最新人教版初中八年级上册数学《等腰三角形的判定》导学案
1.1等腰三角形的性质和判定导学案

CAB1.1 等腰三角形的性质和判定班级 姓名 学号 家长签字 完成时间45分钟 【学习目标】1.能证明等腰三角形的性质定理和判定定理.2.了解分析的思考方法.3.经历思考、猜想,并对操作活动的合理性进行证明过程,不断感受证明的必要性、感受合情推 理和演绎推理都是人们认识事物的重要途径.【重点、难点】了解分析的思考方法;合理添加辅助线. 【新知预习】1.以前,我们曾经学习过等腰三角形,你还记得等腰三角形的一些性质吗?不妨我们来回忆一下. 等腰三角形的性质:①等腰三角形的 角相等.(简称“ ”) ②等腰三角形的 、 、 互相重合.(简称“ ”) ③等腰三角形是 对称图形,它的对称轴是: .2.你能用刻度尺画一个等腰三角形,并用作垂线的方法画出它的顶角的平分线吗?若能,请画出并加以证明.【导学过程】活动一:证明:等腰三角形的两个底角相等. 已知:如图,在△ABC 中,AB=AC. 求证:∠B=∠C活动二:证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.思考:如何证明文字命题的正确性?活动三:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题: .(2)画出图形,写出已知、求证,并进行证明.例1.已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC,且AD∥BC . 求证:AB =AC2.拓展:在上图中,如果AB =AC ,AD∥BC,那么AD 平分∠EAC 吗?为什么?【反馈练习】1.完成第7页《练习》第1、2、3题.2.等腰三角形的一个角为50°,那么它的一个底角为______.3.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有______个.4.已知:如图,锐角△ABC 的两条高BE 、CD 相交于点O ,且OB=OC. 求证:△ABC 是等腰三角形.☆5.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.【作业布置】1.1习题 第2、3、4、题.AB C D E2011-2012学年度第二学期八年级数学校本作业(41)1.1 等腰三角形的性质和判定 编写:宋爱霞 审阅:张元国班级 姓名 学号 家长签字 完成时间40分钟 1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 . 2.若等腰三角形有两边长为2和5,那么周长 为 .3.若等腰三角形有一个外角等于50°,那么另两个角为 .4.若等腰三角形有一个角等于120°,那么另两个角为 . ★5.若等腰三角形一腰上的高与另一腰的夹角等于30°,那么这个等腰三角形的顶角为 . ★6.若等腰三角形的周长等于12cm ,那么腰长x 的取值范围是 .7.如图在△ABC 中,AB =AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_ ____°. 8.如图在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于 ( )A .30° B.36° C.45° D.72°9.已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).10.如图,在△ABC 中,点O 在AC 上,过点O 作MN ∥BC ,CE与MN 分别交于E 、F ,求证:OE=OF.11.已知△ABC 中,AB =AC ,过△ABC 的一个顶点的一条直线,把△ABC 分成两个小三角形,使得这两个小三角形也是等腰三角形.试画出所有符合条件的图形,并写出被分成的两个小等腰三角形中相等的线段及△ABC 各内角的度数.第9题图 第7题图 第8题图。
人教版初中八年级上册数学《等腰三角形的判定》精品教案

第2课时等腰三角形的判定【知识与技能】1.理解掌握等腰三角形的判定.2.运用等腰三角形判定进行证明和计算.【过程与方法】通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力.【情感态度】引导学生观察,发现等腰三角形的判定方法,获得成功的感受,并在这个过程中体验学习的乐趣.【教学重点】等腰三角形的判定定理.【教学难点】等腰三角形判定定理的证明.一、情境导入,初步认识先请学生回忆等腰三角形的性质,再向学生提出下列问题.问题1 如图,位于海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素).引导学生作如下思考:(1)应该能同时赶到出事地点,因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.(2)能同时赶到O点位置的一个很重要的因素是∠A=∠B,也就是说如果∠A不等于∠B,那么同时以同样的速度出发就不能同时赶到出事地点.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 根据上述探究,考虑:“在一个三角形中,如果两个角相等,那么它们所对的边也相等”,并证明这个结论.1.指导学生表述结论并写出证明过程.2.指出表述要严谨,如不能说成:“如果一个三角形的两个底角相等,那么它是等腰三角形”.二、思考探究,获取新知例1 求证:如果一个三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.【教学说明】本题是文字叙述的证明题,先应将文字语言转化为相应的数学语言,再根据题意画出相应的几何图形.要证明这个问题,由特征结论联想“等角对等边”,而等角由已知的平行线和角平分线可推得.例2 如图,标杆AB高5m,为了将它固定,需要由它的中点C向地面上与点B距离相等的D,E两点拉两条绳子,使得D,B,E在一条直线上,量得DE=4m,绳子CD和CE要多长?【教学说明】这是一个与实际生活相关的问题,要解决这类问题,需要将实际问题抽象为数学模型.本题的实质是已知等腰三角形的底边和底边上的高,求腰长的问题.解:如图(2),选取比例尺为1∶100.①作线段DE=4cm.②作线段DE的垂直平分线MN,与DE交于点B.③在MN上截取BC=2.5cm.④连接CD,CE,△CDE就是所求的等腰三角形,量出CD的长,就可以计算出要求的绳长.例3 如图,已知△ABC中,AB=AC,BD,CE分别是两腰上的中线.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵CD=21AC,BE=21AB, ∴CD=BE.在△BEC 和△CDB 中,∵BE=CD,∠ABC=∠ACB,BC=CB, ∴△BEC ≌△CDB(SAS).∴BD=CE.三、运用新知,深化理解1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1,∠2的度数,并说明图中有哪些等腰三角形.2.如图,把一张矩形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?3.如图,AC 和BD 相交于点O,AB ∥DC,OA=OB.求证:OC=OD.4.如图,在△ABD 中,C 是BD 上的一点,且AC ⊥BD,AC=BC=CD.(1)求证:△ABD 是等腰三角形.(2)求∠BAD 的度数.【教学说明】上述习题要引导学生边做题边总结,熟悉等腰三角形的性质与判定常与哪些知识在一起应用,等腰三角形性质与判定间有什么区别与联系,并鼓励学生探究一题多解的方法.【答案】1.∠1=72°,∠2=36°;等腰三角形有:△ABC、△ABD、△BCD2.是等腰三角形,可证得∠1=∠23.∵OA=OB,∴∠A=∠B.又∵AB∥DC,∴∠A=∠C,∠B=∠D.∴∠C=∠D,∴OC=OD(等角对等边).4.(1)证明:∵AC⊥BD,∴∠ACB=∠ACD=90°.又∵AC=AC,BC=CD,∴△ACB≌△ACD(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等腰三角形.(2)由(1)可知AB=AD,∴∠B=∠D.又∵AC=BC,∴∠B=∠BAC,∴AC=CD.∴∠D=∠DAC.在△ABD中,∠B+∠D+∠BAC+∠DAC=180°.∴2(∠BAC+∠DAC)=180°,∴∠BAC+∠DAC=90°,即∠BAD=90°.四、师生互动,课堂小结利用问题指导学生总结:问题1 你学会了几种判定等腰三角形的方法?问题2 等腰三角形性质与判定有哪些联系和区别?【总结】本节课主要探究了等腰三角形判定定理,并对判定定理的简单应用有了一定的认识,在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中养成一定的逻辑推理能力.1.布置作业:从教材“习题13.3”中选取.2.完成练习册中本课时的练习.利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识时会反复用到这种方法.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
等腰三角形的判定导学案

等腰三角形的判定班级_________姓名__________学号______________学习目标:1.掌握等腰三角形的判定方法,并能灵活运用解决实际问题; 2.通过独立思考,交流讨论,发展推理能力和运用数学知识解决实际问题的能力; 活动一,情景引入:(1)从边看:等腰三角形 的相等.(2)从角看:等腰三角形的 相等.简写成“ ”。
(3)从重要线段看:等腰三角形底边上的 、 与顶角的 互相重合.简称“ ”(4)如图,△ABC 中,AB=AC,则有 ; 反过来,若有∠B=∠C,则AB=AC 一定成立吗? 那么它是等腰三角形吗? 活动二,探究新知:为了解决(4)中的问题,请同学们拿出一张半透明纸,做一个实验,按以下方法进行操作: 1.在半透明纸上画一条线段BC 。
2.以BC 为始边,分别以点B 和点C 为顶点,在BC 的同侧用量角器画两个相等的角,两角终边的交点为A3.用刻度尺找出BC 的中点D ,连接AD ,然后沿AD 对折。
你有什么发现? 再用刻度尺量一量线段AB 、AC 的长,看看你的发现成立吗?4.请你结合图形证明你的发现是否成立已知:如图 在△ABC 中,∠B =∠C求证:AB=AC归纳:等腰三角形的判定方法:________________________________________.。
活动三,运用新知求证:如果三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形。
(提示:根据题意画图,根据题设写出已知,根据结论写出求证的问题)B活动四,巩固练习1.在△ABC 中,已知∠A=40°,∠B=70°,判断△ABC 是什么三角形,并说明理由。
2、如图,AC 和BD 相交于点O ,且AB ∥DC ,OA=OB ,证明:OC=OD活动五,课外测试1. 在△ABC 中,BC=10,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作OD ∥AB 交BC 于点D ,作OE ∥AC 交BC 于点E.求△DEO 的周长.OED CBA2.如图,∠A =∠B ,CE ∥DA ,CE 交AB 于E , 证明:△CEB 是等腰三角形。
八年级数学上册《等腰三角形的性质和判定定理》优秀教学案例

(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定定理,能够运用相关性质解决实际问题。
2.学会运用等腰三角形的性质进行图形的画法和构造,提高几何作图能力。
3.能够运用等腰三角形的判定定理,判断一个三角形是否为等腰三角形,并给出合理的证明。
4.掌握等腰三角形在实际生活中的应用,如建筑、设计等领域,提高知识运用能力。
五、案例亮点
1.创设生活化情境,紧密联系实际
本教学案例的最大亮点之一是充分联系学生的生活实际,创设丰富多样的教学情境。通过引入生活中的实例,如建筑、艺术、交通标志等,让学生在实际问题中感知、探索等腰三角形的性质和判定定理。这种教学方式既激发了学生的学习兴趣,又使他们认识到数学知识在现实生活中的重要性,增强了学习的针对性和实用性。
小组合作学习是本章节教学的重要环节。我将根据学生的知识水平、性格特点等进行合理分组,确保每个小组的成员在合作学习中能够发挥各自的优势。通过小组讨论、合作探究等形式,让学生在互动交流中共同解决问题,提高他们的沟通能力和团队协作精神。同时,关注每个学生的学习进度,及时给予个别辅导,使全体学生都能在小组合作学习中得到提高。
2.以问题为导向,培养思维能力
本案例以问题为导向,设计了富有启发性和挑战性的问题,引导学生进行思考、探索。这种教学策略有助于培养学生的问题意识,提高他们分析问题和解决问题的能力。同时,鼓励学生提出自己的疑问,充分调动了他们的学习积极性,促学习在本案例中得到了充分体现。学生通过小组讨论、合作探究等形式,共同解决问题,提高了沟通能力和团队协作精神。同时,教师关注每个学生的学习进度,给予个别辅导,确保了小组合作学习的效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生已经学习的三角形知识作为切入点,通过以下步骤引导学生进入等腰三角形的学习:
人教版八年级上册数学第十三章等腰三角形的判定优秀教学案例

1.理解并掌握等腰三角形的定义、性质及判定方法,能够准确识别等腰三角形。
2.学会运用等腰三角形的性质解决相关问题,如计算底角、底边长度等。
3.掌握等腰三角形在实际问题中的应用,如测量距离、计算面积等。
4.能够运用等腰三角形的判定方法,分析解决几何图形的题目,提高解题能力。
(二)过程与方法
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中常见的等腰三角形实例,如等腰三角形的交通标志、建筑结构等,引导学生关注等腰三角形的特点。
2.提问:“同学们,你们在生活中还见过哪些等腰三角形?它们有什么特点?”让学生思考并回答,激发学生的学习兴趣。
3.结合上一章学习的三角形知识,引导学生回顾等边三角形的概念,为新课学习等腰三角形打下基础。
2.教师应采用多元化的评价方式,如小组互评、自我评价、教师评价等,全面评估学生在知识与技能、过程与方法、情感态度与价值观等方面的表现。
3.针对学生的评价,教师要给予积极的反馈,鼓励学生发挥优点,改进不足,激发学生的学习积极性。
4.教师要关注学生的成长过程,定期与学生交流,了解他们的学习需求,调整教学策略,以提高教学效果。
(三)情感态度与价值观
1.激发学生对几何学习的兴趣,培养学生主动探索、积极思考的学习态度。
2.通过解决实际问题,培养学生将所学知识应用于生活的意识,提高学生的实践能力。
3.培养学生勇于挑战、克服困难的精神,增强自信心。
4.引导学生认识到数学与实际生活的紧密联系,培养学生的数学素养和审美观念。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性与主动性。通过多样化的教学手段,使学生在掌握知识与技能的同时,培养良好的学习方法和情感态度,全面提升学生的数学素节课学习的等腰三角形的定义、性质、判定方法等知识。
八年级上数学《等腰三角形的性质》导学案 【完整版】

《13.3.1等腰三角形的性质》导学案 班级姓名座号 课时安排:2课时第1课时课型:新授课 一、学习目标1.知识与技能:理解等腰三角形“腰、顶角、底角”的概念,掌握等腰三角形的性质及应用.(难点)2.过程与方法:经历几何直观、探索发现等腰三角形性质的过程,体会运用动态的变换方法研究静态的几何图形属性的方法。
3.情感态度与价值观:在探究等腰三角形性质的过程中体会用数学知识解决数学问题的成就感。
二、预习指导【自学课本p78—p80完成下列问题】 1、(A 层)知识点1:等腰三角形的有关概念如图:已知△ABC 为等腰三角形,AB=AC ,那么AB 和AC 叫做,BC 叫做。
∠A 叫做,∠B 和∠C 叫做。
2、(A 层)知识点2:等腰三角形的性质: 性质1:等腰三角形的两条腰相等;等腰三角形是一个轴对称图形,它有一条对称轴;性质2:等腰三角形的两底角;(等边对等角)性质3:等腰三角形、及互相重合.(“三线合一”)3.【我是小翻译】请将等腰三角形的性质(文字语言)“翻译”成数学语言。
预习检测1、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为___cm 。
2、若等腰三角形的顶角为80°,则它的一个底角度数为_________.三、学习过程 探究1:求证:等腰三角形的两个底角相等。
已知:求证:证明:探究2:等腰三角形的性质的应用 例1:已知:在△ABC 中,AB=AC,∠B=80°.求∠C 和∠A 的度数。
例2:如图,在△ABC 中,AB=AC,D 是BC 边上的中点,∠B=30°.求∠ADC 和∠1的度数。
四、当堂达标1、(A 层)如果等腰三角形的一个底角为50º,那么其余两角为。
2、(B 层)如果等腰三角形的一个角为40º,那么其余两角为。
3、(B 层)如图,点E 在BC 上,AE ∥DC ,AB =AE.求证:∠B=∠C. 五、4、(C 层)如图,AB =AC,∠B =40°,点D 在BC 上,且∠DAC =50°.求证:BD=CD. 六、 七、 八、 九、 十、作业布置 (A 层)等腰三角形的周长为16,其中一边的长是6,求另两条边的长。
人教版八年级数学上册13.3等腰三角形的判定(教案)

关于小组讨论,我认为自己在引导和启发学生思考方面还有很大的提升空间。在接下来的教学中,我会更加注重培养学生的批判性思维,鼓励他们提出问题、解决问题,并勇于分享自己的观点。
人教版八年数学上册13.3等腰三角形的判定(教案)
一、教学内容
本节课选自人教版八年级数学上册第十三章第三节,主要教学内容包括:
1.等腰三角形的定义:两边相等的三角形称为等腰三角形;
2.等腰三角形的性质:等腰三角形的底角相等,底边上的中线、高和角平分线互相重合;
3.等腰三角形的判定定理:在同一三角形中,若两边相等,则这两边所对的角相等。
2.教学难点
-理解等腰三角形性质的应用:学生在理解性质本身后,往往难以将其应用到具体的几何问题中。
-判定定理的逆向运用:学生通常在直接应用判定定理时较为熟练,但在逆向运用时,即已知角相等推断边相等的情况下,可能会感到困惑。
-解决含有等腰三角形元素的复杂几何问题:这类问题往往需要学生综合运用多个几何知识点,对学生的综合分析能力要求较高。
其次,关于等腰三角形的判定定理,我觉得自己在讲解时可以更加生动形象。例如,可以使用动态几何软件或实物模型来展示定理的实际应用,让学生更直观地理解判定定理的原理。
此外,在教学难点部分,我应该更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。对于理解能力较强的学生,可以适当增加难度,引导他们深入探索;对于理解能力较弱的学生,则要耐心讲解,帮助他们逐步突破难点。
(二)新课讲授(用时10分钟)
八年级数学 共顶点的等腰(等边)三角形导学案

共顶点的等腰(等边)三角形问题探讨五、精练――当堂训练、提升能力1.如图,已知△ABC,△ADE是等边三角形,点E恰在CB的延长线上,求证:∠ABD=∠AED.2.如图,A点在y轴正半轴上,以OA为边作等边△AOC,点B为x的正半轴上一动点,连AB,在第一象限作等边△ABE.在点B运动过程中,∠ACE的大小是否发生变化?若不变求出其值;若变化,请说明理由.3.如图,在平面直角坐标系中,△AOP为等边三角形,A(0,1),点B为y轴上一动点,以BP为边作等边△PBC.(1)求证:OB=AC;(2)求∠CAP的度数;(3)当B点运动时,AE的长度是否发生变化?4.已知等腰直角△ABC和等腰直角△ADE,∠BAC=∠EAD=90°,AB=AC,AD=AE,F为BE和CD的交点.(1)求证:BE⊥CD;.(2)求∠AFE的度数5.如图,点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =120°,求∠BCE 的 度数.B6.如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B (a ,b ),且a,b满足(20b -=.D 为y 轴上一动点,以AD 为边作等边三角形ADC ,CB 交y 轴于E .(1)如图1,求A 点的坐标;(2)如图2,D 在y 轴正半轴上, C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点的坐标是否发生变化,若不变,求M 点的坐标,若变化,说明理由;(3)如图3,点D 在y 轴的负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连AE .试求CE ,OD ,AE 三者的数量关系,并证明你的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 等腰三角形的判定
一、学习目标
1、理解等腰三角形的判定方法;
2、会运用等腰三角形的概念及性质解决相关问题。
二、温故知新
1、等腰三角形的两边长分别为6,8,则周长为
2、等腰三角形的一个角为70°,则另外两个角的度数是
3、等腰三角形的一个角为120°则另外两个角的度数是 三、自主探究 合作展示 (一)【思考】
(1)如图(1),位于在海上A 、B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A=∠B .如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?
(2)我们把这个问题一般化,在一般的三角形中,如果有两个角相等,•那么它们所对的边有什么关系?
已知:在△ABO 中,∠A=∠B 求证:AO=AO 证明:
【归纳】等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的 也相等(简写成 ) (二)【新知应用】
1、求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 请同学们完成下列问题
(1)、已知:如图(2), 是△ABC 的外角,∠1= ,AD ∥ 求证: .
2
1E
D
A
分析:要证明AB=AC,可先证明∠B= ,因为∠1= ,所以可设法找出
∠B、∠C与∠1、∠2的关系.
(2)、请同学们完整的写出解题过程
证明:
例题反思:
2、如图(3),标杆AB的高为5米,为了将它固定,需要由它的中点C•向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,•绳子CD
例题反思:
四、双基检测
1、把一张等腰三角形的纸片沿与底边平行的虚线裁剪后(如图(4)所示),你得到的三角形还是等腰三角形吗?为什么?
图(3)
(1)
E
B
2、如图(5),∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,•并说明图中有哪
些等腰三角形.3、如图(6)
,把一张矩形的纸沿对角线折叠.重合部分是一个等腰三角形吗?为什么?
4、如图(7),AC和BD相交于点O,且AB∥DC,OA=OB,求证:OC=OD.
图(6)
2 1
D C
A B
图(7)
五、学习反思
请你对照学习目标,谈一下这节课的收获及困惑。
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。