传热之对流传热与传热计算讲解

合集下载

传热效率计算公式

传热效率计算公式

传热效率计算公式传热效率是指在传热过程中所消耗的能量与所传递的能量之间的比值。

计算传热效率的公式可以通过不同传热方式来确定。

下面将分别介绍对流传热、辐射传热和传导传热的传热效率计算公式。

一、对流传热的传热效率计算公式:对流传热是指通过传热介质(如气体或液体)进行传热的方式。

对流传热效率通常由Nu数(Nusselt数)来表示,可以通过以下公式进行计算:Nu=h*L/λ其中,Nu为Nusselt数,h为对流传热系数(W/(m^2·K)),L为待传热表面的特征长度(m),λ为传热介质的导热系数(W/(m·K))。

传热效率η可以通过Nusselt数(Nu)和表面积比(A^*)来计算,公式如下:η=Nu*A^*/A其中,A^*为受热表面积,A为总表面积。

二、辐射传热的传热效率计算公式:辐射传热是指通过电磁波辐射进行传热的方式。

辐射传热效率可以通过以下公式计算:η=q/(σ*A*(T1^4-T2^4))其中,q为辐射传热速率(W),σ为斯特藩-玻尔兹曼常数(5.67×10^(-8)W/(m^2·K^4)),A为辐射表面积(m^2),T1和T2为被辐射表面和周围环境的温度(K)。

三、传导传热的传热效率计算公式:传导传热是指通过物质内部原子、分子之间的振动或传递方式进行传热的方式。

传导传热效率可以通过以下公式计算:η=(T1-T2)/(T1-T∞)其中,T1为热源温度(K),T2为待传热物体的温度(K),T∞为周围环境温度(K)。

综上所述,传热效率的计算公式取决于传热方式的不同。

通过对流传热、辐射传热和传导传热的计算公式的运用,可以有效地评估和分析传热系统的传热效率。

对流传热系数的计算公式

对流传热系数的计算公式

对流传热系数的计算公式
对流传热系数是热传导中的一种传热方式,常用于热交换器、冷却塔、加热器等传热设备的设计与计算中。

对于流体在壁面上的流动,其对流传热系数与流速、温度、粘度等变量密切相关。

在实际应用中,针对不同的流体与流动状态,可采用不同的计算公式。

下面列举几种常用的对流传热系数计算公式:
1. 自然对流传热系数公式:
h = 1.13 * (gβΔT)^1/4
其中,h为对流传热系数,g为重力加速度,β为热膨胀系数,ΔT为壁面温度与流体温度的差值。

2. 强制对流传热系数公式:
Nu = CRe^mPr^n
其中,Nu为努塞尔数,Re为雷诺数,Pr为普朗特数,C、m、n 为经验系数。

3. 线性对流传热系数公式:
h = kΔT
其中,k为比例常数,ΔT为温度差值。

需要注意的是,以上公式仅适用于理想条件下的流动状态,而实际应用中因存在多种不确定因素,其计算结果仅供参考,具体设计与计算仍需进行实际测试与验证。

- 1 -。

传热与传质最全的计算

传热与传质最全的计算

传热与传质最全的计算一、传热传热是能量从一个物体或系统传递到另一个物体或系统的过程。

根据传热方式的不同,传热可以分为三种形式:传导、对流和辐射。

1.传导:传热的方式通过物质的直接接触和分子的碰撞来进行。

传导传热的计算主要依靠温度差、传热面积和传热材料的热导率来计算。

传导传热的计算公式为:Q=-k*A*(ΔT/d)其中Q表示传热的热量,k表示热导率,A表示传热面积,ΔT表示温度差,d表示热传导长度。

2.对流:对流是通过流体(气体或液体)传递热量的过程。

对流传热的计算需要考虑传热系数、传热面积和温度差。

对于自然对流,传热系数可以通过科里奥利数来估算。

对于强制对流,传热系数可以通过雷诺数和普朗特数来估算。

对流传热的计算公式为:Q=h*A*ΔT其中Q表示传热的热量,h表示传热系数,A表示传热面积,ΔT表示温度差。

3.辐射:辐射是通过电磁辐射传递热量的过程。

辐射传热的计算需要考虑黑体辐射能量和辐射系数。

辐射传热的计算公式为:Q=ε*σ*A*(T1^4-T2^4)其中Q表示传热的热量,ε表示发射率,σ表示斯特藩-玻尔兹曼常数,A表示传热面积,T1和T2表示两个物体的温度。

二、传质传质是物质在空间中通过扩散机制传递的过程。

传质过程主要包括质量传递和扩散传递。

1.质量传递:质量传递是涉及物质从一个相向另一个相传递的过程。

质量传递的计算需要考虑浓度差、传质系数和表面积。

质量传递的计算公式为:Q=k*A*(C1-C2)其中Q表示传递的质量,k表示传质系数,A表示传质面积,C1和C2表示两个相之间的浓度差。

2.扩散传递:扩散传递是涉及物质通过浓度梯度向更低浓度的方向传递的过程。

扩散传递的计算需要考虑扩散系数、浓度梯度和距离。

扩散传递的计算公式为:J = -D * (dC / dx)其中J表示扩散通量,D表示扩散系数,C表示浓度,x表示距离。

以上是传热和传质的基本概念和常见的计算方法。

当然,实际的传热和传质过程常常是复杂和多变的,需要根据具体情况进行更为详细和精确的计算和分析。

传热系数计算公式

传热系数计算公式

传热系数计算公式传热系数(heat transfer coefficient)是指单位时间内通过单位面积的热量传递量与传热温差之比,它是描述传热性能的一个重要参数。

传热系数的计算公式根据传热模式的不同而有所区别,下面将介绍几种常见的传热模式以及相应的传热系数计算公式。

1.对流传热:对流传热是指流体与固体界面之间的热量传递。

对流传热系数的计算公式常用的有:- 强制对流 (forced convection):强制对流是指通过外部力量将流体强制对流,比如流体在管内流动、气体通过风扇增加流动速度等。

强制对流传热系数可由下式表示:h=Nu×k/d其中,h表示传热系数,Nu表示Nusselt数,k表示流体的热传导率,d表示流体流动路径的特征长度。

- 自然对流 (natural convection):自然对流是指无外部力量参与的情况下,流体的密度梯度引起流动。

对于自然对流,传热系数的计算公式可由下式表示:h=Nu×k/L其中,h表示传热系数,Nu表示Nusselt数,k表示流体的热传导率,L表示体积的特征长度。

这里的Nu值可以通过实验或者经验关联公式来计算。

2. 导热传热(conduction heat transfer):导热传热是指通过固体内部的分子热传导完成的热量传递。

在导热传热中,传热系数可以通过傅里叶热传导定律来计算:q=-k×A×∇T/d其中,q表示单位时间内通过单位面积的热量传递量,k表示固体的热传导率,A表示传热面积,∇T表示温度梯度,d表示固体的厚度。

3. 辐射传热(radiation heat transfer):辐射传热是指通过电磁波辐射完成的热量传递。

辐射传热系数的计算公式比较复杂,其中一个常用的经验公式是斯特藩-玻尔兹曼定律:q=ε×σ×A×(T1^4-T2^4)其中,q表示单位时间内通过单位面积的热量传递量,ε表示物体的辐射率,σ为斯特藩-玻尔兹曼常数(约为 5.67×10^-8W/(m^2·K^4)),A表示传热面积,T1和T2分别表示物体的温度。

化工流体流动与传热4.3 对流传热概述

化工流体流动与传热4.3 对流传热概述

换热器任一截 面上热流体的 平均温度
换热器任一截 面上与热流体 相接触一侧的 壁温
17
2. 热边界层
λ dt λ dt ( )w = − ( )w 因此有 α = − T − Tw dy ∆t d y
上式为对流传热系数的另一定义式, 上式为对流传热系数的另一定义式,该式表 对于一定的流体和温度差, 明,对于一定的流体和温度差,只要知道壁面附 近的流体层的温度梯度, 近的流体层的温度梯度,就可由该式求得α。 热边界层的厚薄影响层内的温度分布, 热边界层的厚薄影响层内的温度分布,因而 影响温度梯度。当边界层内、 影响温度梯度。当边界层内、外侧的温度差一定 热边界层愈薄, 愈大, 时,热边界层愈薄,则(dt/dy)w愈大,因而α就 愈大。反之,则相反。 愈大。反之,则相反。
24
4.3.3 保温层的临界直径
dc
图4-15 保温层的临界直径
25
第 4 章 传热
4.1 概述 4.2 热传导 4.3 对流传热概述 4.4 传热过程计算
4.4.1 热量衡算
26
热平衡方程
假设换热器的热损失可忽略, 假设换热器的热损失可忽略 , 则单位时间 内热流体放出的热量等于冷流体吸收的热量。 内热流体放出的热量等于冷流体吸收的热量。 对于换热器的微元面积d 对于换热器的微元面积 dS , 其热量衡算式 可表示为
dQ = α i (T − Tw )dS i =
λ
b
(Tw − t w )dS m = α o (t w − t )dS o

T − Tw Tw − t w tw − t dQ = = = 1 b 1
α i dSi
λ dS m
α o dS o
dQ = K (T − t )dS

对流传热的基本概念及传热方程讲解

对流传热的基本概念及传热方程讲解

q导
T y
|y0
18
而 q导 应该等于(9-2)式中的 q,即:
q导Ty|y0h(TTs)
从而得到(9-3)公式:
hTy|y0 (TTs)
19
9.2 、热量传输方程 -傅立叶-克希荷夫导热微分方程
本节将用微元体法导出含有对流条件下的流体中的 热量传出方程。 做下列假设: 1) 没有内热源(如化学反应热效应)产生 2) 流体流速不高,由粘性引起的耗散热可忽
对流传热的基本概念 及传热方程讲解
1
一、特点(Features)
对流传热是研究有流体(气、液及其混合物)存在 的传热物质体系中,通过流体的流动(质量团的宏 观迁移)产生的热量传热现象及热量传输速率和温 度分布的定量分析。
在工程中常见到的也是具有重要的工程意义的对流 传热情况就是某种流动流体与固体壁之间的界面对 换热。
适当流速。
6
2、流体的物性量 λ↑,热阻 δ / λ 小↓,h↑ h水= 20h空气 ρc↑载热能力强,热交换强,h↑ η↑滞止作用大,δc厚 ,减弱对流,h↓ 需要综合考虑:如水,粘性大,但ρc、λ也大。因
此比空气(粘性小)的换热系数大的多。
7
3、壁面几何尺寸、形状、位置: 垂直放置h↑,水平放置h↓(顺流动方向放
下降,随流动 x 增加,温度影响层增大,δ(x)增大。
9
10
温度边界层的厚度 δ T 是如下定义的: 当流体(其温度分布不均匀)温度为整体温度 T∞ 的99% 时,即: T (x, y, z) = 0.99T∞时所对应的距离平板的高度(δ T =y),定义为温度 边界层厚度。
由于随着流体沿平板的流动距离 x 增加,流体与平板接触时间加 长,增加了流体与平板之间的传热量。所以受平板较低温度的影 响范围增加。即δT(x)随 x 增加,从而δT 增加。

计算重点公式传热学

计算重点公式传热学

计算重点公式传热学传热学是研究热能在物质之间传递的学科,涵盖了热传导、热对流和热辐射三种传热方式。

在工程和科学领域中,计算传热是非常重要的,可以用来优化和设计各种热能设备和系统。

下面将介绍一些重要的传热计算公式。

1.热传导计算公式热传导是通过分子间的相互作用传递热能的方式。

对于常见的一维热传导问题,可以使用傅里叶热传导定律进行计算:q = -kA(dT/dx)其中,q是单位时间内通过物体的热量流率,k是物质的热导率,A 是传热截面积,dT/dx是温度梯度。

如果传热是在不同的材料之间进行,还需要考虑热传导的界面热阻。

界面热阻的计算公式为:R=1/(hA)其中,R是界面热阻,h是对流传热系数。

2.热对流计算公式热对流是通过流体的对流传递热能的方式。

对于流体中的对流传热,可以使用牛顿冷却定律进行计算:q=hAΔT其中,q是单位时间内通过物体的热量流率,h是对流传热系数,A 是传热表面积,ΔT是流体和物体之间的温度差。

对流传热系数h可以通过实验测量或者经验公式进行估算,常用的计算公式有Nusselt数和普朗特数。

3.热辐射计算公式热辐射是通过物体表面的电磁辐射传递热能的方式。

对于黑体辐射,可以使用斯特藩—玻尔兹曼定律进行计算:q=σAε(T^4)其中,q是单位时间内通过物体的热量流率,σ是斯特藩—玻尔兹曼常数,A是物体的表面积,ε是物体的辐射率,T是物体的温度。

对于非黑体的辐射传热,还需要考虑辐射率和视觉系数等因素。

4.综合传热计算在实际问题中,常常会有多种传热方式同时存在。

此时,需要将不同传热方式的热流量进行累加,得到总的传热量。

根据能量守恒定律,可以得到以下综合传热公式:q_total = q_conduction + q_convection + q_radiation其中,q_total是总的热量流率,q_conduction是热传导的热量流率,q_convection是热对流的热量流率,q_radiation是热辐射的热量流率。

对流传热

对流传热

对流传热第一题:知识点总结(一)对流传热概述1、对流传热:流体流过固体壁时的热量传递。

传热机理:热对流和热传导的联合作用热流量用牛顿冷却公式表示:Φ=hA△t其中对流传热面积A,温差△t,对流传热系数h2、影响对流传热系数的因素(1)流动的起因:>由于流动起因的不同,对流换热分为强迫对流传热与自然对流传热两大类。

(2)流动速度:>根据粘性流体流动存在着层流和湍流两种状态,对流传热分为层流对流传热与湍流对流传热两大类。

(3)流体有无相变:同种流体发生相变的换热强度比无相变时大得多。

(4)壁面的几何形状、大小和位置:对流体在壁面上的运动状态、速度分布和温度分布有很大影响。

(5)流体的热物理性质:影响对流传热系数有热导率λ,密度,比定压热容,流体粘度,体积膨胀系数。

综上所述,影响对流传热系数h的主要因素,可定性地用函数形式表示为h=f(v,l,λ,,,或,,)(二)流动边界层和热边界层1、流动边界层特性:(1)流体雷诺数较大时,流动边界层厚度与物体的几何尺寸相比很小;(2)流体流速变化几乎完全在流动边界层内,而边界层外的主流区流速几乎不变化;(3)在边界层内,粘性力和惯性力具有相同的量级,他们均不可忽略;(4)在垂直于壁面方向上,流体压力实际上可视为不变,即=0;(5)当雷诺数大到一定数值时,边界层内的流动状态可分为层流和湍流。

2、热边界层定义:当流体流过物体,而平物体表面的温度与来流流体的温度不相等时,在壁面上方形成的温度发生显著变化的薄层,称为热边界层。

热边界层厚度:当壁面与流体之间的温差达到壁面与来流流体之间的温差的0.99倍时,即=0.99,此位置就是边界层的外边缘,而该点到壁面之间的距离则是热边界层的厚度记为。

与δ一般不相等。

3、普朗特数流动边界层厚度δ反应流体分子动量扩散能力,与运动粘度有关;而热边界层厚度反应流体分子热量扩散的能力,与热扩散率a有关。

==它的大小表征流体动量扩散率与热量扩散率之比(三)边界层对流传热微分方程组1、连续性方程+=02、动量微分方程根据动量定理可导出流体边界层动量微分方程流体纵掠平壁时3、能量微分方程热扩散率a=边界层能量微分方程式:+=4、对流传热微分方程-------x处的对流传热温差------流体的热导率-------x处壁面上流体的温度变化率(四)、管内强迫对流传热1、全管长平均温度可取管的进、出口断面平均温度的算术平均值作为全管长温度的平均,即=()2、层流和湍流的判别由雷诺数Re大小来判别针对管内流动,当Re<2200时为层流;Re>1×时为湍流;2200<Re<1×时则为不稳定的过渡段(1)管内流动:(2)板内流动:湍流强迫对流传热管内强迫对流平均对流传热系数特征数关联式为:=0.023R P:考虑边界层内温度分布对对流传热系数影响的温度修正系数;:考虑短管管长对对流传热系数影响的短管修正系数;:考虑管道弯曲对对流传热系数影响的弯管修正系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Wh r Wccpc (tc 2 tc1 )
Wh 2210.9 2000 2.5 (70 20)
Wh 113.08kg / h
传热过程计算
总传热速率计算
Q KAtm
与K相对应的 总传热面积 m2
---总传热速率方程
总传热系数 W/(m2•℃)
传热平均温差 ℃
K---总传热系数
管外侧对流 传热热阻
管壁导热 热阻 管内侧对流 传热热阻
热阻:内外表面污垢热阻分别为Rsi和Rso
d0 d0 1 1 bd0 Rs 0 Rsi K 0 0 d m i di di
传热过程计算
总传热速率计算
Q KAtm
---总传热速率方程


本章章节
第一节
第二节 第三节 第四节 第五节 第六节 第七节
概述(重点)
热传导(重点) 对流传热(重点) 传热过程计算(重点) 对流传热系数经验关联式 辐射传热 换热器
对流传热
对流传热过程分 析
湍流主体传热方式为对流传热 层流底层传热方式为热传导
固体层传热方式为热传导
热量从热流体经过固体层传递到 冷流体过程中,两侧壁面处的层 流底层是传热阻力的主要部分 强化对流传热,就要加大流体湍 流程度,减小层流底层的厚度
对流传热
对流传热速率方程---牛顿公式
推动力 速率 系数 推动力 阻力
t 量均为某一局部参数 dQ dA t 1 局部对流传热系数 dA
工程计算中采用平均值: 管内 dQ i (T Tw )dA i
Q At
平均对流传热系数 总传热面积
α不是物性参数
管外 dQ 0 (tw t )dA 0
例 在一列管式换热器中,壳程有绝压为180kPa水蒸气冷凝。某种液体在管内流动,其流量为
2000kg/h,进出口温度分别为20和70℃,平均温度下比热容为2.5 kJ/(kg•℃),试求蒸汽用 量。假设换热器热损失可忽略,蒸汽冷凝后排出的为饱和水。
解 180 kPa下水蒸气冷凝潜热为2210.9kJ/kg
热量衡算
1、冷、热流体均不发生相变变化: 2、热流体有相变无温变, 冷流体无相变: 3、热流体有相变且有温变, 冷流体无相变:
Q Whcph (th1 th 2 ) Wcc pc (tc 2 tc1 )
Q Wh r Wcc pc (tc 2 tc1 )
Q Wh r WhCph (th1 th 2 ) Wc c pc (tc 2 tc1 )
dQ K0 (T t )dA0
K 0 dAi d i K i dA0 d 0 K 0 dAm d m K m dA0 d 0 Ki dAi di K m dA0 d0
Ki (T t )dAi
Km (T t )dAm
局部(管外、管内、管内外平均) 总传热系数
对于稳定传热:dQ1= dQ2 = dQ3
T Tw Tw t w t w t dQ 1 b 1 0 dA0 dAm i dAi
传热过程计算
总传热速率计算
Q KAtm
---总传热速率方程
K---总传热系数
T t dQ 1 b 1 0 dA0 dAm i dAi
传热过程计算
h2
冷流体
一、 热量衡算 二、 总传热速率计算
热量衡算 目的:计算冷、热流体传热过程中热量的多少----热负荷(单位:W)
2、热流体有相变无温变, 冷流体无相变:
c1
热交换器
c2
h1
热流体
Q Wh r WcCpc (tc 2 tc1 )
r---冷凝潜热,kJ/kg
1、冷、热流体均不发生相变变化:
K---总传热系数
d0 d0 1 1 bd0 Rs 0 Rsi K 0 0 d m i di di
传热面为平壁或薄管壁 do di dm 当管壁热阻和污垢热阻均可忽略时
1 1 b 1 Rs 0 Rsi K0 0 i
提高总传热 系数的方法
3、热流体有相变且有温变, 冷流体无相变:
Q WhCph (th1 th2 ) WcCpc (tc 2 tc1 )
Cp---平均定压比热容,取进出 口温度平均值下的比热容值
Q Wh r WhCph (th1 th 2 ) WcCpc (tc 2 tc1 )
传热过程计算
1 K0 ---总传热系数 d0 1 bd0 0 d m i d i
如无特别说明,通常以管子外壁 表面为基准,即式中的K就指Ko
传热过程计算
总传热速率计算
Q KAtm
---总传热速率方程
K---总传热系数
d0 1 1 bd0 K 0 0 d m i d i
两侧同除以dA0
dQ T t dA0 bdA dA0 dA0 0 0 dA0 dAm i dAi
T t bd0 d0 1 0 d m i d i
K 0 dAi d i K i dA0 d 0 K 0 dAm d m K m dA0 d 0 Ki dAi di K m dA0 d0
传热过程计算
总传热速率计算
Q KAtm
(1)热流体 (2)热管壁 (3)冷管壁
---总传热速率方程
K---总传热系数
间壁传热包括三个步骤:
对流
传导 对流
管壁
dQ 1 0 (T Tw )dA 0

b (Tw t w )dAm
冷管壁 dQ2 冷流体
dQ3 i (tw t )dAi
传热过程计算
总传热速率计算
Q KAtm
---总传热速率方程
K---总传热系数
dQ T t d0 1 bd 0 dA0 0 d m i di
d0 1 1 bd0 K 0 0 d m i d i
--- 传热热阻
与dQ K0 (T t )dA0比较:
1 1 1 K0 0 i
阻碍污垢产生 或及时清除污垢
相关文档
最新文档