ∵0

综上,25252t -<<或6

本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.

8.如图所示,ABC ?内接于圆O ,CD AB ⊥于D ; (1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;

(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;

(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且

2AD BD ED =+,若3DE =,5OB =,求CF 的长度.

【答案】(1)见解析;(2)成立;(3)145

【解析】 【分析】

(1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;

(2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可; (3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可. 【详解】

(1)证明:∵AB 为直径, ∴ACB 90∠=?,

∵CD AB ⊥于D ,

ADC 90∠=?,

∴OBC A 90∠∠+=?,A ACD 90∠∠+=?, ∴OBC ACD ∠∠=;

(2)成立, 证明:连接OC ,

由圆周角定理得:BOC 2A ∠∠=, ∵OC OB =, ∴()()11

OBC 180BOC 1802A 90A 22

∠∠∠∠=

?-=?-=?-,

ADC 90∠=?,

∴ACD 90A ∠∠=?-, ∴OBC ACD ∠∠=;

(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,

∵AE BC ⊥,CD BA ⊥,

AEC ADC 90∠∠==?,

∴BCD CFE 90∠∠+=?,BAH DFA 90∠∠+=?, ∵CFE DFA ∠∠=, ∴BCD BAH ∠∠=,

∵根据圆周角定理得:BAH BCH ∠∠=, ∴BCD BAH BCH ∠∠∠==,

∴由三角形内角和定理得:CHE CFE ∠∠=,

∴CH CF =, ∴EH EF =, 同理DF DK =, ∵DE 3=, ∴HK 2DE 6==,

在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==,

BC GC =,

∴MCK BCK BAK ∠∠∠==, ∴CMK 90∠=?,

延长KO 交⊙O 于N ,连接CN 、AN , 则NAK 90CMK ∠∠=?=, ∴CM //AN , ∵

NCK ADK 90∠∠==?,

∴CN //AG ,

∴四边形CGAN 是平行四边形, ∴AG CN 6==, 作OT CK ⊥于T , 则T 为CK 的中点, ∵O 为KN 的中点,

∴1

OT CN 32

==, ∵

OTC 90∠=?,OC 5=,

∴由勾股定理得:CT 4=, ∴CK 2CT 8==, 作直径HS ,连接KS , ∵HK 6=,HS 10=, ∴由勾股定理得:KS 8=, ∴3

tan HSK tan HAK 4

∠∠==, ∴1

tan EAB tan BCD 3

∠∠=

=, 设BD a =,CD 3a =,

∴AD BD 2ED a 6=+=+,11

DK AD a 233

==+, ∵CD DK CK +=, ∴1

3a a 283+

+=, 解得:9a 5

=, ∴113DK a 235

=

+=, ∴2614

CF CK 2DK 855

=-=-=. 【点睛】

本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.

9.如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE =∠C . (1)求证:AE 与⊙O 相切于点A ;

(2)若AE ∥BC ,BC =23,AC =2,求AD 的长.

【答案】(1)证明见解析;(2)23

【解析】

【分析】

(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.

(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在

Rt△ABD中,即可求得AD的长为

【详解】

解:(1)连接AO并延长交⊙O于点F,连接BF,

则AF为直径,∠ABF=90°,

∵AB AB

=,

∴∠ACB=∠F,

∵∠BAE=∠ACB,

∴∠BAE=∠F,

∵∠FAB+∠F=90°,

∴∠FAB+∠BAE=90°,

∴OA⊥AE,

∴AE与⊙O相切于点A.

(2)连接OC,

∵AE∥BC,

∴∠BAE=∠ABC,

∵∠BAE=∠ACB,

∴∠ACB=∠ABC,

∴AC=AB=2,

∴∠AOC=∠AOB,

∵OC=OB,

∴OA⊥BC,

∴CH=BH=1

BC

2

在Rt△ABH中,

AH1,

在Rt△OBH中,设OB=r,

∵OH2+BH2=OB2,

∴(r﹣1)

2+2=r2,

解得:r=2,

∴DB=2r=4,

在Rt△ABD中,AD

∴AD的长为23.

【点睛】

本题考查了圆的综合问题,恰当的添加辅助线是解题关键.

10.结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.

整理,得x2+7x=12.

所以S△ABC=1

2 AC?BC

=1

2

(x+3)(x+4)

=1

2

(x2+7x+12)

=1

2

×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若AC?BC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;

【解析】

【分析】

(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC?BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC?AG=mn.

【详解】

设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,

根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,

(1)如图1,

在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,

整理,得:x2+(m+n)x=mn,

所以S△ABC=AC?BC

=(x+m)(x+n)

=[x2+(m+n)x+mn]

=(mn+mn)

=mn;

(2)由AC?BC=2mn,得:(x+m)(x+n)=2mn,

相关主题
相关文档
最新文档