常微分方程(第三版)王高雄著课后习题答案.doc

常微分方程(第三版)王高雄著课后习题答案.doc
常微分方程(第三版)王高雄著课后习题答案.doc

\

习题 1.

dx

dy

=2xy,并满足初始条件:x=0,y=1的特解。 解:

y

dy

=2xdx 两边积分有:ln|y|=x 2+c y=e

2

x +e c =cex 2

另外y=0也是原方程的解,c=0时,y=0

原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2

x .

2. y 2

dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

&

解:y 2

dx=-(x+1)dy

2y dy dy=-1

1+x dx

两边积分: -

y

1

=-ln|x+1|+ln|c| y=|)1(|ln 1+x c

另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=

|

)1(|ln 1

+x c

3.dx dy =y

x xy y 321++

解:原方程为:dx

dy =y y 21+3

1

x x + y y 21+dy=3

1

x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2

4. (1+x)ydx+(1-y)xdy=0 解:原方程为:

y y -1dy=-x

x 1

+dx

两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0

解:原方程为:

dx dy =-y

x y x +-

{

x

y

=u 则dx dy =u+x dx du 代入有:

-1

12++u u du=x 1dx

ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x

y

. 6. x

dx

dy -y+2

2y x -=0 解:原方程为:

dx dy =x y +x

x |

|-2)(1x y -

则令

x

y

=u dx dy =u+ x dx du

2

11u - du=sgnx

x

1

dx }

arcsin

x

y

=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:

tgy dy =ctgx

dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=

x c cos 1=x

c

cos 另外y=0也是原方程的解,而c=0时,y=0.

所以原方程的通解为sinycosx=c.

8 dx dy +y

e x y 32

+=0 解:原方程为:dx dy =y

e y 2

e x 3

`

2 e

x

3-3e

2

y -=c.

(lnx-lny)dy-ydx=0

解:原方程为:

dx dy =x y ln x y 令x

y

=u ,则dx dy =u+ x dx du

u+ x

dx du

=ulnu ln(lnu-1)=-ln|cx| 1+ln

x

y

=cy. ]

10.

dx

dy =e y

x -

解:原方程为:

dx

dy =e x e y

- e y

=ce x

11

dx

dy =(x+y)2

解:令x+y=u,则

dx dy =dx

du -1 dx du -1=u 2

2

11

u

+du=dx arctgu=x+c 、

arctg(x+y)=x+c

12.

dx dy =2)

(1y x + 解:令x+y=u,则dx dy =dx

du -1

dx du -1=21u

u-arctgu=x+c y-arctg(x+y)=c. 13.

dx dy =1

212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx !

xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2

-y)-dx 2

+x=c

xy-y 2+y-x 2-x=c 14:

dx dy =2

5--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(

21y 2+2y)-d(2

1

x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.

(

15: dx

dy

=(x+1) 2+(4y+1) 2+8xy 1+

解:原方程为:dx

dy =(x+4y )2

+3

令x+4y=u 则dx dy =41dx du -4

1

41dx du -41=u 2

+3 dx du =4 u 2

+13 u=2

3

tg(6x+c)-1 tg(6x+c)=3

2

(x+4y+1).

16:证明方程

y x dx

dy

=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) <

2)

y(1+x 2y 2

)dx=xdy

3) y x dx dy =2

222x -2 y x 2y +

证明: 令xy=u,则x dx dy +y=dx

du 则dx dy =x 1dx du -2x u

,有:

u x dx

du

=f(u)+1

)1)((1+u f u du=x

1

dx

所以原方程可化为变量分离方程。

1) 令xy=u 则

dx dy =x 1dx du -2

x u (1) (

原方程可化为:dx dy =x

y

[1+(xy )2] (2)

将1代入2式有:x 1dx du -2x u =x

u

(1+u 2)

u=22+u +cx

17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。

解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y ’(x- x )+ y 则与x 轴,y 轴交点分别为: x= x 0 -

'

y y y= y 0 - x 0 y’ 则 x=2 x 0 = x 0 -

'

y y 所以 xy=c )

18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中α =

4

π 。 解:由题意得:y ’=

x

y

y 1dy=x 1 dx

ln|y|=ln|xc| y=cx. α =

4

π

则y=tg αx 所以 c=1 y=x. 19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。 证明:设(x,y)为所求曲线上的任意一点,则y ’=kx 则:y=kx 2

+c 即为所求。

$

常微分方程习题 1.

xy dx

dy

2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得

故它的特解为代入得

把即两边同时积分得:e e x

x y c y x x c y c y xdx dy y

2

2

,11,0,ln ,21

2

=====+==

,0)1(.22

=++dy x dx y 并求满足初始条件:x=0,y=1的特解.

解:对原式进行变量分离得:

故特解是

时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x

y c y x y x c y c y x y dy dx x y

++=====++=+=+≠=+-

1ln 11

,11,001ln 1,11ln 0,1112

:

3 y

xy dx dy

x y 32

1++=

解:原式可化为:

x x y x

x y x y

x y y x y c c c c x dx x dy y y x y dx dy 2

2

2

2

2

2

2

2

322

32)1(1)1)(1(),0(ln 1ln 21ln 1ln 2

1

1

1,0111=++

=++

≠++-=+

+=+≠+?+=+)

故原方程的解为(即两边积分得故分离变量得显然

10ln 1ln ln 1ln 1,0

ln 0

)ln (ln :931:8.

cos ln sin ln 0

7ln sgn arcsin

ln sgn arcsin 1

sgn 11,)1(,,,6ln )1ln(2

11

11,11,,,0

)()(:5332

2

22

2

22

2

22

2

c dx dy dx dy x

y

cy u

d u

u dx x x y u dx x

y

dy x y ydx dy y x x c dy y

y y

y

dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x

y

c x x u dx

x x du x

dx

du dx

du

x u dx dy ux y u x y y dx dy x

c x arctgu dx

x du u u u dx du x u dx

du x

u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e

e x y u

u x

y x u u x y

x

y

y x x

x

+===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++

=++-++=++===+-==-++-+--

两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得

两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:

解:令:。两边积分得:变量分离,得:则令解:

.0;0;ln ,ln ,ln ln 0

110000

)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

c

x y x arctg c

x arctgt dx dt dx dt dx dt dx dy t y x dx

dy

c dx dy dx

dy t

t y x e e e e e x y

x

y

y

x +=++==++=+==+=+===+-)(,1

11

1

1,.

112

22)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,

12.2)

(1y x dx dy += 解 }

c

x y x arctg y x c x arctgt t dx dt t t t

dx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1

11122

2,代回变量,两边积分变量分离,原方程可变为,则

变量分离,则方程可化为:令则有令的解为解:方程组U U dX dU X U X Y Y X Y

X dX dY Y y X x y x y x y x y x y x dx dy U 21222'

22,31,313

1

,31;012,0121

212.

132

-+-=

=--=+=-==

-==+-=--+---=

.

7)5(721

772

17)7(,71,1,52

5,

14)5(22

c x y x c

x t dx dt t t t

dx dt dx dt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=

+-代回变量两边积分变量分离原方程化为:则

解:令

15.1

8)14()1(22+++++=xy y x dx dy

原方程的解。

,是

,两边积分得分离变量,

,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dx

dy

+=++=++==+=+++++=+++++++=6)38

3232(9

414

9

4141412

)14(1818161222222

16.2

252

622y

x xy x y dx dy +-= !

解:,则原方程化为,,令u y x

xy x y dx dy x xy y x y dx dy =+-==+-=32

322332322232]2)[(32(2)(

126326322

2

2

2+-=+-=x

u x u x

xu x u dx du ,这是齐次方程,令

c

x x y x y c x y x y c x x y x y c x z z dx x dz d

z z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372

233222)2()3(023)2()3,)2()31

12062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。或)方程的解。即是(或,得当,,,,所以,则 17. y

y y x x xy x dx dy -+++=

3232332 解:原方程化为1

231

32;;;;;)123()132(2

2

22222222-+++=-+++=y x y x dx dy y x y y x x dx dy 令)1.......(1

231

32;;;;;;;;;;;;,2

2

-+++===u v u v dv du v x u y 则

方程组,,,);令,的解为(111101230

132+=-=-??

?=-+=++u Y v Z u v u v

则有???

???

?

++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程( 令)2.( (232223322)

,,,,,所以,,则有

t

t dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++== |

是原方程的解

或的解。得,是方程时,,即222222)2(1022x y x y t t -=-=±==-当

c x y x y dz z dt t

t t 522222

2)2(12223022+-=+=-+≠-两边积分的时,,分离变量得

另外

c x y x y x y x y 522222222)2(2+-=+-=-=原方程的解为,包含在其通解中,故,或

c y x x y dx x du u u u u

x u u u u x y x y x dx dy y x xdy dx y x y u xy xy f dx dy

y x +==--=

+-+====+==+=+=++==+=≠==+=+=+==--==+=-+=

=+===4

ln 142241)22(1dx du u xy (2) 0.

x ,c 2故原方程的解为原也包含在此通解中。0y ,c 2

即,c 2两边同时积分得:dx x 12u du 变量分离得:),(2u x 1dx du 则方程化为u,xy 令1dx

dy y x 时,方程化为0s xy 是原方程的解,当0y 或0x 当:(1)解程。

故此方程为此方程为变u)

(uf(u)x 11)(f(u)x u 1)y(f(u)dx du f(u),1dx du y 1得:y dx

du dx dy x 所以,dx dy dx du x y 求导导得x 关于u,xy 证明:因为22).2()1(.1)(18.2

222

222

2

2

2

2

222

4

2

2

3

3

222

22222x y x

y x y x y

x u u u

u y

x

19. 已知f(x)

?≠=x

x f x dt x f 0

)(,0,1)(的一般表达式试求函数.

解:设f(x)=y, 则原方程化为?=x

y dt x f 0

1

)( 两边求导得'1

2y y

y -= c

x y y c x dy y dx dx dy y +±==+-==

-21

;;;;;121;;;;;;;;;;;;1;;;;;;;;;;233所以两边积分得代入

把c

x y +±

=21?

=

x

y

dt x f 0

1

)( $

x

y c c x c c x c x dt c

t x

21,02)2(;;;;;;;;;;2210

±

==+±=-+±+±=+±?

所以得

20.求具有性质 x(t+s)=

)

()(1)

()(s x t x s x t x -+的函数x(t),已知x’(0)存在。

解:令t=s=0 x(0)=

)0(1)0()0(x x x -+=)

0()0(1)

0(2x x x - 若x(0)≠0 得x 2=-1矛盾。

所以x(0)=0. x’(t)=)(1)(0(')

()(1[))

(1)((lim )()(lim

22t x x t x t x t t x t x t t x t t x +=?-?+?=?-?+) ))(1)(0(')

(2t x x dt

t dx +=

dt x t x t dx )0(')(1)(2=+ 两边积分得arctg x(t)=x’(0)t+c 所以x(t)=tg[x’(0)t+c] 当t=0时 x(0)=0 故c=0 所以

x(t)=tg[x’(0)t]

习题

求下列方程的解 1.

dx

dy

=x y sin + 解: y=e ?

dx

(?

x sin e ?-dx

c dx +)

=e x

[-21e x

-(x x cos sin +)+c] =c e x

-2

1 (x x cos sin +)是原方程的解。

2.

dt

dx +3x=e t

2 解:原方程可化为:

dt

dx =-3x+e t

2 所以:x=e ?

-dt

3 (

?

e t 2 e -?-dt 3c dt +)

?

=e

t

3- (

51e t

5+c) =c e t 3-+5

1e t

2 是原方程的解。

3.dt ds =-s t cos +2

1t 2sin

解:s=e ?-tdt cos (t 2sin 2

1

?e dt dt ?3c + )

=e

t

sin -(?

+c dt te t t

sin cos sin )

= e

t

sin -(c e te

t t

+-sin sin sin )

=1sin sin -+-t ce t

是原方程的解。

4.

dx dy n x x e y n

x

=- , n 为常数. :

解:原方程可化为:

dx dy n x x e y n

x

+=

)(c dx e

x e e

y dx

x n

n

x dx

x n

+??=?-

)(c e x x

n

+= 是原方程的解.

5.

dx dy +1212--y x

x =0 解:原方程可化为:dx dy =-1212

+-y x x

?

=-dx

x

x e

y 2

12(c dx e

dx

x x +?

-2

21)

)

2

1

(ln 2+=x e

)(1

ln 2?+-

-c dx e

x

x

=)1(12

x

ce x + 是原方程的解.

6. dx dy 2

3

4xy x x += 解:dx dy 2

3

4xy x x +=

=23y

x +x y

x

y

u = 则 ux y = dx dy =u dx du x +

因此:dx

du

x

=

2

u x

21u

dx du = dx du u =2

~

c x u +=3

3

1

c x x u +=-33

(*)

x

y

u =带入 (*)中 得:3433cx x y =-是原方程的解. 33

3

2

()2

1()2

27.(1)12(1)1

2

(),()(1)1(1)(())

1(1)dx

P x dx

x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++??

==+?

?++??

P(x)dx

2

3

2

解:方程的通解为: y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23

2

2

1

(1)()

2

11

,()(())

dy y x c dy y dx x y dx x y dy y y

Q y y y

e y

Q y dy c -+++==+=??==?

?+??2

243P(y)dy P(y)dy

P(y)dy

1)dx+c)

=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。 8. =x+y 解:则P(y)= e 方程的通解为: x=e e 23

3

1

*)

2

2

y dy c y

y cy

y ++? =y( =即 x= +cy是方程的通解 ,且y=0也是方程的解。

()()()19.

,1

),()(())01a dx P x dx a

x P x dx P x dx a a dy ay x a dx x x

a x P x Q x x x e e x e e Q x dx c a a -+=++==

??==??+==?为常数解:(方程的通解为: y=1x+1 =x (dx+c) x x 当 时,方程的通解为 y=x+ln/x/+c 当 时,方程01a a a

≠a 的通解为

y=cx+xln/x/-1 当 ,时,方程的通解为

x 1

y=cx +- 1-

33

31()()()310.11(),()1(())

(*)dx P x dx x P x dx P x dx

dy

x

y x dx dy y x dx x P x Q x x x e e x

e e Q x dx c x x dx c c

x

c

x

--+==-+=-=??==??++++

??33解:方程的通解为: y=1 =x

x =4x 方程的通解为: y=4 ()

()

()

2

2

3333

23

3232332311.

2()2()()2,()2(())

((2)p x xdx

x

p x p x x dy

xy x y dx xy x y dx

xy x y dx

xy x dx

y z

dz

xz x dx

P x x Q x x e dx e e e dx e dxQ x dx c e x -----+==-+=-+=--+==--+==-?

?

==?

?+-??2

3-2

x dy

解:两边除以y dy dy 令方程的通解为: z= =e 2

2

2)1

1)1,0x x dx c ce y ce y +++++==22 =x 故方程的通解为:(x 且也是方程的解。

2221

211

1()()222ln 1

12.(ln 2)424

ln 2ln 2ln 22ln 2ln (),()(())

ln 1(())(P x dx

P x dx dx dx x x c x y x ydx xdy x dy x y y dx x x y dy x y y dx x x dy x y dx x x y z dz x z dx x x

x P x Q x x x

z e e Q x dx c x z e e dx c x x -------=++

=-

=-=-==-==-

?

?=+??=-+=??解: 两边除以 令方程的通解为:222ln ())

ln 1424

ln 1

:()1,424

x dx c x x c x x c x y x -+=++++=?方程的通解为且y=0也是解。

13

222(2)2122xydy y x dx dy y x y dx xy x y

=--==-

这是n=-1时的伯努利方程。 两边同除以

1

y

, 212

dy y y dx x =- 令2

y z =

2dz dy y dx dx

= 22211dz y z

dx x x

=-=- P(x)=

2

x

Q(x)=-1 由一阶线性方程的求解公式

^

2

2

()dx dx x

x z e e dx c -??=-+?

=2

x x c +

22y x x c =+

14 23y dy e x dx x

+= 两边同乘以y

e 22

()3y y

y

dy e xe e dx x += 令y

e z =

y

dz dy

e dx dx

= 22

2233dz z xz z z dx x x x

+==+ 这是n=2时的伯努利方程。 两边同除以2

z

22

131dz z dx xz x =+ 令1

T z

= 。

21dT dz dx z dx =- 2

31dT T dx x x

-=+

P (x )=3x - Q(x)=21

x

-

由一阶线性方程的求解公式

3321()dx dx x x T e e dx c x

--??=+?

=3

2

1()2

x x c --+ =1

312x cx ---

+ 131

()12z x cx ---+=

131

()12

y e x cx ---+=

[

231

2y y x e ce x -+=

2

312

y x x e c -+= 15

33

1dy dx xy x y =+

33dx

yx y x dy

=+ 这是n=3时的伯努利方程。 两边同除以3

x

33

21dx y

y x dy x

=+ 令2

x

z -=

32dz dx x dy dy

-=- }

3222dz y

y dy x

=--=322yz y -- P(y)=-2y Q(y)=32y -

由一阶线性方程的求解公式 223(2)ydy

ydy

z e y e dy c ---?

?=-+?

=2

2

3(2)y y e

y e dy c --+?

=2

21y y ce --++

2

22(1)1y x y ce --++= 222

22(1)y y y x e y ce e --++= 2

2222(1)y e x x y cx -+=

16 y=x

e +

()x

y t dt ?

()x dy

e y x dx =+ x dy

y e dx

=+ P(x)=1 Q(x)=x

e 由一阶线性方程的求解公式

11()dx dx

x y e e e dx c -??=+?

=()x

x x

e e e dx c -+?

=()x

e x c +

()()x

x x x e x c e e x c dx +=++?

c=1 y=()x

e x c +

17 设函数?(t)于-∞

?(0)存在且满足关系式?(t+s)=?(t)?(s)

试求此函数。

令t=s=0 得?(0+0)=?(0)?(0) 即?(0)=2

(0)? 故(0)0?=或(0)1?= (1) 当(0)0?=时 ()(0)()(0)t t t ????=+= 即()0t ?=

*

(t ?∈-∞,+∞)

(2) 当(0)1?=时 '

()()

()lim

t t t t t t

????→+?-=

?=

()()()

lim

t t t t t

????→?-?

=

0()(()1)

lim

t t t t

???→?-?=

(0)(0)

()lim

t t t t

????→?+-?

='

(0)()t ??

于是

'(0)()d t dt

?

??= 变量分离得'(0)d dt ???= 积分 '(0)t ce ??= 由于(0)1?=,即t=0时1?= 1=0

ce ?c=1 故'

(0)()t t e ??=

20.试证:

(1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程()之解;

(2)若()y y x =是()的非零解,而()y y x =是()的解,则方程()的通解可表为()()y cy x y x =+,其中c 为任意常数.

(3)方程()任一解的常数倍或任两解之和(或差)仍是方程()的解. 证明:

()()dy

P x y Q x dx =+ () ()dy

P x y dx

= ()

(1)

设1y ,2y 是()的任意两个解 则

1

1()()dy P x y Q x dx

=+ (1)

2

2()()dy P x y Q x dx

=+ (2) ,

(1)-(2)得

()

1212()()d y y P x y y dx

-=- 即12y y y =-是满足方程()

所以,命题成立。 (2)

由题意得:

()

()dy x P x y dx

= (3) ()

()()()d y x P x y x Q x dx

=+ (4) 1)先证y cy y =+是()的一个解。

.

于是 ()()34c ?+ 得

()()()cdy d y

cP x y P x y Q x dx dx

+=++ ()

()()()d cy y P x cy y Q x dx

+=++ 故y cy y =+是()的一个解。

2)现证方程(4)的任一解都可写成cy y +的形式 设1y 是的一个解 则

1

1()()dy P x y Q x dx

=+ (4’) 于是 (4’)-(4)得

.

11()

()()d y y P x y y dx

-=-

从而 ()1P x dx

y y ce cy ?

-==

即 1y y cy =+ 所以,命题成立。

资料分析常用计算方法与技巧

国家公务员考试行政职业能力测验资料分析试题,有相当一部份考生能够理解了文章意思后,列出相应的表达式,但由于计算过程的相对复杂,使得不少考生因此而失分。同时,计算类题型在资料分析试题中所占的比重也比较大,因此如何在有限的时间内快速计算,是最终取得好成绩的至关重要的因素。基于这一问题,曾老师通过实例说明了在公务员考试行政职业能力测验资料分析题中实现快速计算的技巧。 一、国家公务员考试资料分析常用计算方法与技巧 "十五"期间某厂生产经营情况

第一章资料分析综述 第一节命题核心要点 一、时间表述、单位表述、特殊表述 无论哪一种类型的资料,考生对于其时间表述、单位表述、特殊表述都应特别留意。因为这里往往都蕴含着考点。 常见时间表述陷阱: 1.时间点、时间段不吻合,或者涉及的时间存在包含关系; 2.月份、季度、半年等时间表述形式; 3.其他特殊的时间表述。 【例】资料:中国汽车工业协会发布的2009年4月份中国汽车产销量数据显示,在其他国家汽车销售进一步疲软的情况下,国内乘用车销量却持续上升,当月销量已达83.1万辆,比3月份增长7.59%,同比增长37.37%。 题目:与上年同期相比,2009年4月份乘用车销量约增长了多少万辆? 常见单位表述陷阱: 1.“百”“千”“百万”“十亿”“%”等特殊的单位表述;

2.资料与资料之间、资料与题目之间单位不一致的情况; 3.“双单位图”中务必留意图与单位及轴之间的对应关系。 【例】资料:2008年,某省农产品出口贸易总额为7.15亿美元,比上年增长25.2%。 题目:2008年,该省的对外贸易总额约为多少亿美元? 2008年,该省的绿茶出口额约为多少万美元? 常见特殊表述形式: 1.“增长最多”指增长绝对量最大;“增长最快”指增长相对量即增长率最大; 2.凡是不能完全确定的,则“可能正确/错误”都要选,“一定正确/错误”都不能选; 3.“每……中……”“平均……当中的……”,都以“每/平均”字后面的量作分母; 4.“根据资料”只能利用资料中的信息;“根据常识”可以利用资料外的信息。 二、适当标记、巧用工具;数形结合、定性分析;组合排除、常识运用 资料分析答题的过程当中需要做“适当标记”,一切以便于自己做题为准。适当合理地运用直尺、量角器等工具辅助答题。 直尺使用法则: ◆在较大的表格型材料中利用直尺比对数据。 ◆柱状图、趋势图判断量之间的大小关系时用直尺比对“柱”的长短或者“点”的高低。 ◆在像复合立体柱状图等数据不易直接得到的图形材料中,可以用尺量出长度代替实际值计算“增长率”。

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

资料分析公式及例题最全

一、增长 增长量 = 现期量 — 基期量 增长率 = 增幅 = 增速 = 增长量 ÷ 基期量 =(现期量 — 基期量)÷基期量 年均增长量、年均增长率: 如果初值为A ,第n+1年增长为B ,年均增长量为M ,年均增长率为x?%,则: M= B?A n B =A(1+x ?%)n 增长量 = A 1+m%×m% , 当m >0 时,m 越大,m%1+m% 越大。 现期量高,增长率高,则增长量高。 同比增长、环比增长 同比增长:与上一年的同一时期相比的增长速度。 环比增长:与紧紧相邻的上一期相比的增长速度。 乘除法转化法: 当0

长38.7%。 问题:2009年我国进出口贸易总额约为( )万亿美元。 A.1.6 B.2.2 C.2.6 D.3.0 二、比重 比重 = 分量÷总体量×100% 已知本期分量为A ,增长率为a%,总量为B ,增长率为b%,则: 基期分量占总量的比重: A ÷(1+a%) B ÷(1+b%)=A B ×1+b%1+a% 如果a%>b%,则本期A 占B 的比重( A B )相较基期( A B × 1+b%1+a% )有所上升。 如果a%

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程第三版答案

常微分方程第三版答案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

习题 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2 y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31 x x + y y 21+dy=31 x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c.

资料分析比重增长率问题秒杀公式总结11

资料分析比重增长率问题秒杀公式总结 比重增长率问题 比重增长率问题题型表现形式: 已知今年量A,增长率是X;今年量B,增长率是Y. 求今年A占B的比重比去年增长了()% 神算老周分析:此类题型曾在历年国考、省考中多次出现,虽然近年来出现的频率降低,但仍是一类经典题型,而且此类题有一定难度,如果不掌握方法,往往会被出题人的这个问法给绕晕或者解出来要较长时间。今天,老周在前几天给大家总结比重增长量的基础上,再来对这一类题型做一个总结。 公式总结:(a-b)/b (这里a=A对应的增长率X + 1 b= B对应的增长率Y + 1)

关于求比重增长率的题型示例 2009年国考行测真题 全国2007年认定登记的技术合同共计220868项,同比增长7%;总成交金额2226亿元,同比增长22.44%;平均每项技术合同成交金额突破百万元大关,达到100.78万元。 136、2007年平均每项技术合同成交金额同比增长率为多少() A.8.15% B.14.43% C.25.05% D.35.25% 神算老周解析: 公式应用:(a-b)/b= (1.2244-1.07) /1.07 =0.1544/1.07 比15.44%小一点,显然是AB之间,A太小,不可能是A。选B 在计算过程中,a-b中的1相互抵消,因为我们计算分子时,直接拿两个增长率一减就 行. (22.44%-7%)

(或直接用截取法把1.07变为1.00,分子0.1544变为0.1444.选B。关于截取法的应用这里不详述,我在论坛里有相关帖子,大家可找找,也可下载附件,里面我附上视频讲解地址。) 2011年江苏B类行测真题 东部地区2010 年商品房销售面积和销售额增长情况 地区商品房销售面积 (万平方米) 销售面积增速 (%) 商品房销售额 (亿元) 销售额增速 (%) 东部地区50822.01 4.133203.34 10.1 东部地区2010 年商品房单位面积平均售价增速为()。

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程第三版答案2.1

常微分方程习题2.1 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为: x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 22 2 22 2 2 3 22 3 2 )1(1)1)(1(),0(ln 1ln 2 1ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+ ? + =+)故原方程的解为(即两边积分得故分离变量得显然

.0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

公务员考试资料分析公式大全

在资料分析题目中涉及很多统计术语与公式,小编已经整理好了,拿去背吧。 ①基期量:对比参照时期的具体数值 ②现期量:相对于基期量 ③增长量:现期量相对于基期量的变化量 ④平均增长量:一段时间内平均每期的变化量 ⑤增长率:现期量相对于基期量的变化指标 如果基期量就是A,经过n个周期变为B(末期量),年均增长率为r,则可得出: 注意:利用上述公式算出的年均增长率略大于实际值,且当|x|>10%时,利用上述公式计算存在一定的误差。已知第二期与第三期的增长率,求第三期相对于第一期的增长率。

已知部分的增长率,求整体的增长率。 如果A的增长率就是a,B的增长率就是b,“A+B”的增长率就是r,其中r介于a、b之间,且r数值偏向于基数较大一方的增长率(若A>B,则r偏向于a;若A<B,则r偏向于b)。 同比增长:与历史同期相比的增长情况。 环比增长:与相邻上一个统计周期相比的增长情况。 百分数:也叫百分率或者百分比,例如10%,12%。 百分点:以百分数形式表示相对指标的变化幅度,增长率之间作比较时可直接相加减。 现期平均数 基期平均数:A为现期总量,a为对应增长率;B为现期份数,b为对应增长率。 平均数的增长率

部分在整体中所占的百分比,用个百分数或者“几成”表示。 “一成”代表的就是10%,“二成”代表的就是20%,以此类推。 A就是B的多少倍,A÷B; A比B多多少倍,(A-B)÷B=A/B-1。 翻几番变为原来数值的倍。例如,如果翻一番,就是原来的2倍;翻两番就是原来的4倍;翻三番就就是原来的8倍。 描述某种事物相对变化的指标值。(假设基数为100,其她值与基期相比得到的数值) 资料分析就是行测考试中非常重要的一大模块,对于这一模块而言,难度适中,但计算量偏大,许多小伙伴会花费大量的时间。 做题的速度与准确率就是建立在领略题意并熟悉统计术语的基础上,因此,公考通()就资料分析中容易混淆且尤为重要的统计术语作简要的辨析。 百分数与百分点 1、百分数(百分比) 表示量的增加或者减少。 例如,现在比过去增长20%,若过去为100,则现在就是120。 算法:100×(1+20%)=120。 例如,现在比过去降低20%,如果过去为100,那么现在就就是80。 算法:100×(1-20%)=80。 例如,降低到原来的20%,即原来就是100,那么现在就就是20。 算法:100×20%=20。

常微分方程课后答案

习题 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=-=0 )1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0φσ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023πx x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

《常微分方程》第三版答案

《常微分方程》第三版答案 习题1.2 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2 另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时c=1 特解为y= e 2 x . 2. y 2 dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。解:y 2dx=-(x+1)dy 2 y dy dy=-1 1+x dx 两边积分: - y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31 x x + y y 21+dy=31 x x +dx 两边积分:x(1+x 2 )(1+y 2 )=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +-

令 x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即ln(y 2+x 2)=c-2arctg 2 x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c.

常微分方程(第三版)课后答案

常微分方程 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为:

x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 2 2 2 2 322 32)1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+?+=+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

资料分析精选100题 (1)

卧龙光线资料分析 一、增长率问题 资料分析最基本的,最离不开的就是增长率问题,这类问题有考察计算能力,有考察计算技巧,也会设置陷阱让你去踩,其实考察的都是基本功。也许你觉得这种题型并不难,但是千万不要忘了,简单题是给你节约时间去做复杂问题的,一分钟一题的资料分析,很多人时间不够用,就是因为没能从送分的题目中攒出时间。 增长率问题在真题中往往就通过下面四种方法来考察,一份真题中至少出现其中的两题,希望你们能踏踏实实地把这几个技巧牢记。 1、名义增速与实际增速 近年来,越来越多的经济学统计都在用实际增速来统计,实际增速又称之为“扣除价格因素的增速”,而名义增速则是用两年的绝对数值计算得出。比如在13和14年的国民经济与社会发展统计公报中,14年国民生产总值为636463亿元,增速为7.4%,而13年国民生产总值为568845亿元。其中7.4%就是实际增速,用636463除以568845计算出来的11.9%的增速就是名义增速。将这两者关联的是价格指数,公式表示为: 名义发展速度/实际发展速度=价格指数 写通俗了就是:(名义增速-1)/(实际增速-1)=价格增速-1 2、当月增速与累计增速 近年来的资料分析题考了一个全新的概念,即累计增速。如果已知某年1-5月的产值累计量为x,增速为a,1-4月的累计量为y,增速为b,我们可以得到: 今年5月产值为x-y 去年5月产值为x/(1+a) –y/(1+b) 5月产值的增速为(x-y)/( x/(1+a) –y/(1+b))-1 前三者都是需要计算的,而目前考的最多的知识点常常是比较,若5月产值的增速为c,则a一定介于b和c之间。 3、年均增长率(量)的问题 《中国统计年鉴》(2013)内所列的平均增长速度,除固定资产投资用“累计法”计算外,其余均用“水平法”计算。从某年到某年平均增长速度的年份,均不包括基期年在内。如建国四十三年以来的平均增长速度是以1949年为基期计算的,则写为1950-1992年平均增长速度,其余类推。 所以这类题目考的就是概念,比如问你2005-2009年的年均增长量,其实05年的增长量要用05-04年增长量来算,因此这个年均增长量应该是09-04年的增长量除以(9-4),切记带一个“增”字一定要用到上一年数据,带年份跨度的增长率计算同样也是这样。而这类题型通常以增长率不变,算下期数据的方式来考察考生。 题目中如果给出了2005年和2010年的数据,如保持年均增长率不变,十二五期末(2015年)的值就是2010年数据的平方除以2005年。 适用情形:这里的2010年正好是2005年和2015年的中间年份。 4、增长量计算技巧 很多资料分析第一题会给出当年数据及增长率,让你算增量。 如果我们把增长率写成1 a 的形式,增量=今年的值× 1 a+1 。

常微分方程第三版的课后答案

常微分方程 2.1 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为: x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 22 2 2 3 22 3 2 )1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+ ? + =+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

公务员考试资料分析公式大全

在资料分析题目中涉及很多统计术语和公式,小编已经整理好了,拿去背吧。 No.1 基期、现期、增长量、增长率 ①基期量:对比参照时期的具体数值 ②现期量:相对于基期量 ③增长量:现期量相对于基期量的变化量 ④平均增长量:一段时间内平均每期的变化量 ⑤增长率:现期量相对于基期量的变化指标 No.2 年均增长率 如果基期量是A,经过n个周期变为B(末期量),年均增长率为r,则可得出: 注意:利用上述公式算出的年均增长率略大于实际值,且当|x|>10%时,利用上述公式计算存在一定的误差。No.3 间隔增长率 已知第二期和第三期的增长率,求第三期相对于第一期的增长率。

No.4 混合增长率 已知部分的增长率,求整体的增长率。 如果A的增长率是a,B的增长率是b,“A+B”的增长率是r,其中r介于a、b之间,且r数值偏向于基数较大一方的增长率(若A>B,则r偏向于a;若A<B,则r偏向于b)。 No.5 同比增长和环比增长 同比增长:与历史同期相比的增长情况。 环比增长:与相邻上一个统计周期相比的增长情况。 No.6 百分数、百分点 百分数:也叫百分率或者百分比,例如10%,12%。 百分点:以百分数形式表示相对指标的变化幅度,增长率之间作比较时可直接相加减。 No.7 平均数 现期平均数 基期平均数:A为现期总量,a为对应增长率;B为现期份数,b为对应增长率。

平均数的增长率 No.8 比重 部分在整体中所占的百分比,用个百分数或者“几成”表示。 “一成”代表的是10%,“二成”代表的是20%,以此类推。 No.9 倍数 A是B的多少倍,A÷B; A比B多多少倍,(A-B)÷B=A/B-1。 No.10 翻番 翻几番变为原来数值的倍。例如,如果翻一番,是原来的2倍;翻两番是原来的4倍;翻三番就是原来的8倍。 No.11 指数 描述某种事物相对变化的指标值。(假设基数为100,其他值与基期相比得到的数值) 资料分析是行测考试中非常重要的一大模块,对于这一模块而言,难度适中,但计算量偏大,许多小伙伴会花费大量的时间。 做题的速度和准确率是建立在领略题意并熟悉统计术语的基础上,因此,公考通(https://www.360docs.net/doc/5a9893942.html,)就资料分析中容易混淆且尤为重要的统计术语作简要的辨析。 百分数与百分点 1.百分数(百分比) 表示量的增加或者减少。 例如,现在比过去增长20%,若过去为100,则现在是120。 算法:100×(1+20%)=120。 例如,现在比过去降低20%,如果过去为100,那么现在就是80。

相关文档
最新文档