材料力学公式定理汇总

材料力学公式定理汇总
材料力学公式定理汇总

材料力学重点及其公式

材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。

变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。

内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力: dA

dP

A P p A =

??=→?lim

正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。

静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限

b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材

料、脆性材料的许用应力分别为:

[]3

n s σσ=,

[]b

b

n σσ=,强度条件:

[]σσ≤???

??=max

max A N ,等截面杆 []σ≤A N max

轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l

l

?=

ε,A

P A N ==

σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-='

。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA

Nl l =

? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx

d G G φργτρρ==。力学关系dA dx

d G dx d G

dA T A

A A

???

===

2

2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤=

t

W T

,可以进行强度校核、截面设计和确定许可载荷。

圆轴扭转时的变形:??==

l p

l p dx GI T dx GI T ?;等直杆:p

GI Tl =? 圆轴扭转时的刚度条件: p GI T

dx d ==

'??,][max max

??'≤='p

GI T 弯曲内力与分布载荷q 之间的微分关系)()(x q dx x dQ =;()()x Q dx

x dM =;

()()()x q dx x dQ dx x M d ==22 Q 、M 图与外力间的关系

a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。

b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。

c )在梁的某一截面。

()()0==x Q dx

x dM ,剪力等于零,弯矩有一最大值或最小值。

d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。 梁的正应力和剪应力强度条件[]σσ≤=

W

M max

max ,[]ττ≤max 提高弯曲强度的措施:梁的合理受力(降低最大弯矩m ax M ,合理放置支座,合理布置载荷,合理设计截面形状 塑性材料:[][]c t σσ=,上、下对称,抗弯更好,抗扭差。脆性材料:[][]c t σσ<, 采用T 字型或上下不对称的工字型截面。

等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。

用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。

简单超静定梁求解步骤:(1)判断静不定度;(2)建立基本系统(解除静不定结构的内部和外部多余约束后所得到的静定结构);(3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系统);(4)求解静不定问题。 二向应力状态分析—解析法 (1)任意斜截面上的应力ατασσσσσα2sin 2cos 2

2

xy y

x y

x --+

+=

;ατασστα2cos 2sin 2

xy y

x +-=

(2)极值应力 正应力:y x xy

tg σστα--=220, 2

2min max )2(2xy y x y

x τσσσσσσ+-±+=

?

?? 切应力:xy

y x tg τσσα221-=, 2

2min max )2(xy y x τσσττ+-±=???

(3)主应力所在的平面与剪应力极值所在的平面之间的关系

α与1α之间的关系为:4

,2

220101π

ααπ

αα+

=+

=,即:最大和最小剪应力所在的平面与主平面的夹角为45°

扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画内力图确定危险截面(3)确定危险点并建立强度条件 按第三强度理论,强度条件为:[]σσσ≤-31 或

[

]

στσ≤+224, 对于圆轴,W W t 2=,其强度条件为:

][2

2σ≤+W

T M 。按第四强度理论,强度条件为:()()()[]

[]σσσσσσσ≤-+-+-21323222121 ,经化简得出:

[]στσ≤+223,对于圆轴,其强度条件为:

][75.02

2σ≤+W

T M 。

欧拉公式适用范围(1)大柔度压杆(欧拉公式):即当1λλ≥,其中P

E

σπλ21=时,22λπσE cr =(2)中等柔度压杆(经

验公式):即当12λλλ≤≤,其中b

a s

σλ-=

2时,λσb a cr -=(3)小柔度压杆(强度计算公式):即当2λλ<时,s cr A

F

σσ≤=

。 压杆的稳定校核(1)压杆的许用压力:[]st

cr

n P P =

,[]P 为许可压力,st n 为工作安全系数。(2)压杆的稳定条件:[]P P ≤ 提高压杆稳定性的措施:选择合理的截面形状,改变压杆的约束条件,合理选择材料

1. 外力偶矩计算公式 (P 功率,n 转速)

2. 弯矩、剪力和荷载集度之间的关系式

3. 轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力F N ,横截面面积A ,拉应力为正)

4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)

5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)

6.纵向线应变和横向线应变

7.泊松比

8.胡克定律

9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式

11.轴向拉压杆的强度计算公式

12.许用应力,脆性材料,塑性材料

13.延伸率

14.截面收缩率

15.剪切胡克定律(切变模量G,切应变g )

16.拉压弹性模量E、泊松比和切变模量G之间关系式

17.圆截面对圆心的极惯性矩(a)实心圆

(b)空心圆

18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆

(b)空心圆

21.薄壁圆管(壁厚δ≤R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式

22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式

23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或

24.等直圆轴强度条件

25.塑性材料;脆性材料

26.扭转圆轴的刚度条件? 或

27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,

28.平面应力状态下斜截面应力的一般公式

,

29.平面应力状态的三个主应力, ,

30.主平面方位的计算公式

31.面内最大切应力

32.受扭圆轴表面某点的三个主应力,,

33.三向应力状态最大与最小正应力,

34.三向应力状态最大切应力

35.广义胡克定律

36.四种强度理论的相当应力

37.一种常见的应力状态的强度条件,

38.组合图形的形心坐标计算公式,

39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式

40.截面图形对轴z和轴y的惯性半径? ,

41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)

42.纯弯曲梁的正应力计算公式

43.横力弯曲最大正应力计算公式

44.矩形、圆形、空心圆形的弯曲截面系数? ,,

45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)

46.矩形截面梁最大弯曲切应力发生在中性轴处

47.工字形截面梁腹板上的弯曲切应力近似公式

48.轧制工字钢梁最大弯曲切应力计算公式

49.圆形截面梁最大弯曲切应力发生在中性轴处

50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处

51.弯曲正应力强度条件

52.几种常见截面梁的弯曲切应力强度条件

53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,

54.梁的挠曲线近似微分方程

55.梁的转角方程

56.梁的挠曲线方程?

57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式

58.偏心拉伸(压缩)

59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,

60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为

61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式

62.

63.弯拉扭或弯压扭组合作用时强度计算公式

64.剪切实用计算的强度条件

65.挤压实用计算的强度条件

66.等截面细长压杆在四种杆端约束情况下的临界力计算公式

67.压杆的约束条件:(a)两端铰支μ=l

(b)一端固定、一端自由μ=2

(c)一端固定、一端铰支μ=0.7

(d)两端固定μ=0.5

68.压杆的长细比或柔度计算公式,

69.细长压杆临界应力的欧拉公式

70.欧拉公式的适用范围

71.压杆稳定性计算的安全系数法

72.压杆稳定性计算的折减系数法

73.关系需查表求得

经典力学和相对论

牛顿经典力学 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿 力学较多采用直观的几何方法,在解决简单的力学问题 时,比分析力学方便简单。 广义相对论 广义相对论(General Relativity?),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。 广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的。 爱因斯坦狭义相对论 相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论颠复了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。 物理经典力学和爱因斯坦的相对论有什么区别物理经典力学是牛顿时期的力学那时候的坐标系是忽略时间的,只有空间

爱因斯坦的相对论时期是考虑了时间的是时间和空间都考虑的 相对论与经典力学的区别与联系。 可以这样高度总结地来看: 经典力学是狭义相对论在低速(v<

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截 面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) ^ 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式 承受轴向分布力或变截面的杆件,纵向变形计算公式 `

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 、 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 :

薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 等直圆轴强度条件 塑性材料;脆性材料 > 扭转圆轴的刚度条件或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 / 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 ~ 四种强度理论的相当应力 一种常见的应力状态的强度条件,

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

物理力学计算公式

计算公式 力学 速度:v = t s , s = vt, t = v s 质量:m =g G =ρv, ρ=V m , V=m 重力:G = mg =ρgV , 压强:P=S F , F=PS 固体平放:F=G , P=S G 液体: P=ρgh, F=PS 浮力:F 浮= G-F (称重法) F 浮=ρ液gV 排= ρ液gV 浸 =ρ液gSh 浸 F 浮=F 向上-F 向下 漂浮:F 浮=G 物 功: W= Fs= Pt 功率: P= t W = Fv 杠杆平衡: F 1l 1=F 2l 2 或 21 F F = 12l l

滑轮组机械效率:η= 总有 W W =Fs Gh =Fnh Gh =Fn G W 有=Gh ,W 总=Fs ,s=nh 斜面机械效率:η= 总有 W W =Gh FL W 有=Gh ,W 总=FL 滑轮组省力情况: 不考虑滑轮重力和摩擦时:F=n 1G 物 不考虑摩擦时:F=n 1(G 物+ G 轮) 线的末端移动的距离与动滑轮移动距离的关系:s=nh 二、常量、常识、单位换算 1m=109nm; 1g/cm 3= 103 kg/m 3 1m/s= 3.6 km/h 中学生的质量: 50kg 。 一本物理课本的质量: 300g ; 纯水的密度:1000kg/m 3或1g/cm 3 ; 一个鸡蛋的重量: 0.5N ; 课桌的高度约: 80cm ;每层楼的高度约: 3m ; ρ铜 > ρ铁 > ρ铝(填“>”或“<”) 一个标准大气压=1.013×105Pa=760 mmHg ;

(1)密度、质量、体积的关系:ρ﹦m/V ,m=ρV,V= m/ρ ρ---密度--- Kg/m3 (千克每立方米)、m--- 质量--- Kg(千克)、V----体积--- m3 (立方米) (2)速度、路程、时间的关系:v﹦s/t ,s=vt,t= s/v v---速度--- m/s(米每秒)、s--- 路程---- m(米)、t---时间----s(秒) (3)重力、质量的关系:G=mg,m=G/g ,g=G/m G----重力---- N(牛顿)、m ---质量--- Kg(千克),g=9.8N/Kg (4)杠杆的平衡条件:F1 ×L1 = F2 ×L2 F1---动力--- 牛(N)、L1---动力臂---米(m)、F2---阻力---牛(N)、L2---阻力臂---米(m) (5)滑轮组计算:F= (1/n)G,s=nh F---拉力--- N(牛顿)、G----物体重力--- N(牛顿)、n----绳子的段数、 s----绳移动的距离--- m(米)、h---物体移动的距离--- m(米) (6)压强的定义式:p= F/S(适用于任何种类的压强计算),F=pS,S=F/p p---- 压强--- Pa(帕)、F---压力---- N(牛顿)、S--- 受力面积--- m2 (平方米) (7)液体压强的计算:p = ρgh,ρ= p/gh,h=p/ρg p---压强--- Pa(帕)、ρ---液体密度--- Kg/m3 (千克每立方米)、g=9.8N/Kg、h---液体的深度--- m(米

经典力学的局限性(难)

6.经典力学的局限性难 1.关于经典力学、狭义相对论和量子力学,下面说法中正确的是( ) A.狭义相对论和经典力学是相互对立,互不相容的两种理论 B.在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律 C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动 D.不论是宏观物体,还是微观粒子,经典力学和量子力学都是适用的 【答案】BC 【解析】 A项:经典力学是狭义相对论在低速(v<<c)条件下的近似,即只要速度远远小于光速,经过数学变换狭义相对论的公式就全部变化为牛顿经典力学的公式,故A错误; B项:在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律,故B正确; C、D项:牛顿经典力学只适用于宏观低速物体,而微观、高速适用于狭义相对论,故C 正确;D错误。 故选:BC。 2.下列物理学公式正确的是 A.声音在空气中的传播速度(p为压强,为密度) B.声音在空气中的传播速度(p为压强,为密度) C.爱因斯坦提出的质量与速度关系(为静止质量,c为光速,为物体速度) D.爱因斯坦提出的时间与速度关系(为静止时间,c为光速,为物体速度) 【答案】BD 【解析】 A、B项:密度的单位为kg/m3,压强的单位为N/m2,又1N=1kg m/s2,则的单位为 ,等于速度的单位。故B正确,A错误; C项:爱因斯坦提出的质量与速度关系,(m0为静止质量,C为光速,v为物体速度)故C错误;

D项:爱因斯坦提出的时间与速度关系(t0为静止时间,C为光速,v为物体速度),故D正确。 故应选:BD。 3.2017 年 6 月 16 日,来自中国的“墨子号”量子卫星从太空发出两道红色的光射向青海德令哈站与千里外的云南丽江高美古站,首次实现了人类历史上第一次距离达千里级的量子密钥分发。下列说法正确的是() A.经典力学适用于“量子号”绕地球运动的规律, B.经典力学适用于光子的运动规律, C.量子力学可以描述“量子号”发出“两道红光”的运动规律 D.量子密钥分发的发现说明经典力学已经失去了使用价值 【答案】AC 【解析】A、经典力学适用于宏观低速的物体运动,卫星的运动相对微观粒子的运动速度小很多,属于宏观低速,故A正确。B、量子力学适用于微观高速的物体运动,如光子的运动,故B错误。C、D、量子力学和经典力学的适用范围不同,各自在自己的范围内是有价值的,并不会失去用处;故C正确,D错误。故选AC。 4.(多选)爱因斯坦相对论的提出是物理学领域的一场重大革命,主要是因为( ) A.否定了经典力学的绝对时空观 B.揭示了时间、空间并非绝对不变的本质属性 C.打破了经典力学体系的局限性 D.使人类对客观世界的认识开始从宏观世界深入到微观世界 【答案】BC 【解析】A、运动的钟变慢,运动的尺缩短,运动物体的质量变大,这是狭义相对论的几个重要的效应,揭示了时间、空间并非绝对不变的属性,故A错误,B正确; C、爱因斯坦相对论解释了经典牛顿力学不能解释的高速、微观范围,但狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,它打破了经典力学体系的局限性,故C正确; D、普拉克提出的量子理论使人类对客观世界的认识开始从宏观世界深入到微观世界,故D错误。 5.下列说法正确的是 A.不论是对宏观物体,还是微观粒子,经典力学和量子力学都是适用的 B.当物体运动速度很大(接近光速)时,经典力学理论所得的结果与实际结果之间出现了较大的偏差

材料力学基本公式

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dF A F p A = ??=→?lim 正应力σ、切应力τ。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统 称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为: []s s n σσ=,[]b b n σσ= ,强度条件:[]σσ≤??? ??=max max A F N ,等截面杆 []σ≤A F max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为: l l ?= ε, A F N =σ。横向应变为: b b b b b -=?= 1'ε,横向应变与轴

向应变的关系为:μεε-=',μ为横向变形系数或泊松比。 胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量(GPa 1= pa MPa 931010=)。将应力与应变的表达式带入得:EA Fl l = ?EA 为抗拉或抗压刚度。 静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。需要由几何关系构造变形协调方程。 扭转变形时的应力,薄壁圆筒扭转 δ πτ202R M e = 其中 )min () (9549 )(r n kw p m N M e =? 420d D r R R +=+=为圆筒的平均半径。剪切胡克定律:当剪切应力不超过材料的剪切比例极限时,切应力 τ 与切应变γ成正比。γ τ G =. 变形几何关系—圆轴扭转的平面假设 dx d φ ρ γρ=。物理关系——剪切胡克定律 dx d G G φρ γτρρ==。力学关系P A A A I dx d G dA dx d G dx d G dA T ?ρ?φρρτρ====???2 2 圆轴扭转时的应力 : t p W T I TR == max τ, t W = R I p 称为抗弯截面系数;强度条件: ][max ττ≤= t W T ,可以进行强度 校核、截面设计和确定许可载荷。 圆截面对圆心的极惯性矩(a )实心圆 32 4 D I P π= ; 16 3 D W t π= (b )空心圆,() 4 4 44132 32 ) (αππ-= -= D d D I P ; () 43 116 απ-= D W t (D,d 分别是外,内径; D d = α) 圆轴扭转时的变形: ?? ==l p l p dx GI T dx GI T ?;等直杆: p GI Tl = ?其中为圆轴的抗弯刚度P GI

理论力学公式

理论力学公式

————————————————————————————————作者:————————————————————————————————日期: ?

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x ===z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

初中物理力学公式大全(力学)精编版

初中物理力学公式大全 一、机械运动部分 (一)匀速直线运动的速度、路程、时间公式: 1、求速度:v=s/t 2、求路程:s=vt 3、求时间:t=s/v 【注:v ——速度——m/s (km/h );s ——路程——m (km );t ——时间——s (h )】 【各量关系:在t 一定时,s 与v 成正比;在s 一定时,t 与v 成反比;在v 一定时,s 与v 成正比。注意:绝对不能说v 与s 正比或与t 成反比】 (二)变速直线运动的平均速度: ... t t ... s s t s v 2121 ++++== 总总【注意:“平均速度”绝对不能错误的理解为“速度的平均值”】 (三)几种特殊题型中的各量关系: 1、“回声测距”问题:s= 往返往返vt 21s 21=;或往返t 2 1 v vt s ?== 2.“火车过桥(洞)问题”: (1)火车通过桥时所经过的距离:s=s 桥+s 车;(2)火车完全在桥上所经过的距离:s=s 桥;-s 车 3.利用相对速度求解的问题:【相对速度——相对运动的两个物体,以其中一个为参照物,另一物体相对于它的运 动速度。当两个物体在同一条线或相互平行的两条线上运动时: A 、同向相对速度:21v v v +=同向 B 、异向相对速度:小大异向v v v -=】 (1)追击问题:在研究追击问题时,为了简化问题,通常以被追击者为参照物,追击所用时间就是追击者以“同向相对速度”运动完他们的“间距”所用时间。即:小 大间 同向间追v v s v s t -= = (2)相遇问题:相向而行或背向而行的物体,他们的相对速度是:21v v v +=异向,s 相对=s 1+s 2 (3)错车问题:○1同向错车:s 相对=s 1+s 2 , v 同向=v 大-v 小 , 同向相对错v s t = ○2相向错车:s 相对=s 1+s 2 ; v 异向=v 1+v 2 , 同向 相对 错v s t = 【注意:在研究水中物体运动的相遇、追击问题时,一般以水为参照物,则物体都以相对于水的速度运动,可使问 题简化。如:在一河水中漂浮有一百宝箱,在距百宝箱等距离的上下游各有一艘小船,它们同时以相同的静水速度向百宝箱驶去,则哪艘小船先到达百宝箱处? 】 二、密度部分 (一)、物体的物重与质量的关系:1.求重力:G=mg ; 2.求质量:m=G/g 【注:G ——重力——N ;m ——质量——kg ;g ——9.8N/k g (通常可取10N/kg )——N/kg 】 (二)、密度及其变形公式: 1、求物质的密度:ρ=m/V ; 2、求物质的质量:m=ρV 3、求物质的体积:V=m/ρ 【注:m ——质量——kg (g );V ——体积——m 3(cm 3);ρ——密度——kg/m 3(g/cm 3 )】 【各量关系:在V 一定时,m 与ρ成正比;在m 一定时,V 与ρ成反比;在ρ一定时,m 与V 成正比。注意:绝对不能说ρ与m 正比或与V 成反比】 (三)、空心问题:一物体体积为V 物,质量为m 物,组成物体的物质密度为ρ物质,判断物体是否是空心。 1、比较密度:计算物体的平均密度ρ物(ρ物=m 物/V 物),与组成物体的物质密度ρ物质比较,不等则是空心的,相等则是实心的。 2、比较质量:计算有V 物体积的该种物质的质量m '(m '=ρ物质V 物),与物体质量m 物比较,不等则是空心的,相等则是实心的。且空心体积V 空=(m '-m 物)/ρ物质 3、比较体积:计算质量为m 物的该种物质应该有的实心体积V 实(V 实=m 物/ρ物质),与物体体积V 物比较,不等则是

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

理论力学公式

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε = n a tg 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ) ,sin(2 , 2r e r e k r e k v v a v a ωωω=?= 1.点的运动 ? 矢量法 2 2 , , )dt r d dt v d a dt r d v t r r ====? 直角坐标法 ) ()()(321t f z t f y t f x == =z v y v x v z y x == =z a y a x a z y x == =2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 M a c = ∑F ≡ R 2. 动量矩定理: 平行移轴定理 ) (2 2) ( e z z e z z M dt d I M I ==∴?ε或—刚体定轴转动微分方程 ∑==) ()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理 ε τ ?=AB a BA 2 ω?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τωω , ?=+=AB v v v v BA BA A B 为图形角速度 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== 2 'md I I zC z +=() d d e i p F t =∑

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

材料力学公式超级大汇总

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方 位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试 样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆

21. 薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式 22. 圆轴扭转角与扭矩T 、杆长l 、 扭转刚度GH p 的关系式 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24. 等直圆轴强度条件 25. 塑性材料 ;脆性材料 26. 扭转圆轴的刚度条件? 或 27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28. 平面应力状态下斜截面应力的一般公式 , 29. 平面应力状态的三个主应力 , ,

材料力学公式大全

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面 轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 , 28.平面应力状态下斜截面应力的一般公式 ,

肛肠动理论力学

肛肠动力学 一、概述 (一)肛肠动力学的概念 用静力学和动力学的方法来研究结肠、直肠、肛管(包括盆底)的各种运动方式,从而对排便生理、肛门自制生理及有关肛肠疾病的病理生理学进行研究,称为肛肠动力学(Anorectal Dynamics)。 平时,固态粪便储存于乙状结肠甚至降结肠中。结肠及直肠松弛,内外括约肌、耻骨直肠肌均处于张力收缩状态。在结肠至肛门这一段距离中,存在着一个远心端压力高,近心端压力低的向心型压力梯度和蠕动波梯度,排便阻力大于排便动力,粪便得以储存(自制)。排便时,结、直肠肌收缩,肠腔内压增高,腹肌亦收缩使腹压增高,而内括约肌、耻骨直肠肌、外括约肌均反射性松弛,肛管压力迅速降低,上述压力梯度逆转,排便动力大于排便阻力,粪便排出肛门(自制解除)。这两种状态下肛管、直肠、盆底的功能变化及各器官协调功能均可通过压力变化而表现出来,测定这些压力变化便可判断有关器官的功能和协调情况。(二)肛肠动力学的发展概况 压力测定的方法诊断肛肠疾病始于30多年前,但其历史却可上溯到一百多年前。1877年Cowers发现扩张直肠后。内括约肌短暂松弛,他即将之称为直肠内括约肌抑制反射。Denny-Brown等(1935)肯定了这一发现。Callaghan和 Nixon(1964)报道先天性巨结肠患者此反射缺如。1967年,Schnaufer、Lawson、Nixon等分别发表文章,介绍用肛管直肠测压诊断小儿先天性巨结肠的方法。此后,应用者逐渐增多。七十年代初。开始将肛管直肠测压的方法用于肛肠外科疾病的病理生理研究和诊断,如痔、肛裂患者肛管压力改变及扩肛治疗后压力的变化。以后,又相继有人报道排便失禁、直肠脱垂、肛瘘、直肠孤立性溃疡综合征、会阴下降综合征等疾病肛管直肠测压的结果。八十年代始,人们又用肛肠测压法评价各种肛肠手术后患者的肛管直肠功能,将其用于排便失禁的生物反馈治疗,将骶神经—肛门外括约肌反射用作术中监测手段,帮助鉴别神经组织。近几年来,测压方法以及由其衍生出来的各种方法已广泛地应用于肛肠外科的各个领域,被公认为十分重要的研究手段和有用的诊断方法。显然,"测压"这一名词已难以全面准确地体现本方法学的现状和发展趋势。本文作者在工程界学者的帮助下,于1986年提出"肛肠动力学"的概念,以期代替“测压”一词。 (三)肛肠动力学检查的意义 排便、自制以及多种肛肠疾病的发生、发展都与结肠、直肠、肛管、盆底的力学状态改变有关。由于涉及的因素很多,机理十分复杂以及检测手段的限制,过去医师们仅能凭病人主诉和直肠指诊x线照相所提供的比较粗略的形态学资料进行判断,而难以对它们的功能,尤其是运动状态下的功能进行定性、定量观察。近些年发展起来的排粪造影技术,使人们对大肠肛门运动过程中的形态学改变的观察成为可能,但对这些过程申肉眼无法观察到的力学状态却难以准确了解,动力学检查恰好提供了一种有效的定量手段,从而在肛肠疾病的诊断和研究中得到广泛应用。当它与肠道转运功能检查、排粪造影检查、盆底肌电图检查结合应用时,能提供关于结肠、直肠、盆底、内外括约肌生理的许多重要的基本信息,从而使肛肠外科疾病的研究、诊断、治疗水平有了提高。 (四)研究肛肠动力学的基本要求

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上与内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷与速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理 想情形。塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b b n σσ=,强度条件:[]σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变与横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-='。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l =? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===22ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计与确定许可载荷。

理论力学公式 (1) 2

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x == =z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ) ,sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: ),(ε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

理论力学公式

2013.1.27兰州 师兄的建议:考试不仅仅是知识的积累,更重要的是会学,重点考试内容必须掌握, 所以我们要好好复习 静力学 静力学是研究物体在力系作用下平衡的科学。 第一章、静力学公理和物体的受力分析 1、基本概念:力、刚体、约束和约束力的概念。 2、静力学公理: (1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别 (2)二力平衡公理;(二力构件) (3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理) (4)作用与反作用定律; (5)刚化原理。 3、常见约束类型与其约束力: (1)光滑接触约束——约束力沿接触处的公法线; (2)柔性约束——对被约束物体与柔性体本身约束力为拉力; (3)铰链约束——约束力一般画为正交两个力,也可画为一个力; (4)活动铰支座——约束力为一个力也画为一个力; (5)球铰链——约束力一般画为正交三个力,也可画为一个力; (6)止推轴承——约束力一般画为正交三个力; (7)固定端约束——两个正交约束力,一个约束力偶。 4、物体受力分析和受力图: (1)画出所要研究的物体的草图; (2)对所要研究的物体进行受力分析; (3)严格按约束的性质画出物体的受力。 意点:(1)画全主动力和约束力; 注 (2)画简图时,不要把各个构件混在一起画受力图; (3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理; (4)作用力与反作用力。 第二章、平面汇交力系与平面力偶系

1、平面汇交力系: (1)几何法(合成:力多边形法则;平衡:力多边形自行封闭) (2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程0x F =∑,0y F =∑) 意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直) (2)对于二力构件,一般先设为拉力,若求出负值,说明受压。 2、平面力对点之矩——()O M Fh =±F ,逆时针正,反之负 意点:灵活利用合力矩定理 3、平面力偶系: (1)力偶:由两个等值、反向、平行不共线的力组成的力系。 (2)力偶矩:M F h =±,逆时针正,反之负。 (3)力偶的性质: [1]、力偶中两力在任何轴上的投影为零; [2]、力偶对任何点取矩均等于力偶矩,不随矩心的改变而改变;(与力矩不同) [3]、若两力偶其力偶矩相等,两力偶等效; [4]、力偶没有合力,力偶只能由力偶等效。 (4)力偶系的合成(i M M = ∑)与平衡(0M =∑) 第三章、平面任意力系 1、力的平移定理:把力向某点平移,须附加一力偶,其力偶矩等于原力对该点的力矩。 2、简化的中间结果: (1)主矢R 'F ——大小:R F '= ; 方向:(cos ,/R ix R F F ''=F i ,()cos ,/R iy R F F ''=∑F j 。 (2)主矩()O O i M M =∑F 3、简化的最后结果: (1)主矢0R '≠F ——[1]、0O M =,合力,作用在O 点; [2]、0O M ≠,合力,作用线距O 点为/O R M F '。 (2)主矢0R '=F ——[1]、0O M ≠,合力偶,与简化中心无关; [2]、0O M =,平衡,与简化中心无关。 4、平面任意力系的平衡 (1)平衡条件——0R '=F 、0O M =。 (2)平衡方程——[1]、基本式:0x F =∑、0y F =∑、()0O M =∑F ; [2]、二矩式:0x F =∑、()0A M =∑F 、()0B M =∑F ,A 、 注 注

相关文档
最新文档