磁盘阵列(raid分类介绍)
RAID磁盘阵列

磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样的场景中:在宽 阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘, 再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDERAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。
RAID磁盘阵列
独立冗余磁盘阵列
01 主要目的
03 发展 05 技巧
目录
02 分类 04 规范 06 磁盘阵列
基本信息
RAID是英文Redundant Array of Independent Di简单的 说,RAID是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供 比单个硬盘更高的存储性能和提供数据备份技术。
RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明 码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实 施更复杂,因此在商业环境中很少使用。
技巧
技巧
从技术的角度来看,RAID恢复服务提供商不仅需要具备包括原先的5种(或者6种,如果包括RAID 0或者无 RAID保护)基本的RAID阵列级别或者技术的能力,而且需要具备RAID 5E、RAID 5EE、RAID 6、RAID 10、RAID 50、RAID 51、RAID 60以及RAID ADG等其它级别的能力。这些RAID级别可以利用多个连接和磁盘驱动器的类型 以及各种各样的以太连接。技术挑战之外就是由服务器和存储系统厂商以及有些介质制造商带来的RAID技术的变 化。
RAID 磁盘阵列详解

RAID 磁盘阵列详解RAID,Redundant Arrays of Independent Disks的简称,独立磁盘冗余阵列,简称磁盘阵列。
磁盘阵列其实也分为软阵列(Software Raid)和硬阵列(Hardware Raid) 两种.软阵列:即通过软件程序并由计算机的CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的RAID容错功能. 其他如热备用硬盘的设置, 远程管理等功能均一一欠奉.硬阵列:是由独立操作的硬件提供整个磁盘阵列的控制和计算功能. 不依靠系统的CPU资源. 由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上RAID 5 级的磁盘阵列均为硬阵列. 软阵列只适用于Raid 0 和Raid 1.要使用磁盘RAID主要有两种方式,第一种就是RAID适配卡,通过RAID适配卡插入PCI 插槽再接上硬盘实现硬盘的RAID功能。
第二种方式就是直接在主板上集成RAID控制芯片,让主板能直接实现磁盘RAID。
这种方式成本比专用的RAID适配卡低很多。
此外还可以用2k or xp or linux系统做成软RAID. 个人使用磁盘RAID主要是用RAID0、RAID1或RAID0+1工作模式下面将各个级别的RAID介绍如下。
RAID 0条带化(Stripe)存储, 即Data Stripping数据分条技术。
RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。
RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。
RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,在所有的级别中,RAID 0的速度是最快的。
理论上说,有N个磁盘组成的RAID0是单个磁盘读写速度的N倍。
什么是RAIDRAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID10

一.什么是RAID:RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列。
冗余磁盘阵列技术诞生于1987年,由美国加州大学伯克利分校提出。
RAID磁盘阵列(Redundant Array of Independent Disks)简单地解释,就是将N台硬盘通过RAID Controller(分Hardware,Software)结合成虚拟单台大容量的硬盘使用,其特色是N台硬盘同时读取速度加快及提供容错性Fault Tolerant,所以RAID是当成平时主要访问Data的Storage不是Backup Solution。
在RAID有一基本概念称为EDAP(Extended Data Availability and Protection),其强调扩充性及容错机制,也是各家厂商如:Mylex,IBM,HP,Compaq,Adaptec,Infortrend等诉求的重点,包括在不须停机情况下可处理以下动作:RAID 磁盘阵列支援自动检测故障硬盘;RAID 磁盘阵列支援重建硬盘坏轨的资料;RAID 磁盘阵列支援支持不须停机的硬盘备援 Hot Spare;RAID 磁盘阵列支援支持不须停机的硬盘替换 Hot Swap;RAID 磁盘阵列支援扩充硬盘容量等。
一旦RAID阵列出现故障,硬件服务商只能给客户重新初始化或者REBUILD,这样客户数据就会无法挽回。
因此对RAID0、RAID1、RAID5以及组合型的RAID系列磁盘阵列数据恢复,出现故障以后只要不对阵列作初始化操作,就有机会恢复出故障RAID磁盘阵列的数据。
二.关于RAID的技术规范介绍(1)RAID技术规范简介冗余磁盘阵列技术最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用,同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术,并且能适当的提升数据传输速度。
磁盘阵列各种RAID原理磁盘使用率

磁盘阵列各种RAID原理磁盘使用率RAID(Redundant Array of Inexpensive Disks)是一种磁盘阵列,可以将多块普通的磁盘拼接在一起形成更高效、可靠的数据存储系统。
它可以通过将存储空间划分成若干块虚拟磁盘来提高磁盘访问性能。
存储空间划分的方式共分为9种,分别是RAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID7和RAID10,其中RAID 0、RAID 1、RAID 5和RAID 10是最常用的四种RAID级别。
RAID0是把多块磁盘组合成一个虚拟磁盘,通过分割、重组来提升数据的存取速度,这种RAID把多块磁盘拼接在一起形成一个虚拟磁盘,不提供数据冗余,磁盘使用率比较高,但是其可靠性较低。
RAID1是把多块相同容量的磁盘拼接在一起形成一个虚拟磁盘,不同的是,这种RAID方式采用镜像技术,每个磁盘上的数据都会与另一块磁盘上的数据完全相同,提供了更好的可靠性,磁盘使用率较低,只有一半的磁盘空间可以使用。
RAID5是一种磁盘阵列中比较常用的RAID级别,它将磁盘阵列中的磁盘分成两种,一般磁盘和校验磁盘,这样就可以在一个虚拟磁盘上存储大量数据,任一块磁盘出现问题时,系统可以通过校验磁盘上的冗余数据来恢复受损的数据,并且RAID5提供了比RAID1更高的数据存储空间,磁盘使用率也比RAID1更高。
磁盘阵列原理

磁盘阵列原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器合并成一个逻辑单元来提供数据冗余和性能提升的技术。
磁盘阵列利用磁盘级别的冗余来提供数据的备份和恢复能力,并通过将数据分布在多个磁盘上来提高数据访问速度。
在本文中,我们将探讨磁盘阵列的原理以及它是如何工作的。
1. 磁盘阵列的概念和分类磁盘阵列是一种将多个独立的磁盘驱动器组合在一起,形成一个逻辑单元的技术。
根据不同的需求,磁盘阵列可以被划分为多个级别,常见的包括RAID 0、RAID 1、RAID 5、RAID 6等级别。
每个级别都有其特定的数据保护和性能特性。
2. RAID 0RAID 0将数据分块并分布到多个磁盘上,以提高数据的读写性能。
它通过在多个磁盘上同时读取和写入数据来实现并行访问。
然而,RAID 0没有冗余机制,一旦其中一个磁盘损坏,所有数据将会丢失。
3. RAID 1RAID 1通过将数据复制到多个磁盘上来提供冗余能力。
每个数据块都会被复制到两个或更多的磁盘上,以确保数据的完整性。
当其中一个磁盘发生故障时,系统可以从其他磁盘中恢复数据。
4. RAID 5RAID 5采用分布式奇偶校验的方式来提供冗余能力。
它将数据分块并分布到多个磁盘上,同时计算奇偶校验信息并存储在不同的磁盘上。
当其中一个磁盘损坏时,系统可以通过计算奇偶校验信息来恢复数据。
5. RAID 6RAID 6在RAID 5的基础上增加了第二个奇偶校验信息。
这意味着RAID 6可以容忍两个磁盘的故障,提供更高的数据可靠性。
6. 磁盘阵列的工作原理磁盘阵列通过控制器来管理和操作多个磁盘驱动器。
控制器负责将数据分块并分布到多个磁盘上,同时监测磁盘的状态。
当磁盘发生故障时,控制器可以根据不同的级别(如RAID 1、RAID 5等)来执行数据的恢复操作。
7. 磁盘阵列的优势和应用磁盘阵列提供了数据的冗余和性能提升能力,可以提高数据的可靠性和访问速度。
它广泛应用于服务器、存储系统、数据库等需要高可靠性和高性能的场景。
raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)是一种通过将多个磁盘驱动器组合在一起来提高数据存储性能和冗余性的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现了数据的并行读写和冗余备份,从而提高了数据的可靠性和性能。
RAID技术的核心思想是将多个磁盘驱动器组合在一起,形成一个逻辑卷(Logical Volume),这个逻辑卷被操作系统看作是一个单独的磁盘。
RAID可以通过不同的方式组织磁盘驱动器,从而实现不同的性能和冗余级别。
常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。
RAID 0是一种数据分布方式,它将数据均匀地分布在多个磁盘上,从而提高了数据的读写性能。
RAID 0的性能优势主要体现在读取速度方面,因为数据可以同时从多个磁盘上读取。
然而,RAID 0没有冗余备份机制,一旦其中一个磁盘发生故障,所有数据都将丢失。
RAID 1是一种数据冗余方式,它通过将数据在多个磁盘上进行镜像备份来提高数据的可靠性。
RAID 1的优势在于当一个磁盘发生故障时,系统可以从其他磁盘上读取数据,保证数据的完整性。
然而,RAID 1的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
RAID 5是一种将数据和校验信息分布在多个磁盘上的方式,通过计算校验信息来实现数据的冗余备份。
RAID 5的优势在于能够提供较高的数据存储效率和较好的读取性能,同时具备一定的容错能力。
当一个磁盘发生故障时,可以通过校验信息恢复数据。
然而,RAID 5的写入性能相对较低。
RAID 10是RAID 1和RAID 0的结合,它将数据分散存储在多个磁盘上,并通过镜像备份提供冗余性。
RAID 10的优势在于能够提供较高的读取和写入性能,同时具备较好的容错能力。
然而,RAID 10的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
除了上述常见的RAID级别外,还存在一些其他的RAID级别,如RAID 2、RAID 3、RAID 4和RAID 6等。
RAID0、RAID1、RAID5、RAID10分别代表什么意思?

RAID0、RAID1、RAID5、RAID10分别代表什么意思?1、RAID 0它是无数据冗余的存储空间条带化,具有成本低、读写性能高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。
但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘的损坏都将带来灾难性的数据损失。
这种方式其实没有冗余功能,没有安全保护,只是提高了磁盘读写性能和整个服务器的磁盘容量。
2、RAID 1是两块硬盘数据完全镜像,安全性好、技术简单、管理方便、读写性能均好。
因为它是一一对应的,所以它无法单块硬盘扩展,要扩展,必须同时对镜像的双方进行同容量的扩展。
因为这种冗余方式为了安全起见,实际上只利用了一半的磁盘容量,数据空间浪费大。
3、RAID 0+1也有写为RAID 10,综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。
它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低。
4、RAID 5是目前应用最广泛的RAID技术。
各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验,校验数据平均分布在每块硬盘上。
以N 块硬盘构建的RAID 5阵列可以有N-1块硬盘的容量,存储空间利用率非常高。
任何一块硬盘上的数据丢失,均可以通过校验数据推算出来,它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上。
RAID 5具有数据安全、读写速度快、空间利用率高等优点,应用非常广泛,但不足之处是如果1块硬盘出现故障以后,整个系统的性能将大大降低。
除了上面的4种常见的磁盘阵列外,还有其它几种磁盘阵列,比如:RAID 2、RAID 3、RAID 4、RAID 6、RAID 7等。
都是指在利用多块硬盤,做到数据保护或加速的方式;RAID 0,条带式,对所有硬盤做平均分散的读写,盤愈多速度最快,创建至少需要2颗HD,安全性差。
RAID 1,镜像式,每块盤的上数据都完全相同,创建至少需要2颗HD, 只要留有1颗盤数据都安全,安全性最高。
raid分类及特点

raid分类及特点:
RAID分类主要有以下几种:
1.RAID 0:又称为快速模式或数据分块。
它把数据分布在多个盘上,实际上是非冗余
阵列,无冗余信息。
读写传输数据的速度最快,但任何一块硬盘发生故障,整个RAID 上的数据将不可恢复。
2.RAID 1:又称为镜像模式或安全模式。
两块硬盘互为镜像、互为备份。
任何一块硬
盘出现故障时,只需要取下故障硬盘、换上一块容量大于或等于故障硬盘容量的硬盘即可自动恢复数据和重组RAID模式,所存储的数据安全性高。
3.RAID 3:至少需要3块硬盘,其中一颗用来储存纠错数据。
当有一块硬盘故障时,
只需要取下故障硬盘、换上一块容量大于或等于故障硬盘容量的硬盘即可自动恢复数据和重组RAID,数据可以从其余硬盘上的数据和纠错数据中恢复出来,安全性好。
4.RAID 5:块交叉分布式奇偶校验盘阵列,是旋转奇偶校验独立存取的阵列。
即数据
以块(块大小可变)交叉的方式存于各盘,但无专用的校验盘,而是把冗余的奇偶校验信息均匀地分布在所有磁盘上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁盘阵列
RAID 概念
磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意。
磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。
利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
[1]
磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
RAID级别
1、RAID 0 最少磁盘数量:2
Striped Disk Array without Fault Tolerance(没有容错设计的条带磁盘阵列)
原理:RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。
RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。
优点:极高的磁盘读写效率,没有效验所占的CPU资源,实现的成本低。
缺点:如果出现故障,无法进行任何补救。
没有冗余或错误修复能力,如果一个磁盘(物理)损坏,则所有的数据都无法使用。
用途:RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。
2、RAID 1 最少磁盘数量:2
Mirroring and Duplexing (相互镜像)
原理:RAID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上。
优点:理论上两倍的读取效率,系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。
缺点:对数据的写入性能下降,磁盘的利用率最高只能达到50%(使用两块盘的情况下),是所有RAID级别中最低的。
用途:RAID 1多用在保存关键性的重要数据的场合。
3、RAID 0+1 最少磁盘数量:4 且必须为偶数( 两个RAID0 组成RAID1)
原理:从RAID 0+1名称上我们便可以看出是RAID0与RAID1的结合体。
在我们单独使用RAID 1也会出现类似单独使用RAID 0那样的问题,所以我们用两个RAID0 组成RAID1,兼顾了RAID0和RAID1的优点。
优点:对数据的读写都有提升,并且对数据具有冗余能力,RAID0+1允许坏多个盘,但只能在坏在同一个RAID0中,不允许两个RAID0都有坏盘。
缺点:损坏一个盘时,全部的盘都会被牵制,空间利用率低仅有1/2。
4、RAID 1+0 最少磁盘数量:4 且必须为偶数( 两个RAID1 组成RAID 0)
原理:从RAID 1+0名称上我们便可以看出是RAID0与RAID1的结合体。
在我们单独使用RAID 1也会出现类似单独使用RAID 0那样的问题,所以我们用两个RAID1 组成RAID0,兼顾了RAID0和RAID1的优点。
优点:对数据的读写性能都有很大的提升,RAID1+0允许坏多个盘,但是一定不能是一组磁盘中的。
缺点:空间利用率低仅有1/2,扩展性有限。
5、RAID 1+0 和RAID 0+1 的区别。
在RAID 0+1技术中,当一块物理磁盘出现故障将导致整个虚拟磁盘损失,因此相当于四块物理磁盘的有效故障。
如果其它四块物理磁盘有一块丢失,数据将发生丢失。
虽然从原理上可以从剩余磁盘数据中重建,但目前市场上的RAID控制器都不能做到数据完全恢复。
而在RAID 10的情况下,当一块独立的物理磁盘故障后(如图四),由于有一块对应镜像磁盘保护数据(除非对应的特定镜像硬盘也同时发生故障),因此不会对性能带来影响,从而显著高于RAID 0+1的容错性。
此外,磁盘故障后的恢复成本RAID 10技术也远低于RAID 0+1。
在RAID 10技术中只需要重建一块物理磁盘,而RAID 0+1技术必须重建由四块物理磁盘组成的虚拟磁盘,从这点也能够体现出RAID 10相对RAID 0+1的优势。
6、RAID 5 最少硬盘数量:3 分布式奇偶校验的独立磁盘结构
原理:RAID5把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上,其中任意N-1块磁盘上都存储完整的数据。
当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
优点:读取速度快,安全性好。
缺点:容量为最小硬盘容量×(n-1),会损失一块硬盘的空间。
7、RAID 50 最少硬盘数量:6
原理:RAID50是RAID5与RAID0的结合。
此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。
每个RAID5子磁盘组要求三个硬盘。
RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。
而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。
优点:更高的容错能力,具备更快数据读取速率的潜力。
缺点:磁盘故障会影响吞吐量。
故障后重建信息的时间比镜像配置情况下要长。
最少硬盘数量:6 (要求磁盘数量为偶数)
最大容量:[(磁盘数量/2)-1] x磁盘容量
优点:你想要让你的数据获得真正的安全,完全不必担忧磁盘故障吗?可以试试RAID 15 或者RAID 51。
它们都提供了超强的容错能力。
即使大量磁盘损坏的情况下仍然不会丢失数据。
但是容错能力取决于出现故障的是哪一块磁盘。
如果你在每个镜像组中损失一块硬盘,系统仍然可以正常运转。
但是如果有四块硬盘损坏了,而它们恰好是两个镜像组中的四块硬盘,你就会丢失整个RAID 5阵列中的数据。
缺点:在这种情况下,强大的容错能力是以降低磁盘存储空间效能为代价的。
如果你的阵列是由6块硬盘组成的最小的RAID 15阵列,整个阵列存储容量的66%都会被用于管理,这就意味着你只能使用34%的存储容量。
随着阵列中磁盘数量的增加,效能比例也会有所增加,但是永远都不会达到50%。
这是由阵列的结构决定的,也是因为RAID硬件本身要耗占部分资源,这种模式造价昂贵,而且非常复杂,难以实施。
图:RAID 1+5在多块硬盘出现故障的时候仍然能够工作
最少硬盘数量:6 (要求磁盘数量为偶数)
最大容量:[(磁盘数量/2)-1] x磁盘容量
优点:提供了非常强大的容错能力。
整个阵列甚至可以在损失了好几块硬盘的情况下仍然正常工作,当然,这也取决于损坏的是哪些硬盘。
在由6块硬盘组成的最小阵列中,你最多可以损失4块硬盘(一个RAID 5阵列中的全部磁盘和第二个RAID 5阵列中的一块磁盘),还能够保持系统正常运转。
缺点:超强的容错能力是以大量的管理空间和昂贵的支持为代价的。
图:RAID 5+1被管理占据了大量的空间
10、分类比较。