C++ 多线程编程总结

合集下载

C#多线程编程实战(一):线程基础

C#多线程编程实战(一):线程基础

C#多线程编程实战(⼀):线程基础1.1 简介为了防⽌⼀个应⽤程序控制CPU⽽导致其他应⽤程序和操作系统本⾝永远被挂起这⼀可能情况,操作系统不得不使⽤某种⽅式将物理计算分割为⼀些虚拟的进程,并给予每个执⾏程序⼀定量的计算能⼒。

此外操作系统必须始终能够优先访问CPU,并能调整不同程序访问CPU的优先级。

线程正式这⼀慨念的实现。

多线程优点:可以同时执⾏多个计算任务,有可能提⾼计算机的处理能⼒,使得计算机每秒能执⾏越来越多的命令多线程缺点:消耗⼤量的操作系统资源。

多个线程共享⼀个处理器将导致操作系统忙于管理这些线程,⽽⽆法运⾏程序。

1.2 创建线程using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Thread t1 = new Thread(new ThreadStart(PrintNumbers));//⽆参数的委托t1.Start();Thread t2 = new Thread(new ParameterizedThreadStart(PrintNumbers));//有参数的委托t2.Start(10);Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}//注意:要使⽤ParameterizedThreadStart,定义的参数必须为objectstatic void PrintNumbers(object count){Console.WriteLine("Starting...");for (int i = 0; i < Convert.ToInt32(count); i++){Console.WriteLine(i);}}}}注释:我们只需指定在不同线程运⾏的⽅法名,⽽C#编译器会在后台创建这些对象1.3 暂停线程using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Thread t1 = new Thread(PrintNumbersWithDelay);t1.Start();PrintNumbers();Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}static void PrintNumbersWithDelay(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}}}注释:使⽤Thread.Sleep(TimeSpan.FromSeconds(2));暂停线程1.4 线程等待using System;namespace MulityThreadNote{class Program{static void Main(string[] args){Console.WriteLine("Starting...");Thread t = new Thread(PrintNumbersWithDelay);t.Start();t.Join(); //使⽤Join等待t完成PrintNumbers();Console.WriteLine("THread Complete");Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}static void PrintNumbersWithDelay(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}}}注释:使⽤t.Join(); 等待t完成1.5 终⽌线程using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Console.WriteLine("Starting Program...");Thread t1 = new Thread(PrintNumbersWithDelay);t1.Start();Thread.Sleep(TimeSpan.FromSeconds(6));t1.Abort(); //使⽤Abort()终⽌线程Console.WriteLine("Thread t1 has been aborted");Thread t2 = new Thread(PrintNumbers);PrintNumbers();Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}static void PrintNumbersWithDelay(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}}}注释:使⽤Thread实例的Abort⽅法终⽌线程1.6 检测线程状态using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Console.WriteLine("Start Program...");Thread t1 = new Thread(PrintNumbersWithStatus);Thread t2 = new Thread(DoNothing);Console.WriteLine(t1.ThreadState.ToString());//获取实例线程状态 t2.Start();t1.Start();for (int i = 0; i < 30; i++)}Thread.Sleep(TimeSpan.FromSeconds(6));t1.Abort();Console.WriteLine("thread t1 has been aborted");Console.WriteLine(t1.ThreadState.ToString());Console.WriteLine(t2.ThreadState.ToString());Console.ReadLine();}private static void PrintNumbersWithStatus(){Console.WriteLine("Starting...");Console.WriteLine(Thread.CurrentThread.ThreadState.ToString());//获取当前线程状态for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}private static void DoNothing(){Thread.Sleep(TimeSpan.FromSeconds(2));}}}注释:使⽤Thread.ThreadState获取线程的运⾏状态。

线程实例实验报告总结

线程实例实验报告总结

一、实验目的本次实验旨在通过实例操作,深入了解线程的概念、创建、同步与通信机制,以及线程在实际编程中的应用。

通过实验,提高对线程的理解和运用能力,为以后开发多线程程序打下坚实基础。

二、实验环境1. 操作系统:Windows 102. 开发工具:Visual Studio 20193. 编程语言:C#三、实验内容1. 线程的基本概念线程是程序执行的最小单位,是操作系统进行资源分配和调度的基本单位。

线程具有以下特点:(1)线程是轻量级的,创建、销毁线程的开销较小。

(2)线程共享进程的资源,如内存、文件等。

(3)线程之间可以并发执行。

2. 线程的创建在C#中,可以使用以下方式创建线程:(1)使用Thread类```csharpThread thread = new Thread(new ThreadStart(MethodName));thread.Start();```(2)使用lambda表达式```csharpThread thread = new Thread(() => MethodName());thread.Start();```(3)使用匿名方法```csharpThread thread = new Thread(delegate () { MethodName(); });thread.Start();```3. 线程的同步线程同步是指多个线程在执行过程中,为了防止资源冲突而采取的协调机制。

C#提供了以下同步机制:(1)互斥锁(Mutex)```csharpMutex mutex = new Mutex();mutex.WaitOne();// 线程同步代码mutex.ReleaseMutex();```(2)信号量(Semaphore)```csharpSemaphore semaphore = new Semaphore(1, 1);semaphore.WaitOne();// 线程同步代码semaphore.Release();```(3)读写锁(ReaderWriterLock)```csharpReaderWriterLock rwlock = new ReaderWriterLock();rwlock.AcquireReaderLock();// 读取操作rwlock.ReleaseReaderLock();```4. 线程的通信线程通信是指线程之间传递消息、共享数据的过程。

c 多线程实现的四种方式

c 多线程实现的四种方式

c 多线程实现的四种方式C语言是一种非常流行的编程语言,它可以用来实现多线程编程。

多线程编程可以让你的程序更高效、更快速地运行,因为它可以同时执行多个任务。

在这篇文章中,我们将介绍 C 多线程实现的四种方式。

1. 使用 pthread 库pthread 是一个 POSIX 标准定义的多线程库,它提供了一套API 接口,可以用来实现多线程编程。

使用 pthread,你可以创建多个线程并且控制它们的行为。

这种方式是 C 语言实现多线程的最常用方式之一。

2. 使用 OpenMP 库OpenMP 是一个开源的多线程库,它可以用来在 C 语言中实现多线程编程。

OpenMP 提供了一套 API 接口,可以让你更方便地编写并行程序。

使用 OpenMP,你可以使用 #pragma 指令来控制并行执行的代码块。

3. 使用 POSIX 线程POSIX 线程是一种 POSIX 标准定义的多线程接口,它可以用来实现多线程编程。

与 pthread 类似,POSIX 线程提供了一套 API 接口,可以让你更方便地编写多线程程序。

4. 使用 Windows 线程如果你在 Windows 操作系统上编写 C 语言程序,你可以使用Windows 线程来实现多线程编程。

Windows 线程提供了一套 API 接口,可以让你在 Windows 平台上创建多个线程并且控制它们的行为。

总结以上是 C 多线程实现的四种方式。

在选择使用哪种方式时,你应该考虑自己的需求和使用的操作系统。

不同的方式会有不同的 API 接口、性能和可移植性。

如果你需要了解更多关于 C 多线程编程的知识,可以参考相关的书籍和教程。

C#多线程文件读写整理总结

C#多线程文件读写整理总结

C#多线程⽂件读写整理总结多线程读写⽂件⼀直是⼀个⽐较常⽤的技术,普通的锁显得效率低下,和单线程感觉基本没有啥区别,这⾥参考了⼤⽜的代码,采⽤了线程池技术,⼩菜我⼀直不明⽩异步和多线程有啥区别,后来读了个⼤⽜的博客,才明⽩,为加强理解,抄袭⼀下吧,多线程相关名词概念的解释并发:在操作系统中,是指⼀个时间段中有⼏个程序都处于已启动运⾏到运⾏完毕之间,且这⼏个程序都是在同⼀个处理机上运⾏。

其中两种并发关系分别是同步和互斥互斥:进程间相互排斥的使⽤临界资源的现象,就叫互斥。

同步:进程之间的关系不是相互排斥临界资源的关系,⽽是相互依赖的关系。

进⼀步的说明:就是前⼀个进程的输出作为后⼀个进程的输⼊,当第⼀个进程没有输出时第⼆个进程必须等待。

具有同步关系的⼀组并发进程相互发送的信息称为消息或事件。

其中并发⼜有伪并发和真并发,伪并发是指单核处理器的并发,真并发是指多核处理器的并发。

并⾏:在单处理器中多道程序设计系统中,进程被交替执⾏,表现出⼀种并发的外部特种;在多处理器系统中,进程不仅可以交替执⾏,⽽且可以重叠执⾏。

在多处理器上的程序才可实现并⾏处理。

从⽽可知,并⾏是针对多处理器⽽⾔的。

并⾏是同时发⽣的多个并发事件,具有并发的含义,但并发不⼀定并⾏,也亦是说并发事件之间不⼀定要同⼀时刻发⽣。

多线程:多线程是程序设计的逻辑层概念,它是进程中并发运⾏的⼀段代码。

多线程可以实现线程间的切换执⾏。

异步:异步和同步是相对的,同步就是顺序执⾏,执⾏完⼀个再执⾏下⼀个,需要等待、协调运⾏。

异步就是彼此独⽴,在等待某事件的过程中继续做⾃⼰的事,不需要等待这⼀事件完成后再⼯作。

线程就是实现异步的⼀个⽅式。

异步是让调⽤⽅法的主线程不需要同步等待另⼀线程的完成,从⽽可以让主线程⼲其它的事情。

异步和多线程并不是⼀个同等关系,异步是最终⽬的,多线程只是我们实现异步的⼀种⼿段。

异步是当⼀个调⽤请求发送给被调⽤者,⽽调⽤者不⽤等待其结果的返回⽽可以做其它的事情。

c语言多线程编程实例

c语言多线程编程实例

c语言多线程编程实例C语言多线程编程实例多线程编程是一种并发编程的方式,它可以让程序同时执行多个任务,提高程序的效率和响应速度。

C语言是一种广泛使用的编程语言,也支持多线程编程。

本文将介绍一些C语言多线程编程的实例,帮助读者更好地理解和掌握多线程编程技术。

1. 创建线程在C语言中,可以使用pthread库来创建线程。

下面是一个简单的例子,创建一个线程并让它输出一段文字:```#include <stdio.h>#include <pthread.h>void* thread_func(void* arg){printf("Hello, world!\n");return NULL;}int main(){pthread_t tid;pthread_create(&tid, NULL, thread_func, NULL);pthread_join(tid, NULL);return 0;}```在上面的代码中,我们定义了一个函数thread_func,它将作为线程的入口函数。

在main函数中,我们使用pthread_create函数创建了一个线程,并将thread_func作为入口函数。

然后使用pthread_join 函数等待线程结束。

2. 线程同步在多线程编程中,线程之间的同步非常重要。

下面是一个例子,演示如何使用互斥锁来保护共享资源:```#include <stdio.h>#include <pthread.h>int count = 0;pthread_mutex_t mutex;void* thread_func(void* arg){pthread_mutex_lock(&mutex);count++;printf("Thread %d: count = %d\n", (int)arg, count); pthread_mutex_unlock(&mutex);return NULL;}int main(){pthread_t tid1, tid2;pthread_mutex_init(&mutex, NULL);pthread_create(&tid1, NULL, thread_func, (void*)1); pthread_create(&tid2, NULL, thread_func, (void*)2); pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_mutex_destroy(&mutex);return 0;}```在上面的代码中,我们定义了一个全局变量count,它将被两个线程同时访问。

C++多线程编程——线程的挂起、唤醒与终止

C++多线程编程——线程的挂起、唤醒与终止

C++多线程编程——线程的挂起、唤醒与终止C++多线程编程——线程的挂起、唤醒与终止在线程创建并运行后,用户可以对线程执行挂起和终止操作.所谓挂起,是指暂停线程的执行,用户可以通过气候的唤醒操作来恢复线程的执行.线程终止是指结束线程的运行.系统提供了SuspendThread,ResumeThread和TerminateThread等函数来实现线程的挂起、唤醒和停止操作。

SuspendThread该函数用于挂起线程.语法格式如下:DWORD SuspendThread(HANDLE hThread);•hThread: 表示线程句柄•返回值: 如果函数执行成功,返回值为之前挂起的线程次数;如果函数执行失败,返回值为0xFFFFFFFFResumeThread该函数用于煎炒线程挂起的次数,如果线程挂起的次数为0,将唤醒线程.语法格式如下:DWORD ResumeThread(HANDLE hThread);•hThread: 表示线程句柄•返回值: 如果函数执行成功,返回值为之前挂起的线程次数;如果函数执行失败,返回值为0xFFFFFFFFExitThread该函数用于结束当前线程.语法格式如下:VOID ExitThread(DWORD dwExitCode);•dwExitCode: 表示线程退出代码TerminateThread该函数用于强制终止线程的执行.语法格式如下:BOOL TerminateThread(HANDLE hThread, DWORD dwExitCode);•hThread: 表示待终止的线程句柄•dwExitCode: 表示线程退出代码例子:线程代码:DWORD __stdcall ThreadProc(LPVOID lpParameter) { CMultiThreadDlg * pdlg = (CMultiThreadDlg *)lpParameter;pdlg->m_ProCtrl.SetRange32(0,99999); for (int i = 0; i < 99999; i++) { pdlg->m_ProCtrl.SetPos(i); } return 0; }创建线程:void CMultiThreadDlg::OnBtCreate() { m_hThread = CreateThread(NULL,0,ThreadProc,this,0,NULL); }挂起线程:void CMultiThreadDlg::OnBtSuspend() { SuspendThread(m_hThread); }唤醒线程:void CMultiThreadDlg::OnBtResume() { ResumeThread(m_hThread); }终止线程:void CMultiThreadDlg::OnBtTerminate() { TerminateThread(m_hThread); }。

多线程编程实验总结与体会 -回复

多线程编程实验总结与体会 -回复

多线程编程实验总结与体会-回复[多线程编程实验总结与体会]作为一名计算机科学专业的学生,在学习多线程编程时,我们不仅需要理论知识,还需要通过实践来深入理解多线程的编写和应用。

在完成多线程编程的实验过程中,我吸取了许多经验和教训,形成了深刻的体会和总结。

以下是我在完成多线程编程实验后所得到的心得体会,希望对于有需求的学生有所帮助。

一、了解多线程编程的基础知识在进行多线程编程之前,必须要先掌握多线程的基础知识,包括线程的概念、线程的生命周期、线程的状态、线程同步和线程互斥等概念。

对于多线程编程的初学者来说,这是一个非常重要的基础,只有通过这些基础知识的学习,才能够更好地编写程序,解决实际的多线程应用问题。

二、了解并掌握多线程编程语言的特点在进行多线程编程时,我们需要使用支持多线程的编程语言,如Java、Python等。

对于不同的编程语言,其多线程操作的实现方式也有所不同。

因此,在进行多线程编程前,需要先掌握所用编程语言特有的多线程操作方式,并对其有所了解。

三、考虑问题全面,深入分析多线程编程的逻辑在设计多线程程序时,需要全面考虑程序的逻辑,注重多线程之间的协同工作和互相制约的因素。

多线程程序中需要解决的问题可能会很复杂,会牵扯到线程之间的通信、共享数据、同步/互斥和线程调度等问题。

因此,在编写多线程程序时,要仔细分析每个线程的作用和实现,考虑线程的优先级和时间片等有关因素,以便更好地实现程序的协同工作。

四、如何调试多线程程序多线程编程常常会带来一些难以预测的问题,使得程序的调试变得困难。

在调试多线程程序时,可以使用一些常见的调试方法,如使用输出语句来查看程序运行过程中的变量值和状态,使用调试器来单步调试程序,并在开发初期就引入测试用例,在程序开发与质量保证过程中使用到测试方法、性能调优和代码静态分析等工具,在不断地测试迭代中逐步减少bug 和其他难以预测的问题。

五、常见的多线程编程问题及解决方法在多线程编程中,常常会出现一些问题,这些问题可能会导致程序的运行出现异常,甚至会导致数据丢失和程序崩溃。

C语言多线程操作

C语言多线程操作

C语⾔多线程操作多线程是多任务处理的⼀种特殊形式,多任务处理允许让电脑同时运⾏两个或两个以上的程序。

⼀般情况下,两种类型的多任务处理:基于进程和基于线程。

基于进程的多任务处理是程序的并发执⾏。

基于线程的多任务处理是同⼀程序的⽚段的并发执⾏。

多线程程序包含可以同时运⾏的两个或多个部分。

这样的程序中的每个部分称为⼀个线程,每个线程定义了⼀个单独的执⾏路径。

本教程假设您使⽤的是 Linux 操作系统,我们要使⽤ POSIX 编写多线程 C++ 程序。

POSIX Threads 或 Pthreads 提供的 API 可在多种类 Unix POSIX 系统上可⽤,⽐如 FreeBSD、NetBSD、GNU/Linux、Mac OS X 和 Solaris。

下⾯的程序,我们可以⽤它来创建⼀个POSIX 线程:#include <pthread.h>pthread_create (thread, attr, start_routine, arg)在这⾥,pthread_create 创建⼀个新的线程,并让它可执⾏。

下⾯是关于参数的说明:参数描述thread指向线程标识符指针。

attr⼀个不透明的属性对象,可以被⽤来设置线程属性。

您可以指定线程属性对象,也可以使⽤默认值 NULL。

start_routine线程运⾏函数起始地址,⼀旦线程被创建就会执⾏。

arg运⾏函数的参数。

它必须通过把引⽤作为指针强制转换为 void 类型进⾏传递。

如果没有传递参数,则使⽤ NULL。

创建线程成功时,函数返回 0,若返回值不为 0 则说明创建线程失败。

使⽤下⾯的程序,我们可以⽤它来终⽌⼀个 POSIX 线程:#include <pthread.h>pthread_exit (status)在这⾥,pthread_exit ⽤于显式地退出⼀个线程。

通常情况下,pthread_exit() 函数是在线程完成⼯作后⽆需继续存在时被调⽤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C++ 多线程编程总结
在开发C++程序时,一般在吞吐量、并发、实时性上有较高的要求。

设计C++程序时,总结起来可以从如下几点提高效率:
∙l 并发
∙l 异步
∙l 缓存
下面将我平常工作中遇到一些问题例举一二,其设计思想无非以上三点。

1任务队列
1.1 以生产者-消费者模型设计任务队列
生产者-消费者模型是人们非常熟悉的模型,比如在某个服务器程序中,当User数据被逻辑模块修改后,就产生一个更新数据库的任务(produce),投递给IO模块任务队列,IO模块从任务队列中取出任务执行sql操作(consume)。

设计通用的任务队列,示例代码如下:
详细实现可参见
1.2 任务队列使用技巧
注意,此模式下为多任务队列,每个任务队列单线程。

1.2.3 连接池与异步回调
比如逻辑Service模块需要数据库模块异步载入用户数据,并做后续处理计算。

而数据库模块拥有一个固定连接数的连接池,当执行SQL的任务到来时,选择一个空闲的连接,执行SQL,并把SQL 通过回调函数传递给逻辑层。

其步骤如下:
∙n 预先分配好线程池,每个线程创建一个连接到数据库的连接
∙n 为数据库模块创建一个任务队列,所有线程都是这个任务队列的消费者
∙n 逻辑层想数据库模块投递sql执行任务,同时传递一个回调函数来接受sql执行结果
注意,此模式下为单任务队列,每个任务队列多线程。

2. 日志
本文主要讲C++多线程编程,日志系统不是为了提高程序效率,但是在程序调试、运行期排错上,日志是无可替代的工具,相信开发后台程序的朋友都会使用日志。

常见的日志使用方式有如下几种:
∙n 流式,如logstream << "start servie time[%d]" << time(0) << " app name[%s]"
<< app_string.c_str() << endl;
∙n Printf 格式如:logtrace(LOG_MODULE, "start servie time[%d] app name[%s]", time(0), app_string.c_str());
二者各有优缺点,流式是线程安全的,printf格式格式化字符串会更直接,但缺点是线程不安全,如果把app_string.c_str() 换成app_string (std::string),编译被通过,但是运行期会crash(如果运气好每次都crash,运气不好偶尔会crash)。

我个人钟爱printf风格,可以做如下改进:
∙l 增加线程安全,利用C++模板的traits机制,可以实现线程安全。

示例:
这样,除了标准类型+std::string 传入其他类型将编译不能通过。

这里只列举了一个参数的例子,可以重载该版本支持更多参数,如果你愿意,可以支持9个参数或更多。

∙l 为日志增加颜色,在printf中加入控制字符,可以再屏幕终端上显示颜色,Linux下示例:printf("\033[32;49;1m [DONE] \033[39;49;0m")
更多颜色方案参见:
∙l 每个线程启动时,都应该用日志打印该线程负责什么功能。

这样,程序跑起来的时候通过top –H – p pid 可以得知那个功能使用cpu的多少。

实际上,我的每行日志都会打印线程id,此线程id 非pthread_id,而其实是线程对应的系统分配的进程id号。

3. 性能监控
尽管已经有很多工具可以分析c++程序运行性能,但是其大部分还是运行在程序debug阶段。

我们需要一种手段在debug和release阶段都能监控程序,一方面得知程序瓶颈之所在,一方面尽早发现哪些组件在运行期出现了异常。

通常都是使用gettimeofday 来计算某个函数开销,可以精确到微妙。

可以利用C++的确定性析构,非常方便的实现获取函数开销的小工具,示例如下
struct profiler{
profiler(const char* func_name){
gettimeofday(&tv, NULL);
m_func_name=func_name;
}
~profiler(){
struct timeval tv2;
gettimeofday(&tv2, NULL);
long cost = (_sec - _sec) * 1000000 + (_usec - _usec);
//! post to some manager
}
struct timeval tv;
const char * m_func_name;
};
#define PROFILER() profiler
____profiler_instance##__LINE__(__FUNCTION__)
Cost 应该被投递到性能统计管理器中,该管理器定时讲性能统计数据输出到文件中。

4 Lambda 编程
使用foreach 代替迭代器
很多编程语言已经内建了foreach,但是c++还没有。

所以建议自己在需要遍历容器的地方编写foreach函数。

澳门新濠天地 习惯函数式编程的人应该会非常钟情使用foreach,使用foreach的好处多多少少有些,如:
但主要是编程哲学上层面的。

示例:
void user_mgr_t::foreach(boost::function<void (user_t&)> func_){
for (iterator it = m_users.begin(); it != m_users.end() ++it){
func_(it->second);
}
}
这样当要改动该接口时,直接在该接口内修改代码,非常直观。

5. 奇技淫巧
利用shared_ptr 实现map/reduce
Map/reduce的语义是先将任务划分为多个任务,投递到多个worker中并发执行,其产生的结果经reduce汇总后生成最终的结果。

Shared_ptr的语义是什么呢?当最后一个shared_ptr析构时,将会调用托管对象的析构函数。

语义和map/reduce过程非常相近。

我们只需自己实现讲请求划分多个任务即可。

示例过程如下:
∙l 定义请求托管对象,加入我们需要在10个文件中搜索“oh nice”字符串出现的次数,定义托管结构体如下:
∙l 定义执行任务的worker
∙l 将任务分割后,投递给不同的worker。

相关文档
最新文档