《平面直角坐标系》课件PPT
合集下载
平面直角坐标系ppt优秀课件

益。──高尔基 • ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 • ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列
宁
• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
y
4
(4)单位长度一般
3 2
取相同的
1
-3 -2 -1-1 O1 2 3
x
-2
-3 -4
选择:下面四个图形中,是平面直角坐标系的是( D )
Y
Y
2
1
-3 -2 -1 O1 2 3
X
X
3 2 1 O -1 -2 -3 -1
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3
3Y 2 1
则a=_4__,b=_5___。
6.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
7.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
· 纵轴 y 5
B(0,5)
4
3 2
·A(5,2)
1
-4 -3 (-2,-3)D
-3
-4
·C(2,-3)
例3.在下面直角坐标系中描出下列各组点,
并将各组的点用线段依次连接起来.
宁
• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
y
4
(4)单位长度一般
3 2
取相同的
1
-3 -2 -1-1 O1 2 3
x
-2
-3 -4
选择:下面四个图形中,是平面直角坐标系的是( D )
Y
Y
2
1
-3 -2 -1 O1 2 3
X
X
3 2 1 O -1 -2 -3 -1
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3
3Y 2 1
则a=_4__,b=_5___。
6.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
7.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
· 纵轴 y 5
B(0,5)
4
3 2
·A(5,2)
1
-4 -3 (-2,-3)D
-3
-4
·C(2,-3)
例3.在下面直角坐标系中描出下列各组点,
并将各组的点用线段依次连接起来.
17.平面直角坐标系PPT课件(华师大版)

P(-2,3)就叫做点P在平面直角坐标系中的坐标, 简称点P的坐标.
2. 点的坐标:在平面直角坐标系中,任意一点都可以用 一对有序实数来表示,对于平面直角坐标系中的任意一 点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴 上对应的数a,b分别称为点A的横坐标和纵坐标,可记 作A(a,b).坐标平面中每一个点都可以用有序实数对 表示,所以平面直角坐标系中的点和有序实数对是一一 对应的关系.
D(2.5,-2), E(0,-4)所在的象限吗?你的方法又是什么?
活动2.视察坐标系,填写坐标轴上的点的坐标的特征:
点的位置
横坐标的 纵坐标的
符号
符号
y
5
在x轴的正半
轴上
+
在x轴的负半 轴上
-
在y轴的正半 轴上
0
在y轴的负半 轴上
0
0
B4 3
2
0
C
1
A
-4
-3
-2
-1
O -1
1
2 3 4x
+
-2
A (2,3)
你能说出点
A与点A'坐 标的关系吗?
O
x
在平面直角坐标系中画出下列各点关于y轴的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(-3,-4)
B '(4,2)
x
C (3,-4)
知识归纳
关于y轴对称的点的坐标的特点是:
横坐标互为相反数,纵坐标相等. (简称:纵轴纵相等)
(2)对称点的坐标特征: ①关于x轴对称的两点,横坐标相同,纵坐标互为相反数, 如P(x,y)关于x轴对称的点的坐标为P1(x,-y); ②关于y轴对称的两点,纵坐标相同,横坐标互为相反数, 如P(x,y)关于y轴对称的点的坐标为P2(-x,y);
2. 点的坐标:在平面直角坐标系中,任意一点都可以用 一对有序实数来表示,对于平面直角坐标系中的任意一 点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴 上对应的数a,b分别称为点A的横坐标和纵坐标,可记 作A(a,b).坐标平面中每一个点都可以用有序实数对 表示,所以平面直角坐标系中的点和有序实数对是一一 对应的关系.
D(2.5,-2), E(0,-4)所在的象限吗?你的方法又是什么?
活动2.视察坐标系,填写坐标轴上的点的坐标的特征:
点的位置
横坐标的 纵坐标的
符号
符号
y
5
在x轴的正半
轴上
+
在x轴的负半 轴上
-
在y轴的正半 轴上
0
在y轴的负半 轴上
0
0
B4 3
2
0
C
1
A
-4
-3
-2
-1
O -1
1
2 3 4x
+
-2
A (2,3)
你能说出点
A与点A'坐 标的关系吗?
O
x
在平面直角坐标系中画出下列各点关于y轴的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(-3,-4)
B '(4,2)
x
C (3,-4)
知识归纳
关于y轴对称的点的坐标的特点是:
横坐标互为相反数,纵坐标相等. (简称:纵轴纵相等)
(2)对称点的坐标特征: ①关于x轴对称的两点,横坐标相同,纵坐标互为相反数, 如P(x,y)关于x轴对称的点的坐标为P1(x,-y); ②关于y轴对称的两点,纵坐标相同,横坐标互为相反数, 如P(x,y)关于y轴对称的点的坐标为P2(-x,y);
《平面直角坐标系》课件(共20张PPT)

13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
4、如果以中心 广场为原点呢?
.
北
(-2,1) (3,1)
. . 雁塔
碑林
. (-2,-1)中 心 广 场 .大 成 殿
.. . (-1,-3) 影月楼 科技大学
B(0,-3) D(4,0) F(0,3)
思考 对比
1.平面直角坐标系中,点P(3,5)与Q(5,3) 是同一个点吗?
2.在平面直角坐标系下,点与实数对之间有何 关系?
*3.引入平面直角坐标系,有什么好处?
发现 归纳
• 在直角坐标系中,对于平面上的任意一点, 都有唯一的一对有序实数对(即点的坐标) 与它对应;
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
4、如果以中心 广场为原点呢?
.
北
(-2,1) (3,1)
. . 雁塔
碑林
. (-2,-1)中 心 广 场 .大 成 殿
.. . (-1,-3) 影月楼 科技大学
B(0,-3) D(4,0) F(0,3)
思考 对比
1.平面直角坐标系中,点P(3,5)与Q(5,3) 是同一个点吗?
2.在平面直角坐标系下,点与实数对之间有何 关系?
*3.引入平面直角坐标系,有什么好处?
发现 归纳
• 在直角坐标系中,对于平面上的任意一点, 都有唯一的一对有序实数对(即点的坐标) 与它对应;
人教版7.1平面直角坐标系PPT课件

A(-5、2) B (3、-2) C(0、4)
D(-6、0)E(1、8) F(0、0)
G(5、0) H(-6、-4)K(0、-3)
解:A在第二象限, B在第四象限,C在Y的正半轴, D在X轴的负半轴,E在第一象限, F在原点,G在 X轴的正半轴,H在第三象限, K在Y轴的负半轴
2021
32
2.已知点P(3,a),并且P点到x轴的距 离是2个单位长度,求P点的坐标。
纵轴 y 5
4
3
· C
(
-2,1
2 )
1
坐标是有序
数对。
A ( 2,3 )
··B ( 3,2 )
-4 -3 -2 -1 0 -1
-2
· -3
D ( -4,- 3 )
-4
2021
12345
·E ( 1,- 2 )
x 横轴
13
在如图建立的直角坐标系中描出下列各组点,并 将各组的点用线段依次连接起来.
· y
2021
中心广场(0,0)30
写出平 行四边 形ABCD 各个顶 点的坐 标。
(-3,4) y
A
1 1
B (-C (3,-2)
A与D、B与C的纵坐标相同吗?为什么?A与B,C与D
的横坐标相同吗?2021为什么?
31
考考你:1、请你根据下列各点的坐标判 定它们分别在第几象限或在什么坐标轴 上?
-2
第三象限 -3
-4
1 23 4 5 6 X
第四象限
注 意:坐标轴上的--65点不属于任何象限。
组成平面直角坐标系三要素:①两条数轴
②互相垂直③202有1 公共原点
8
请你在本子上画一平面直角坐标系。并说一说: 平面直角坐标系具有哪些特征呢?
D(-6、0)E(1、8) F(0、0)
G(5、0) H(-6、-4)K(0、-3)
解:A在第二象限, B在第四象限,C在Y的正半轴, D在X轴的负半轴,E在第一象限, F在原点,G在 X轴的正半轴,H在第三象限, K在Y轴的负半轴
2021
32
2.已知点P(3,a),并且P点到x轴的距 离是2个单位长度,求P点的坐标。
纵轴 y 5
4
3
· C
(
-2,1
2 )
1
坐标是有序
数对。
A ( 2,3 )
··B ( 3,2 )
-4 -3 -2 -1 0 -1
-2
· -3
D ( -4,- 3 )
-4
2021
12345
·E ( 1,- 2 )
x 横轴
13
在如图建立的直角坐标系中描出下列各组点,并 将各组的点用线段依次连接起来.
· y
2021
中心广场(0,0)30
写出平 行四边 形ABCD 各个顶 点的坐 标。
(-3,4) y
A
1 1
B (-C (3,-2)
A与D、B与C的纵坐标相同吗?为什么?A与B,C与D
的横坐标相同吗?2021为什么?
31
考考你:1、请你根据下列各点的坐标判 定它们分别在第几象限或在什么坐标轴 上?
-2
第三象限 -3
-4
1 23 4 5 6 X
第四象限
注 意:坐标轴上的--65点不属于任何象限。
组成平面直角坐标系三要素:①两条数轴
②互相垂直③202有1 公共原点
8
请你在本子上画一平面直角坐标系。并说一说: 平面直角坐标系具有哪些特征呢?
1.1平面直角坐标系 (共31张PPT)

问题一:从点的轨迹角度分析点P应该在什么样的曲线上? 问题二:请你在图中建立适当的坐标系,并说明你所建立 坐标系的依据是什么? 问题三:根据你所建立的坐标系,求出点P的坐标
问题四:在该坐标系中,说出点P在信息中心点的什么位置?
Office组件之word2007
某中心接到其正东、正西、正北方向三个观测点的报告:正西 、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时 间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m ,试确定该巨响的位置。(假定当时声音传播的速度为 340m/s, 各相关点均在同一平面上)
E
因此,BE与CF互相垂直.
O (A)
F
B
x
数学运用
Office组件之word2007
例3. 某地区原计划经过B地沿着东北方向修建一条 高速公路,但在A村北偏西300方向距A村500m处 ,发现一古代文物遗址W。经过初步勘察,文物管 理部门将遗址W周围200m范围划为禁区,已知B 地位于A村的正西方向1km 处,试问:修建高速公 y y 路和计划需要修改吗? C 解决问题的关键: 确定遗址W与高速公路BC的 相对位置.
W
500
0 0 B 45 1000 60 A x O O
Office组件之word2007
课堂小结
平面直角坐标系建系时,根据几何特点选 择适当的直角坐标系。
(1)如果图形有对称中心,可以选对称中心为 坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐 标轴; (3)使图形上的特殊点尽可能多的在坐标轴上 。
y
B
P o
C Ax
Office组件之word2007
解: 以接报中心为原点O,以BA方向为x轴,建立直角坐标系. 设A、B、C分别是西、东、北观测点, 则 A(1020,0), B(-1020,0), C(0,1020)
7.1.2平面直角坐标系课件(共20张PPT).ppt

有序数对:
用含有两个数的词表示一个确定的位置,其中各个数表 示不同的含义,我们把这种有顺序的两个数a与b组成 的数对,叫做有序数对(ordered pair),记作(a,b) 利用有序数对,可以很准确地表示出一个位置。
什么是数轴?
规定了原点、正方向和单位长 度的直线叫做数轴。
单位长度
原点
正方向
-3 -2 -1
点的坐标.
⑵请另建一个平面直角坐标系,这
时正方形ABCD的顶点的坐标又分别
是多少?与同学交流一下.
y
Q(b,-b)
(-,+)
M(a,b)
Q(0,b) C(m,n)
(+,+)
P(a,0)
N(a,-b(-),-)
o
x
(+,-)
PD(a(,-am) ,-n)
A(x,y)
B(-x,y)
特殊位置的点的坐标特点: ⑴ x轴上的点,纵坐标为0。 y轴上的点,横坐标为0。 ⑵ 第一、三象限夹角平分线上的点,纵横坐标相等。 第二、四象限夹角平分线上的点,纵横坐标互为相反数。 ⑶与x轴平行(或与y轴垂直)的直线上的点纵坐标都相同。 与y轴平行(或与x轴垂直)的直线上的点横坐标都相同。 ⑷关于x轴对称的点横坐标相同、纵坐标互为相反数。 关于y轴对称的点纵坐标相同、横坐标互为相反数。 关于原点对称的点纵横坐标都互为相反数。 ⑸平面直角坐标系中有一点P(a , b),点P到x轴的距离是这个点的 纵坐标的绝对值;点P到y轴的距离是这个点的横坐标的绝对值;
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
用含有两个数的词表示一个确定的位置,其中各个数表 示不同的含义,我们把这种有顺序的两个数a与b组成 的数对,叫做有序数对(ordered pair),记作(a,b) 利用有序数对,可以很准确地表示出一个位置。
什么是数轴?
规定了原点、正方向和单位长 度的直线叫做数轴。
单位长度
原点
正方向
-3 -2 -1
点的坐标.
⑵请另建一个平面直角坐标系,这
时正方形ABCD的顶点的坐标又分别
是多少?与同学交流一下.
y
Q(b,-b)
(-,+)
M(a,b)
Q(0,b) C(m,n)
(+,+)
P(a,0)
N(a,-b(-),-)
o
x
(+,-)
PD(a(,-am) ,-n)
A(x,y)
B(-x,y)
特殊位置的点的坐标特点: ⑴ x轴上的点,纵坐标为0。 y轴上的点,横坐标为0。 ⑵ 第一、三象限夹角平分线上的点,纵横坐标相等。 第二、四象限夹角平分线上的点,纵横坐标互为相反数。 ⑶与x轴平行(或与y轴垂直)的直线上的点纵坐标都相同。 与y轴平行(或与x轴垂直)的直线上的点横坐标都相同。 ⑷关于x轴对称的点横坐标相同、纵坐标互为相反数。 关于y轴对称的点纵坐标相同、横坐标互为相反数。 关于原点对称的点纵横坐标都互为相反数。 ⑸平面直角坐标系中有一点P(a , b),点P到x轴的距离是这个点的 纵坐标的绝对值;点P到y轴的距离是这个点的横坐标的绝对值;
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
平面直角坐标系ppt

–3
–4
–5
–6 y(图1)
(–16, 5)
(5, 5)
5
D
C
4
3
1
x –6 –5 –4 –3 –2 –1 O 1 2 3 4 5 6 7
(–3, –2) –1
(3, –2)
–2
A
B
–3
–4
–5
–6 y (图2) 6
5
4
(–3, 3)D3来自(3, 3) C2
2
1
–7 –6 –5 –4 –3 –2 –1 O 1 2 3 4 5 6 7
A.平行于y轴 B.平行于x轴 C.与y轴相交 D.无法确定
4、P(-2,y)与Q(x,-3)关于x轴对称,则x-y的值为( B)
A.1 B.-5 C.5 D.-1 5、已知点P (x,y)在第四象限,它到x轴的距离为2,到y轴的距离为3,求P点的坐标。 6、若点P′ (m,-1)是点P(2,n)关于x轴的对称点,求m+n。
小结:
已知平面直角坐标系内一点M(4a+8,a+3),分别根据 下列条件求出点M的坐标。 (1)点M到x轴的距离为2 ; (2)点N的坐标为(3,-6),并且直线MN∥x轴。
学习需要团队的力量
一、利用已有知识,引入新课。 1、写出直角坐标系中点的坐标。 2、找出坐标轴上的点,并说说点的坐标有什么特征? ppt图1-7\图.gsp
点的坐标与线段的长度: 点p(x,y)到x轴的距离为∣y∣,到
y轴的距离为∣x∣。特别地,在x轴上 的点(x,0)到原点的距离为∣x∣, 在y轴上的点(0,y)到原点的距 离为∣y∣。
1、学生通过不同的建系方式可得出多种建立平面直 角坐标系的方法,从而找到最优方法。同时知道对于 不同的建系方法,同一个点的坐标是不同的。
《平面直角坐标系》PPT优质课件

3Y 2 1
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:(1)点A(m,n)关于x轴对称的点B (m,-n)
(2)点A(m,n)关于y轴对称的点B(-m,n)
(3)点A(m,n)原点对称的点B (-m,-n)
1:点在坐标轴上的特点
轴上的点纵坐标为0, 轴上的点横坐标为0.坐标原点(0,0)
(1)、点P(m+3,m+1)在x轴上,则P点坐标为( )
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
探究四:平面直角坐标系中,点的横、纵坐标 与该点到x轴,y轴的距离有何关系。
答:点A(a,b)到x轴的距离等于|b|,到y 轴的距离等于|a|。反过来到x轴 的距离等于
b,则其A坐标为(a,b)。到y轴的距离等于
a,则其A坐标为( a,b)
探究五: (1)关于x轴对称的点有何特征 (2)关于y轴对称的点有何特征 (3)原点对称的点有何特征
7.1.2平面直角坐标系 ( 人教版)
沿滩一区、初回中顾数上学节说课题知展识示活点动
y
4
A
3
D2
第二象限
第一象限
Ⅱ
1
Ⅰ
-4 -3 -2 -1 -1
第三象限C -2 Ⅲ -31 ຫໍສະໝຸດ 3 4x B第四象限 Ⅳ
(1)
写出图中点A、B、C、D、E、F、G、H的 坐标.
y
建立平面直角坐标系并描出下
列各点:
A.第一象限B.第二象限 C.第三象限 D.第四象限
3:点到直线的距离 (1)、点M(-6,5)到x轴的距离是_____,到y轴的距离是 ______.
(2)、已知点P(x,y)在第四象限,且│x│=3, │y│=5,则点P的坐标是( )
A(-3,5) B(5,-3) C.3,-5) D(-5,3) (3)、已知点P(m,n)到x轴的距离为3,到y轴的距 离等于5,则点P的坐标是 ( )。 (4)、已知点P的坐标(2-a,3a+6),且点P到两 坐标轴的距离相等,则点P的坐标是 ( )。
探究一:平面直角坐标系中点的坐标能否 为分数?小数? 无理数?
探究二:平面直角坐标系中 点A(3,2)与B(2,3), 点C(-1,2)与D(1 , 2), 点M(-2,3)与N(2,-3) 这三对点中每一对点都在同一个位置吗?
探究三:平面直角坐标系中,
(1)在x轴上的点有何特征 (2)在y轴上的点有何特征 (3)在每个象限内的点有特征 (4)平行于x轴的直线上的点有何特征 (5)平行于y轴的直线上的点有何特征
答:(1)在x轴上的点可以理解为(x,0) (2)在y轴上的点可以理解为(0,y)
(3) 点的位置(x,y)
横坐标符号x
纵坐标符号y
第一象限
+ (x>0)
+ (y>0)
第二象限
—(x<0)
+ (y>0)
第三象限
—(x<0)
—(y<0)
第四象限
+ (x>0)
—(y<0)
(4)平行于x轴的直线上的点纵坐标相等。 (5)平行于y轴的直线上的点横坐标相等
平面直角坐标系中点的坐标 能否为分数?小数?无理数
平面直角坐标系中,点 的横、纵坐标与该点到x 轴,y轴的距离有何关系。
平面 直角 坐标系
平面直角坐标系中具有特 坐标的点表示同一个位置
平面直角坐标系中,
(1)在x轴上的点有何特征 (2)在y轴上的点有何特征 (3)在每个象限内的点有特征 (4)平行于x轴的直线上的点有何特征 (5)平行于y轴的直线上的点有何特征
(2)、已知点P(m,2m-1)在y轴上,则P点的坐标是 (
)
2:点的坐标与象限的关系
(1)、在平面直角坐标中,点M(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(2)、在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(3)、若点P(a,a-2)在第四象限,则a的取值范围是( ).
A.-2<a<0 B.0<a<2 C.a>2 D.a<0
(4)、点P(m,1)在第二象限内,则点Q(-m,0)在( ) A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴 上
(5)、若点P(a,b)在第四象限,则点M(b-a,a-b)在( A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 (6)、如果a-b<0,且ab<0,那么点(a,b)在( ) A、第一象限 B、第二象限 C、第三象限, D、第四象限. (7)、对任意实数,点一定不在( )
E(0,4)
4
zxxkw
A(3,4)
B(-2,3)
3
A(3,4)
B(-2,3)
2
C(-4,-1)
1
D(2.5,-2)
-4 -3 -2 -1 O 1 -1
E(0,4)
C(-4,-1)
-2
如何由坐标描出其点?
-3
23 4 x
D(2.5,-2)
-4
沿二滩、区本初节中课数的学主说要题任展务示活动
(1)关于x轴对称的点有何特征 (2)关于y轴对称的点有何特征 (3)原点对称的点有何特征
.
三、小结:本节课你学到了什么?
(2)点A(m,n)关于y轴对称的点B(-m,n)
(3)点A(m,n)原点对称的点B (-m,-n)
1:点在坐标轴上的特点
轴上的点纵坐标为0, 轴上的点横坐标为0.坐标原点(0,0)
(1)、点P(m+3,m+1)在x轴上,则P点坐标为( )
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
探究四:平面直角坐标系中,点的横、纵坐标 与该点到x轴,y轴的距离有何关系。
答:点A(a,b)到x轴的距离等于|b|,到y 轴的距离等于|a|。反过来到x轴 的距离等于
b,则其A坐标为(a,b)。到y轴的距离等于
a,则其A坐标为( a,b)
探究五: (1)关于x轴对称的点有何特征 (2)关于y轴对称的点有何特征 (3)原点对称的点有何特征
7.1.2平面直角坐标系 ( 人教版)
沿滩一区、初回中顾数上学节说课题知展识示活点动
y
4
A
3
D2
第二象限
第一象限
Ⅱ
1
Ⅰ
-4 -3 -2 -1 -1
第三象限C -2 Ⅲ -31 ຫໍສະໝຸດ 3 4x B第四象限 Ⅳ
(1)
写出图中点A、B、C、D、E、F、G、H的 坐标.
y
建立平面直角坐标系并描出下
列各点:
A.第一象限B.第二象限 C.第三象限 D.第四象限
3:点到直线的距离 (1)、点M(-6,5)到x轴的距离是_____,到y轴的距离是 ______.
(2)、已知点P(x,y)在第四象限,且│x│=3, │y│=5,则点P的坐标是( )
A(-3,5) B(5,-3) C.3,-5) D(-5,3) (3)、已知点P(m,n)到x轴的距离为3,到y轴的距 离等于5,则点P的坐标是 ( )。 (4)、已知点P的坐标(2-a,3a+6),且点P到两 坐标轴的距离相等,则点P的坐标是 ( )。
探究一:平面直角坐标系中点的坐标能否 为分数?小数? 无理数?
探究二:平面直角坐标系中 点A(3,2)与B(2,3), 点C(-1,2)与D(1 , 2), 点M(-2,3)与N(2,-3) 这三对点中每一对点都在同一个位置吗?
探究三:平面直角坐标系中,
(1)在x轴上的点有何特征 (2)在y轴上的点有何特征 (3)在每个象限内的点有特征 (4)平行于x轴的直线上的点有何特征 (5)平行于y轴的直线上的点有何特征
答:(1)在x轴上的点可以理解为(x,0) (2)在y轴上的点可以理解为(0,y)
(3) 点的位置(x,y)
横坐标符号x
纵坐标符号y
第一象限
+ (x>0)
+ (y>0)
第二象限
—(x<0)
+ (y>0)
第三象限
—(x<0)
—(y<0)
第四象限
+ (x>0)
—(y<0)
(4)平行于x轴的直线上的点纵坐标相等。 (5)平行于y轴的直线上的点横坐标相等
平面直角坐标系中点的坐标 能否为分数?小数?无理数
平面直角坐标系中,点 的横、纵坐标与该点到x 轴,y轴的距离有何关系。
平面 直角 坐标系
平面直角坐标系中具有特 坐标的点表示同一个位置
平面直角坐标系中,
(1)在x轴上的点有何特征 (2)在y轴上的点有何特征 (3)在每个象限内的点有特征 (4)平行于x轴的直线上的点有何特征 (5)平行于y轴的直线上的点有何特征
(2)、已知点P(m,2m-1)在y轴上,则P点的坐标是 (
)
2:点的坐标与象限的关系
(1)、在平面直角坐标中,点M(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(2)、在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(3)、若点P(a,a-2)在第四象限,则a的取值范围是( ).
A.-2<a<0 B.0<a<2 C.a>2 D.a<0
(4)、点P(m,1)在第二象限内,则点Q(-m,0)在( ) A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴 上
(5)、若点P(a,b)在第四象限,则点M(b-a,a-b)在( A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 (6)、如果a-b<0,且ab<0,那么点(a,b)在( ) A、第一象限 B、第二象限 C、第三象限, D、第四象限. (7)、对任意实数,点一定不在( )
E(0,4)
4
zxxkw
A(3,4)
B(-2,3)
3
A(3,4)
B(-2,3)
2
C(-4,-1)
1
D(2.5,-2)
-4 -3 -2 -1 O 1 -1
E(0,4)
C(-4,-1)
-2
如何由坐标描出其点?
-3
23 4 x
D(2.5,-2)
-4
沿二滩、区本初节中课数的学主说要题任展务示活动
(1)关于x轴对称的点有何特征 (2)关于y轴对称的点有何特征 (3)原点对称的点有何特征
.
三、小结:本节课你学到了什么?