普通物理学第二版第七章课后习题答案
(完整)物理学教程第二版马文蔚上册课后答案完整版

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由0d d =tx 得知质点的换向时刻为 s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为 2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -7 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为 m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d题 1-8 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分. 解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=txx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得 v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a=A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )e 1(Bt B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BA t y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt B A t B A y 1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt t t 000)d 46(d d j i a vvj i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=ty t x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -13 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为o 5.12arctan==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为 vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α 1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为1500=v h km 1-⋅,他随即以仰角ο5=α冲出,飞越跨度达57 m ,安全着陆在西岸木桥上,求:题 1-14 图(1) 柯飞车跨越黄河用了多长时间?(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米?(3) 西岸木桥和起飞点的高度差为多少?分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度.解 在图示坐标系中,有t v x )cos (0α= (1)2021sin (gt t v y -=)α (2) gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0m m ==αv x t s (2)由式(3),令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式(2),得飞行最大高度 67.02sin 220m ==gv y αm 则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m =t s 代入式(2),得西岸木桥位置为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角ο30=α,球的抛射角ο60=β,设球被抛出时的速率v 0 =19.6 m·s-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g αcos 和-g αsin ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1) 20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20==οg v t s将 t 值代入式(1),得1.26322===g v x OP m解 2 由分析知,在图(b )坐标系中,对小球 t v x )cos (0β=(1) 2021)sin (gt t v y -=β(2) 对点P αtan x y ='(3) 由式(1)、(2)可得球的轨道方程为οββ2202cos 2tan v gx x y -=(4) 落地时,应有y y '=,即οοο60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为g v x 332=(5) 则 1.263230cos 20===g v xOP οm联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为 b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -19 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有θθcos sin arctan 221v v v -=α而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题2-7 图分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT-( m1+m2)g =(m1+m2)a (1)F N2 - m2g =m2a (2) 解上述方程,得FT=(m1+m2)(g +a) (3)F N2=m2(g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8如图(a)所示,已知两物体A、B 的质量均为m=3.0kg 物体A 以加速度a =1.0 m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有m A g-FT=m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有。
大学物理课后答案第七章..

第七章 静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律; 2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释; 4.了解各向同性介质中D 和E 的关系和区别; 5.了解介质中电场的高斯定理; 6.理解电场能量密度的概念.二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2.电容(1)孤立导体的电容 qC V=电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关. (2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。
B A V V -为A 、B 两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。
等效电容由121111nC C C C =+++进行计算。
并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为12n C C C C =+++。
(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。
②由BA B A V V d -=⋅⎰E l 求两极板间的电势差.③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关.说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向异性介质都适用.对于各向同性电介质,因为0e χε=P E ,所以0r εεε==D E E 。
大学物理学课后习题7第七章答案

q 6 0
对于边长 a 的正方形,如果它不包含 q
所在的顶点,则 e
q 24 0
,
如果它包含 q 所在顶点则 e 0 .
7.8 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×
105 C·m-3求距球心5cm,8cm ,12cm 各点的场强.
解:
高斯定理 当 r 5 cm
均匀分布,其电势U
E
dr
R2
qdr R2 4π 0 r 2
q 4π 0 R
题 7.16 图
(2)外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍
为 q .所以球壳电势由内球 q 与内表面 q 产生:
U
q 4π 0 R2
q 4π 0 R2
(2)同理
dEQ
1 4π 0
dx
x2
d
2 2
方向如题 7.6 图所示
由于对称性 l dEQx 0 ,即 EQ 只有 y 分量,
∵
dEQy
1 4π 0
dx
x2
d
2 2
d2
x2
d
2 2
EQy
l dEQy
d2 4π 2
l 2
dx
l
3
2
(x2
d
2 2
)
2
l
1由于电荷均匀分布与对称性ab和cd段电荷在o点产生的场强互相抵消取?ddrl?则??ddrq?产生o点e?d如图由于对称性o点场强沿y轴负方向题714图??????cos4dd2220?????rreeyr04???2sin??2sin??r02????2ab电荷在o点产生电势以0??u?????ab200012ln44d4drrxxxxu??????同理cd产生2ln402???u半圆环产生00344??????rru0032142ln2?????????uuuuo715两个平行金属板ab的面积为200cm2a和b之间距离为2cmb板接地如图715所示
普通物理简明教程-胡盘新(第二版)大学物理习题-课后答案

ax =
a=
2
dυ x = −12t dt
2 1 2 2
补充作业1-01-方程求va
a是时间t的一次函数,既是 成正比关系变化,所以能用。
2 1
v − v ( 4 − 6t ) − ( 4 − 6t ) = = −6( t + t ) Δt t −t
2 1
a12 =
a1 + a2 = −6(t2 + t1 ) 2
Chenwq 1
1-2作业-方程求va
1-2. 一质点沿x轴运动,坐标与时间的变化关系为 x=4t-2t 3(SI制),试计算 (1)在最初2s内的平均速度,2s末的瞬时速度; (2)1s末到3s末的位移和平均速度; (3)1s末到3s末的平均加速度。此平均加速度是否可以 用a=(a1+a2)/2计算; (4)3s末的瞬时加速度。 解:(1)最初2s内的平均速度
2 2
2
船的加速度大小
1-10一辆铁路平板车装有货物,在货物与车底板之间的静 摩擦系数为0.25,如果火车以30km/s速度行驶,要使货物 不发生滑动,火车从刹车到完全静止所经过的最短路程是 多少? 解:
2
ax =
当x=s时
dυ x =− dt
h
2 3 2 2
(υ 0 ) = −
2
(l 2 − h )
前
前船接收抛物体前后
得v 前
前增大 中不变 后变小
(M + m)v 前=Mv + m(v + u)
Mv + mu m(u − v ) = =v+ >v M +m ( M + m)
得v 前 = v +
新编基础物理学第二版第七章习题解答

新编基础物理学第⼆版第七章习题解答习题七7-1 氧⽓瓶的容积为32L ,瓶内充满氧⽓时的压强为130atm 。
若每⼩时需⽤1atm 氧⽓体积为400L 。
设使⽤过程中保持温度不变,问当瓶内压强降到10atm 时,使⽤了⼏个⼩时?解已知123130atm,10atm,1atm;p p p === 1232L,V V V ===3400L V =。
质量分别为1m ,2m ,3m ,由题意可得:11m p V RT M = 22mp V RT M =233mp V RT M=所以⼀瓶氧⽓能⽤⼩时数为: ()121233313010329.6(1.0400m m p V p V n m p V -?--====?h)7-2 ⼀氦氖⽓体激光管,⼯作时管内温度是 27C ?。
压强是2.4mmHg ,氦⽓与氖⽓的压强⽐是7:1.求管内氦⽓和氖⽓的分⼦数密度.解:依题意, n n n =+氦氖, 52.41.01310Pa 760p p p =+=氦氖;:7:1p p =氦氖所以552.10.31.01310Pa, 1.01310Pa 760760p p ==氦氖, 根据 p nkT =,得()5223232.1760 1.01310 6.7610(m )1.3810300p n kT --??===氦氦 2139.6610(m )P n kT-==?氖氖7-3 氢分⼦的质量为2410个氢分⼦沿着与墙⾯的法线成?45⾓的⽅向以5110cm s -?的速率撞击在⾯积为22.0cm 的墙⾯上,如果撞击是完全弹性的,试求这些氢分⼦作⽤在墙⾯上的压强.解:单位时间内作⽤在墙⾯上的平均作⽤⼒为:2cos45F N m =?v所以氢分⼦作⽤在墙⾯上的压强为27522342 3.3101010102cos 4522330(Pa)210F m N p S S---====?v7-4 ⼀个能量为1210eV 的宇宙射线粒⼦,射⼊⼀氖管中,氖管中含有氦⽓0.10mol,如果宇宙射线粒⼦的能量全部被氖⽓分⼦所吸收⽽变为热运动能量,问氖⽓的温度升⾼了多少?解: 依题意可得:23121930.1 6.0210 10 1.6102k T -=?? 氖⽓的温度升⾼了771.610 1.2810(K)0.1 6.02 1.5 1.38T --??== 7-5 容器内储有1mol 某种⽓体。
普通物理学教程力学课后答案高等教育出版社刚体力学习题解答

第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。
高中物理(新人教版)必修第二册课后习题:第七章测评(课后习题)【含答案及解析】

第七章测评(时间:75分钟 满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021河北衡水月考)下列说法正确的是( )A.由开普勒第一定律可知,所有行星都在同一椭圆轨道上绕太阳运动B.由F=Gm 1m2r 2可知,当r 趋于零时万有引力趋于无限大C.引力常量G=6.67×10-11N·m 2/kg 2,是由英国物理学家卡文迪什利用扭秤实验测出的D.由开普勒第三定律可知,所有行星轨道半长轴的三次方与公转周期的二次方的比值都相等,即a 3T 2=k ,其中k 与行星有关,所有行星各自绕太阳运行的轨道为椭圆,太阳在椭圆的一个焦点上,所以各行星不在同一椭圆轨道上,故A 错误;万有引力定律的研究对象是质点,当物体间距离趋于零时物体不能被视为质点,万有引力定律不再适用,故B 错误;引力常量G=6.67×10-11N·m 2/kg 2,是由卡文迪什利用扭秤实验测出的,故C 正确;由开普勒第三定律可知,所有绕同一中心天体运行的行星轨道半长轴的三次方与公转周期的二次方的比值都相等,即a 3T 2=k ,其中k 与中心天体有关,与行星无关,故D 错误。
2.(2021山东日照模拟)2020年7月23日,中国首次火星探测任务天问一号探测器发射成功,已知火星的质量约为地球质量的19,火星的半径约为地球半径的12。
下列关于火星探测器的说法正确的是(选项中的宇宙速度均指地球的)( ) A.发射速度只要大于第一宇宙速度即可 B.发射速度只有达到第三宇宙速度才可以C.发射速度应大于第二宇宙速度,小于第三宇宙速度D.火星探测器环绕火星运行的最大速度约为第一宇宙速度的13,可知选项A 、B 错误,选项C 正确;已知m 火=m地9,R 火=R地2,则v 火∶v 地=√Gm火R 火∶√Gm地R 地=√2∶3,选项D 错误。
普通物理学教程 力学 高等教育出版社 最新 第二版 漆安慎、杜婵英主编 课后答案 习题解答

−1 / 2
⑷∫
1
e
1+ ln x x
dx
aw .c om
π /2
第 1 章物理学力学数学 微积分初步习题解答
课后答案网
2
第 1 章物理学力学数学 微积分初步习题解答
解:
∫ sin xdx = − cos x |
0
π
0
2
=1
y
⑸ ∫ (e x + 1 ⑹ ∫ cos 2 xdx ⑺ ∫ 1+1x 2 dx ⑻ ∫ (3 x + sin 2 x)dx x ) dx
6.计算由y=3x和y=x2所围成的平面图形的面积。 解:如图所示,令 3x=x2,得两 y 条曲线交点的 x 坐标:x=0,3. 面积
A = ∫ 3 xdx − ∫ x 2 dx
0 0 3 2 2 1 3
3
3
2 e x 1 ⑷ ∫ 1+ ln x dx = ∫ (1 + ln x ) d (1 + ln x ) = 2 (1 + ln x ) |1 = 1.5 1 1 x 2 2 ⑸ ∫ (e x + 1 x ) dx = (e + ln x ) |1 = e − e + ln 2 1 2
1 0 1/ 2 2 2 解:⑴ ( x |1 − x |1 = ∫ x − 1)dx = ∫ x dx − ∫ dx = 2 3 1 1 1 1 1 2 2 2
3 2
− /2
∫ sin xdx = −1 π∫ sin xdx = 0 π
− /2
0
π /2
-π/2 -
+ 0 π/2
x
4 2 3
−5 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]-527.2710(rad/s)243600πω==⨯⨯自-72 2.0410(rad/s)365243600πω==⨯⨯⨯公 R νω=自22n a RRνω==7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?[解 答](1)22(30001200)1/601.57(rad /s )t12ωπβ⨯-⨯===(2)22222()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为 34at bt ct θ=+- (:rad,t :s).θ球t 时刻的角速度和角加速度.[解 答]34at bt ct θ=+-23d a 3bt 4ct dt θω==+- 2d 6bt 12ct dt ωβ==-7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3)转过90时,A 点的速度和加速度在x 和y 轴上的投影.[解 答]21.2t t 1.22t 2θωβ=+=+=(1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==22n a a 0.144(m /s )Ryx ν==-=-2y a R 0.2(m/s )β==(2)45θ=时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v Rπθωω=+==∴==⨯得ˆˆˆ i j kˆˆ 0 0 0.15j0.15i R cos R sin 0ωθθ==-x y A A 0.15(m /s),015(m /s)d dˆˆa (R sin i R cos j)dt dt νννωθωθ∴=-===-+221222x y dˆˆR(sin i cos j)dtˆˆR[(cos sin )i (sin cos )j ˆˆ0.183j0.465i(m /s )a 0.465(m /s ),a 0.183(m /s )ωθωθωθβθωθβθ-=-+=--+-+=--∴=-=-(3)当90θ=时,由2A x y 2x 22x y 1.2t t ,t 0.7895(s), 2.78(rad /s)2ˆˆv R i 0.278i(m/s)0.278(m /s),0(m /s)a R 0.2(m /s )a 0.77(m /s )Rπθωωννβν=+====-⨯=-∴=-==-=-=-=-得7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D 点相同。
所以:G 222G AB 1.51015(m/s)a AB 1.510150(m/s )νωω=⋅=⨯==⋅=⨯=7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。
ννν∴=+板牵轮取收割机前进的方向为坐标系正方向n D1.20.53(m /s)3020.53(m /s)ˆ0.53i(m /s)πννννν∴-=-+=-⨯+=-∴=∴=-板对地板对轴轴对地板对地板对地7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm ,发动机转速2000rev/min.(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h 的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹.[解 答]取地球为基本参考系,飞机为运动参考系。
(1)研究桨头相对于运动参考系的运动:nR 1.5314.16(m /s)30πνω==⨯=相 (2)研究桨头相对于基本参考系的运动:,(314.16)321.7(m /s)3600νννννν=+⊥∴=+= ⎝绝相牵相牵绝由于桨头同时参与两个运动:匀速直线运动和匀速圆周运动。
故桨头轨迹应是一个圆柱螺旋线。
7.1.8 桑塔纳汽车时速为166km/h.车轮滚动半径为0.26m.自发动机至驱动轮的转速比为0.909.问发动机转速为每分多少转.[解 答]设发动机转速为n 发,驱动轮的转速为n 轮。
由题意:n 0.909,n 0.909n n ==发发轮轮 (1)汽车的速率为316610,60⨯3166102R n 60π⨯=轮轮316610n 2R 60π⨯∴=轮轮 (2)(2)代入(1)3316610n 0.9091.5410(rev /min)2R 60π⨯==⨯发轮7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置.(1)圆锥体为均质;(2)密度为h 的函数:h(1),Lρρρ=-为正常数.[解 答]建立如图坐标O-x,由cdm dv dv dm dv dv x x x x ρρ===⎰⎰⎰⎰⎰⎰ 得:(1)L 20c2(a /L)d 3L 14a L 3x x x ππ==⎰质量 21m v a L 3ρπρ==(2)L200c 200a h ()(1)d 4L L L(h=L )h a 5(1)()d L L x x x x x x x ππρρπ⋅⋅-==--⋅⎰⎰ 质量22000h a L m (1)()d a L L 4x x πρπρπ=-⋅=⎰ 7.2.3 长度为的均质杆,令其竖直地立于光滑的桌面上,然后放开手,由于杆不可能绝对沿铅直方向,故随即到下.求杆子的上端点运动的轨迹(选定坐标系,并求出轨迹的方程式).[解 答]建立坐标系,水平方向为x 轴,竖直方向为y 轴.杆上端坐标为(x,y ),杆受重力、地面对杆竖直向上的支承力,无水平方向力。
由i c F a m =∑外(质心运动定理)质心在杆的中点,沿水平方向质心加速度为零。
开始静止,杆质心无水平方向移动。
由杆在下落每一瞬时的几何关系可得:222(2x)y += 即杆上端运动轨迹方程为:2224x y +=7.3.1 (1)用积分法证明:质量为m 长为的均质细杆对通过中心且与杆垂直的轴线的转动惯量等于21m12.[解 答]建立水平方向o —x 坐标2m dI x dx=2220m1I 2x dx m 12==⎰(2)用积分法证明:质量为m 、半径为R 的均质薄圆盘对通过中心且在盘面内的转动轴的转动惯量为21mR 4.[解 答]3RR222222001m 4m I 2(R x )dx12R 3R ππ=-⎰⎰令x Rsin θ=3222442222204m 4m I (R R sin )R cos d R cos d 3R 3R ππθθθθθππ=-=⎰⎰=222204m 1cos 21()d mR 3R 24πθθπ+=⎰或3R 222204m I (R x )dx,3R π=-⎰利用公式n n n 22221222222u(u a )na (u a )du (u a )du n 1n 1-±±=±±++⎰⎰7.3.2 图示实验用的摆,0.92m =,r 0.08m =,m 4.9kg =,r m 24.5kg =,近似认为圆形部分为均质圆盘,长杆部分为均质细杆.求对过悬点且与摆面垂直的轴线的转动惯量.[解 答] 将摆分为两部分:均匀细杆(1I ),均匀圆柱(2I )则12I I I =+1I =221m L0.14(kg m )32I =22r r1m r m (L r)2++ (用平行轴定理)22.51(kg m )I=0.14+2.51=2.652(kg m ) 7.3.3 在质量为M 半径为R 的均质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量.[解 答]设未挖两个圆孔时大圆盘转动惯量为I 。
如图半径为r 的小圆盘转动惯量为1I 和2I 。
则有x 12I I I I =-- (12I I =)222222211m M R MR 2[r r r ()]22R R 2ππππ=-+ 422212r M(R r )2R =--7.3.5 一转动系统的转动惯量为2I 8.0kg.m =,转速为41.9rad /s ω=,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为0.4μ=,轮半径为r 0.4m =,从开始制动到静止需要用多少时间?[解 答] zzz M I β=∑z2zzM 15.68(rad /s )I β∴==-∑z 0z z t=41.915.68tt=2.67(s)ωωβ=+-7.3.6 均质杆可绕支点O 转动,当与杆垂直的冲力作用某点A 时,支点O 对杆的作用力并不因此冲力之作用而发生变化,则A 点称为打击中心.设杆长为L ,求打击中心与支点的距离.[解 答]杆不受F 作用时,支点O 对杆的作用力N ,方向竖直向上,大小为杆的重量。
依题意,当杆受力F 时,N 不变。
建立如图坐标系,z 轴垂直纸面向外。
由质心运动定理得:(O x -方向投影)c F ma =(质心在杆中点) (1)由转动定理得:201F OA I mL 3ββ⋅== (2)有角量与线量的关系c 1a L 2β=(3)(1)(2)(3)联立求解21mL 23OA L13L 2ββ==7.3.7 现在用阿特伍德机测滑轮转动惯量.用轻线且尽可能润滑轮轴.两端悬挂重物质量各为1m 0.46kg =,且2m 0.5kg =.滑轮半径为0.05m .自静止始,释放重物后并测得5.0s 内2m 下降0.75m .滑轮转动惯量是多少?[解 答] 分析受力。
建立坐标系,竖直向下为x 轴正方向,水平向左为y 轴正方向。