由函数单调性求参数范围

合集下载

高中数学破题致胜微方法(函数的单调性):已知函数在某区间上单调求参数范围

高中数学破题致胜微方法(函数的单调性):已知函数在某区间上单调求参数范围

我们学习过用导数讨论函数的单调性,今天我们继续用导数的方法研究含参函数的单调性,并求得参数的取值范围。

先看例题:例:已知函数2()21f x ax x -=-在区间[1,2]上是单调函数,求实数a 的取值范围.注意:用导数的方法讨论,可以避免分类讨论a 是否为0的情况。

规律整理:可导函数f (x )在某区间上单调(1)可以转化为0(0)f x f x '≥'≥()()在给定区间上恒成立; (2)给定的区间是原函数单调递增区间(或递减区间)的子区间,利用集合间关系求解练:已知函数f (x )=(x 2+ax -2a 2+3a )e x(x ∈R ),其中a ∈R . 当23a ≠时,若函数f (x )在区间(- 1 ,1)上是增函数,求a 的取值范围. 解:先对函数求导得:()()22[224]x f x x a x a a e '=+++- 令()0,2,2f x x a x a '===-解得-或 又因为22 2.3a a a ≠≠,--所以两根不相等,即()0f x '=有两个不等的实根. 进而按a 的大小,分类讨论:()21,2 2.a a a ><若则--所以f (x )在(,2),(2,)a a ∞+∞---内是增函数,在(2,2)a a --内是减函数. 因为函数在(- 1 ,1)上是增函数,所以有2121a a -≥-≤-或 解得:213a ≥>()22,2 2.3a a a <>若则--所以f (x )在(,2),(2,)a a ∞--+∞-内是增函数,在(2,2)a a --内是减函数. 因为函数在(- 1 ,1)上是增函数,所以有2121a a -≥-≤-或解得:12.23a ≤< 综上所述,a 的取值范围为122[,)(,1]233a ∈ 总结:1.可导函数中,讨论原函数的单调性等价于讨论导函数的正负,在涉及参数时,要结合二者,利用方程或不等式,求得参数的值或取值范围。

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围含参函数在区间上具有单调性、无单调性或存在单调区间,取决于函数的导数的正负情况。

在本篇文章中,我们将介绍含参函数单调性的概念以及如何判断参数范围。

一、含参函数的单调性含参函数的单调性指的是函数在一些区间上的值的增减趋势。

如果函数在整个区间上都递增或者递减,则称该函数在该区间上是单调的。

对于含参函数f(x),我们可以通过求导来判断其在区间上是否单调。

如果函数在整个区间上的导数恒大于0,则函数在该区间上递增;如果函数在整个区间上的导数恒小于0,则函数在该区间上递减。

换言之,我们可以通过求解方程f'(x)>0或者f'(x)<0来判断函数的单调性。

其中,f'(x)表示函数f(x)的导数。

二、参数范围的确定确定参数范围的方法主要包括以下步骤:1.根据问题的具体内容,确定需要讨论的函数范围,并确定参数的取值范围。

例如,如果需要讨论函数在区间[a,b]上的单调性,那么参数范围可以通过分析函数在区间的特性来确定。

2.找出函数的导数表达式。

通过计算函数f(x)的导数f'(x),可以得到函数在区间上的单调性。

如果求导的过程中出现了参数,则需要将参数的取值范围考虑进去。

3.解方程f'(x)>0或者f'(x)<0,得到函数在区间上的单调性,并得到参数的取值范围。

4.根据参数的取值范围进行验证。

将参数取值范围代入原函数带入计算,可以验证所得的结论是否正确。

举例说明:问题:求函数f(x)=ax^2+bx+c在区间[-2, 3]上的单调性。

解答:首先求出函数的导数:f'(x)=2ax+b。

接下来我们需要根据参数a的取值范围来判断函数的单调性。

当a>0时,函数f(x)的导数f'(x)=2ax+b恒大于0,说明函数f(x)在区间[-2, 3]上是递增的。

当a<0时,函数f(x)的导数f'(x)=2ax+b恒小于0,说明函数f(x)在区间[-2, 3]上是递减的。

已知函数单调性求参数取值范围

已知函数单调性求参数取值范围

技法点拨已知函数单调性求参数取值范围■欧阳丽丽摘要:利用导数根据函数单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考点,下面将这类问题举例分析。

关键词:导数;单调性;参数取值范围一、转化为不等式的恒成立问题求参数取值范围若函数f (x )在(a ,b )上单调递增,则f′(x )≥0;若函数f (x )在(a ,b )上单调递减,则f′(x )≤0,将问题转化为函数最值问题求解。

一般地,分离变量后,若得到a ≥h (x ),则只需a ≥h (x )max ;若得到a ≤h (x ),则只需a ≤h (x )min 。

注意:f (x )在(a ,b )上为增函数(减函数)的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f′(x )≤0)且在(a ,b )内的任一非空子区间上f′(x )≠0。

例1,已知函数f (x )=ln x -12ax 2-2x (a ≠0)在[1,]4上单调递减,求a 的取值范围。

解:因为f (x )在[1,]4上单调递减,所以当x ∈[1,]4时,f′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立。

设h (x )=1x2-2x ,x ∈[1,]4所以只要a ≥h (x )max 。

而h′(x )=2(x +1)(x +1)x 4。

当x ∈[1,]4,h′(x )>0,所以h (x )在[1,]4上单调递增。

所以当h (x )max =h (4)=-716,所以a ≥-716,即a 的取值范围是éëêöø÷-716,+∞。

评析:由f (x )在[1,]4上单调递增,得到f′(x )≤0,进而分离参数a ,构造新的函数h (x ),本题转化为求h (x )max 。

例2,已知函数f (x )=ax +1x +2在(-2,+)∞内单调递减,求实数a 的取值范围。

函数单调性

函数单调性

函数的单调性与最值题型1.考查求函数单调性和最值的基本方法.2.利用函数的单调性求单调区间.3.利用函数的单调性求最值和参数的取值范围.1.函数的单调性(1)单调函数的定义设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D 上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)单调区间的定义若函数f(x)在区间D 上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D 叫做f(x)的单调区间.2.函数的最值 前提设函数y =f(x)的定义域为I ,如果存在实数M 满足 条件.①对于任意x ∈I ,都有f(x)≤M ; ①对于任意x ∈I ,都有f(x)≥M ; ②存在x0∈I ,使得f(x0)=M ②存在x0∈I ,使得f(x0)=M. 结论M 为最大值 M 为最小值注意事项:1、函数的单调性是对某个区间而言的,所以要受到区间的限制.不能用“∪”连接.2、设任意x1,x2∈[a ,b]且x1<x2,那么①f x1-f x2x1-x2>0⇔f(x)在[a ,b]上是增函数;f x1-f x2x1-x2<0⇔f(x)在[a ,b]上是减函数.②(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a ,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在[a ,b]上是减函数.3、(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.4、涉及函数y=f(x)在某区间是单调函数和函数的单调区间D题型中求参数范围的时候一定要注意其含义是不同的。

【教学随笔】例析与对数函数的单调性有关的参数范围的求法

【教学随笔】例析与对数函数的单调性有关的参数范围的求法

例析与对数函数的单调性有关的参数范围的求法对数函数的单调性是对数函数的一个重要性质,而求与对数函数的单调性有关的参数范围是一个难点.要正确解答此类题型,主要从下面几点考虑:①抓住函数的定义域,在定义域内进行讨论;②抓住对数函数的底数,由此确定函数的单调性;③注意对数函数真数大于零.下面举例说明.例1已知函数f(x)=lg(ax -1)-lg(x -1)(a ∈R),若函数f(x)在[10,+∞)上单调递增,试求a 的取值范围.解:由已知有10a -1>0,a >110,则 因为f(x)=lg(ax -1)-lg(x -1)=lg(a +a-1x-1)在[10,+∞)上单调递增, 当a >1时,f(x)在[1,∞)上为减函数,因此,f(x)不可能在[10,+∞)上单调递增,不满足条件;当110<a <1时,f(x)在[1,∞)上为增函数,因此,f(x)在[10,+∞)上单调递增,满足条件.综上所述,所求a 的取值范围是110<a <1. 点评:本题利用对数的性质转化为函数f(x)=lg(a +a-1x-1),对a -1的符号进行讨论,并结合反比例函数的单调性及单调性的复合规律进行求解的.例2已知函数f(x)=2x ,设f(x)的反函数为f -1(x),若f -1(x +a x–3)在区间[2,+∞)上单调递增,求正实数a 的范围.解:∵f -1(x)=log 2x ,∴f -1(x +a x –3)=log 2(x +a x–3), 设g(x)=x +a x –3,由于f -1(x +a x –3)在区间[2,+∞)上单调递增,故g(2)=2+a 2–3>0,即a >2,当2≤x 1<x 2时恒有:g(x 1)-g(x 2)=(x 1-x 2)·x 1x 2-a x 1x 2<0成立, ∵x 1-x 2<0,x 1x 2>4,x 1x 2-a >0恒成立,即a <x 1x 2恒成立,∴a ≤4,综上所述,a 的取值范围为2<a ≤4.点评:本题充分利用函数的单调性的定义,通过分离参数,并将a <x 1x 2恒成立转化为a ≤x 1x 2无限趋近的一个常数.例3函数f(x)=log 9(x +8–a x)在[1,+∞)上单调递增,求实数a 的取值范围. 解:由条件知1+8–a >0,得a <9.当0<a <9时,易知函数u =x +8–a x在(0,+∞)上单调递增,由此可知函数f(x)=log 9(x +8–a x)在[1,+∞)上单调递增,满足条件; 当a =0时,函数f(x)=log 9(x +8),易知在[1,+∞)上单调递增,满足条件;当a <0时,函数u =x +8–a x =x +-a x+8在[-a,+∞)上单调递增,所以-a ≤1,解得a ≥-1.综上所述,所求a 的范围是-1≤a <9.点评:本题充分利用函数y =x +m x 的单调性进行求解的.对于函数y =x +m x:当m >0时,函数的单调递增区间为(-∞,-m),(m ,+∞);当m =0时为一次函数;当m <0时,函数的递增区间为(-∞,0),(0,+∞).例4是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,求出a 的变化范围,如果不存在,请说明理由.解:设g(x)=ax 2-x ,假设符合条件的a 存在,当a >1时,为使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数,只需g(x)=ax 2-x在区间[2,4]上是增函数,故应满足⎩⎪⎨⎪⎧ x=12a ≤2g(2)=4a-2>0⇒a >12,当注意到a >1时,即a >1; 当0<a <1时,为使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数,只需g(x)=ax 2-x 在区间[2,4]上是减函数,故应满足⎩⎪⎨⎪⎧ x=12a ≥4g(4)=16a-4>0,此不等式组无解, 综上可知,当a >1时,f(x)=log a (ax 2-x)在区间[2,4]上为增函数.点评:本题充分利用二次函数的对称轴位置及单调区间的端点值的符号进行求解的.。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围(解析版)

专题15已知函数的单调区间求参数的范一、单选题■1.若函数/(])=空山在区间(0,工)上单调递增,则实数。

的取值范围是()cosx 2A.a<-\B.a<2C.a>-\D.a<\【答案】C【分析】利用导函数研究原函数的单调性,利用单调性求解实数。

的取值范围.【详解】解:函数/(1)="*COSXnJ”、cosx>cos x+sinx(sin x+a)则/M=;-----cos^xTT•••X£(0,一)上,2/.cos2x>0.要使函数/(幻=吧*在区间(0,工)上单调递增,cosx 271、、二cos2x+sin2x+asinxN0在x G(0,—)上恒成立,2T[即:asinx+120在x£(0,一)上恒成立,2TT•/xe(0,—)±,2sin XG(0,1)故选:C.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.已知函数/a)=Lf+s—a)x+(a-l)lnx,(a>l),函数y=2用的图象过定点(0,1),对于任意玉,七£(0,+8),西>々,有/(%)一/(工2)>工2一不,则实数。

的范围为()B.2<a<5C.2<a<5D.3<a<5【答案】A【分析】 由图象过定点可得人=0,设/(x)=〃x)+x,结合已知条件可得F(x)在(0,+8)递增,求尸(X )的导数,令g(x)=%2一(〃-1)工+。

一1,由二次函数的性质可得g 【详解】解:因为>=2'+〃的图象过定点(0,1),所以2人=1,解得6=0,所以一方+(。

-1)1仪(。

>1),因为对于任意X],W^(0,-KO ),X]>x 2,有/(%)一/(无2)>W 一%,则/(%)+%>%+/(七),设/(%)=f(x)+x ,即F (x)=/(%)+%=—x 2-ar+(^-l)lri¥+x=—x 2-(6f-l)x+(^-l)lri¥,所以F(x)=x-(〃-1)+0「2—令且(1)=工2—(。

二次函数的单调性及求参数的范围 高一上学期数学人教A版(2019)必修第一册

二次函数的单调性及求参数的范围 高一上学期数学人教A版(2019)必修第一册
专题 二次函数的单调性及 求参数的范围
问题 1 已知函数 f(x)的单调区间是 M 与函数 f(x) 在区间 N 上单调, 则区间 M, N 有怎样的关系?
问题2 二次函数的单调性与它的什么要素有关系?
二次函数的单调性问题
例1已知函数f (x) kx2 2x 1的减区间是[2, ), 则实数 k 的取值范围是 _______;
对抽象函数单调性的判断和证明, 仍要紧扣定义,
结合题目所给的条件, 经常采用"赋值","拆","凑"项
等方法,寻求比较 f (x2 ) f (x1) 与0的大小,比如 :
x1
( x1
x2 )
x2
或 x1
x1 x2
x2
等.
抽象函数单调性的证明与应用问题
例2已知函数 f (x)对任意 x, y R,总有f (x) f ( y) f (x y), 且当 x 0时, f (x) 0, f (1) 2 .
y (1) 判断并证明函数 f (x)的单调性; (2) 若f (2) 1, 解不等式f (x 3) f ( 1) 2.
x
课后思考
练习2 : 若函数 f (x) x2 a x 2 在(0, )上单调递增,
则实数 a的取值范围是 _[__4_,_0_] .
实数 a的取值范围是.
a 1
练习:函数 f (x) ax 1 在区间(2, )上单调递增, 则 x2
实数 a的取值范围是( B ).
A.(0, 1) B.(1 , ) C.(2, ) D.(, 1) (1, )
2
2
已知函数的单调性求参数的范围问题
例3已知函数 f (x) x3 在区间(, )上是增函数,若 f (2a 5) f (1 a),求实数 a的取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二由函数单调性求参数范围
1、若函数在内单调递减,则实数的取值范围是( )
A.
B.
C.
D.
2、若函数在内单调递减,则实数的取值范围为
( )
A.
B.
C.
D.
3、若在上是减函数,则的取值范围是( )
A.
B.
C.
D.
4、若函数在区间内单调递减,且在区间
及内单调递增,则的取值集合是.
5、已知函数,若在[2,+是增函数,则实数的范围
是____________.
6、若函数在上是减函数,则的取值范围
是.
7、已知函数,若函数在其定义域内为单调函数,求的取值范围.
参考答案
1.答案:A
解析:∵,又在内单调递减,
∴不等式在内恒成立,
∴在内恒成立.而函数
在内是增函数,且,
∴.
2.答案:A
3.答案:C
解析:本题考查导数的应用。

点拨:函数在某区间上是减函数,则其导函数值在此区间上恒小于或等于零。

解答:由已知得:
要使题设条件成立,即不等式在恒成立,

而函数,,最小值为, 故,选C。

4.答案:{3}
5.答案:
解析:
由已知可得,则导函数在上恒成立,即
在上恒成立,而函数在上为单调递增,所以.
6.答案:
7.答案:,
要使函数在定义域内为单调函数,
只需在内恒大于等于或恒小于等于.
当时,在内恒成立;
当时,要使恒成立,
∴,解得.
综上,的取值范围为或.。

相关文档
最新文档