一道高考题推广的巧解及应用

合集下载

四点共面,链接教材,变式拓展——以一道高考题为例

四点共面,链接教材,变式拓展——以一道高考题为例

试题研究2024年1月上半月㊀㊀㊀四点共面,链接教材,变式拓展以一道高考题为例◉江苏省张家港市沙洲中学㊀陶㊀贤㊀㊀空间中的四点共面的判断与证明是空间向量与立体几何部分的一个基本知识点,也是一大难点,历年高考数学试题中较少涉及,没有引起大家的高度重视.而在2020年高考数学全国卷Ⅲ的文科和理科试题中,都出现了空间四点共面的证明问题,也充分说明了该部分知识的基础性与重要性.借助空间中四点共面的判断与证明,很好地考查考生的数形结合思想㊁空间想象能力与推理论证能力,以及直观想象㊁逻辑推理等数学核心素养.1真题呈现图1高考真题㊀(2020年高考数学全国卷Ⅲ理科第19题)如图1,在长方体A B C D GA 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且2D E =E D 1,B F =2F B 1.(1)证明:点C 1在平面A E F 内.(2)若A B =2,A D =1,A A 1=3,求二面角A GE F GA 1的正弦值.此题以长方体为问题背景,通过相应线段的长度关系,证明点在平面内(其实就是证明四点共面)以及求解二面角的平面角的正弦值,改变以往传统的证明直线与平面之间的平行或垂直关系,令人耳目一新.图22问题破解(Ⅰ)第(1)问的证法如下:证法1:几何法.如图2,在棱C C 1上取点G ,使得C 1G =12C G ,连接D G ,F G ,C 1E ,C 1F .在长方体A B C D GA 1B 1C 1D 1中,A D ʊBC 且AD =B C ,B B 1ʊC C 1且B B 1=C C 1.由C 1G =12C G ,B F =2F B 1,可得C G =23C C 1=23B B 1=B F ,所以四边形B C G F 为平行四边形,则G F ʊB C 且G F =B C .又B C ʊA D 且B C =A D ,所以A D ʊG F 且A D =G F ,即四边形A F D G 是平行四边形,则A F ʊD G 且A F =D G .同理可证,四边形D E C 1G 为平行四边形,则C 1E ʊD G 且C 1E =D G .所以C 1E ʊA F 且C 1E =A F ,则四边形A E C 1F为平行四边形.因此,点C 1在平面A E F 内.证法2:基底法1共面向量定理.在长方体A B C D GA 1B 1C 1D 1中,B B 1ʊC C 1ʊD D 1且B B 1=C C 1=D D 1,结合2DE =E D 1,BF =2F B 1,可得E D 1=B F .由A C 1ң=A C ң+C C 1ң=A B ң+A D ң+D E ң+E D 1ң=A B ң+A D ң+D E ң+B F ң=(A B ң+B F ң)+(A D ң+D E ң)=A F ң+A E ң,知A ,E ,F ,C 1四点共面,所以点C 1在平面A E F 内.证法3:基底法2共面向量定理的推论.设D 1A 1ң=a ,D 1C 1ң=b ,D 1D ң=c ,则D 1A ң=a +c ,D 1E ң=23c ,可得c =32D 1E ң,于是a =D 1A ң-32D 1E ң.由D 1F ң=D 1A 1ң+A 1B 1ң+B 1F ң=D 1A 1ң+D 1C 1ң+13B 1B ң=D 1A 1ң+D 1C 1ң+13D 1D ң=a +b +13c =(D 1A ң-32D 1E ң)+D 1C 1ң+13ˑ32D 1E ң=D 1A ң+D 1C 1ң-D 1E ң(其中1+1-1=1),知A ,E ,F ,C 1四点共面,所以点C 1在平面A E F 内.图3证法4:坐标法.设A B =a ,A D =b ,A A 1=c ,如图3所示,以C 1为坐标原点,C 1D 1ң的方向为x 轴正方向,建立空间直角坐标系C 1Gx yz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ),E (a ,0,23c ),F (0,b ,13c ),于862024年1月上半月㊀试题研究㊀㊀㊀㊀是E A ң=(0,b ,13c ),C 1F ң=(0,b ,13c ),可得E A ң=C 1F ң,因此E A ʊC 1F ,即A ,E ,F ,C 1四点共面,所以点C 1在平面A E F 内.点评:证明空间中的四点共面问题,常见的证明方法就是以上三大类 (1)利用空间几何图形的特征,借助几何法的推理与论证,通过空间问题平面化来证明;(2)利用共面向量定理或推论,借助空间向量的基底法,通过向量的线性运算与转化来证明;(3)利用空间直角坐标系的建立,借助坐标法的运算,通过向量的平行判断与转化来证明等.特别地,对于共面向量定理及其推论,是立体几何中的一个重要的定理,可以用来处理一些与之相关的问题,往往可以使问题处理得更加简捷㊁巧妙.(Ⅱ)第(2)问的解法如下:解:以C 1为坐标原点,C 1D 1ң的方向为x 轴正方向,建立空间直角坐标系C 1Gx yz ,则由已知可得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),则A E ң=(0,-1,-1),A F ң=(-2,0,-2),A 1E ң=(0,-1,2),A 1F ң=(-2,0,1).设平面A E F 的法向量为m =(x 1,y 1,z 1).由m A E ң=0,m A F ң=0,{得-y 1-z 1=0,-2x 1-2z 1=0,{取z 1=-1,得x 1=y 1=1,则m =(1,1,-1).设平面A 1E F 的法向量为n =(x 2,y 2,z 2).由n A 1E ң=0,n A 1F ң=0,{得-y 2+2z 2=0,-2x 2+z 2=0,{取z 2=2,得x 2=1,y 2=4,则n =(1,4,2).所以c o s ‹m ,n ›=m n |m ||n |=1+4-23ˑ21=77.设二面角A GE F GA 1的平面角为θ,则|c o s θ|=77,可得s i n θ=1-c o s 2θ=427.因此,二面角A GE F GA 1的正弦值为427.点评:坐标法是求解二面角的平面角的三角函数值问题中一个比较常见的方法,借助空间直角坐标系的建立,以及对应的点㊁向量的坐标的表示,结合相应两半平面的法向量的设置与确定,结合向量的数量积公式的转化与应用来确定相应的二面角的平面角问题.坐标法实现了用代数方法处理立体几何问题中的四点共面㊁线面位置关系㊁空间角㊁距离等几何推理与求解问题.3链接教材以上基于向量的四点共面的判断,其对应的共面向量定理及其推论是数学教材中的一个基本知识点,来源于教材,又服务于证明,可以很好地证明或求解与四点共面有关的数学问题.普通高中课程标准实验教科书«数学 选修2-1»(人教A 版)第87页:结论1:共面向量定理.空间一点P 位于平面A B C 内的充要条件是存在有序实数对(x ,y ),使A P ң=xA B ң+y A C ң.普通高中课程标准实验教科书«数学 选修2-1»(人教A 版)第88页思考 :结论2:共面向量定理的推论.空间任意一点O 和不共线的三点A ,B ,C 满足向量关系式O P ң=xO A ң+y O B ң+zO C ң(x +y +z =1)的点P 与点A ,B ,C 共面.共面向量定理是共线向量定理在空间中的推广与拓展,共线向量定理用来证明三点共线,共面向量定理用来证明四点共面.4变式拓展图4高考真题㊀(2020年高考数学全国卷Ⅲ文科第19题)如图4,在长方体A B C D GA 1B 1C 1D 1中,点E ,F分别在棱D D 1,B B 1上,且2D E =E D 1,BF =2F B 1.证明:(1)当A B =B C 时,E F ʅA C ;(2)点C 1在平面A E F 内.证明:(1)连接B D ,B 1D 1.因为A B =B C ,所以四边形A B C D 为正方形,故A C ʅB D .又因为B B 1ʅ平面A B C D ,于是B B 1ʅA C ,而B D ,B B 1Ì平面B B 1D 1D ,所以A C ʅ平面B B 1D 1D .因为E F ÌB B 1D 1D ,所以E F ʅA C .(2)可以参照上述理科真题第(1)问的证明方法.5解后反思新一轮课程改革的核心就是培育学生的核心素养,发展学生的综合能力.承载着 立德树人㊁服务选才和引导教学 功能的数学高考,应借助试题 情境 的变革,夯实基础,以教材为本并超越教材,着眼于基础知识㊁基本技能㊁基本方法的考查,特别重视对数学思想方法㊁关键能力和学科素养的考查.因而在平时的数学教学与复习中,教师应在拓展延伸中紧扣课本,链接教材,注重归类迁移能力培养,聚焦思维品质,培养关键能力,从而有效实现学生数学素养的渐进式提升.Z96。

利用柯西不等式的推广巧解一类高考试题

利用柯西不等式的推广巧解一类高考试题

利用柯西不等式的推广巧解一类高考试题
作者:张剑平
来源:《中学教学参考·理科版》2019年第02期
[摘; ;要]柯西不等式不仅结构对称和谐、形式优美,而且应用广泛.柯西不等式的相关推广也具有同样重要的价值.近年来与柯西不等式相关的试题倍受命题者青睐,在高考中多次出现
以柯西不等式为背景的试题.研究利用柯西不等式的推广解题的方法具有现实意义.
[关键词]柯西不等式;推广;高考试题 ;解法
[中图分类号]; ; G633.6; ; ; ; [文献标识码]; ; A; ; ; ; [文章编号]; ; 1674-6058(2019)05-0025-02
笔者以近几年的高考真题为例,对柯西不等式的推广在高考试题中的应用做一些粗浅的归纳与总结,以期抛砖引玉.
一、柯西不等式简介
[; 参; ;考; ;文; ;献; ]
[1]; 陈晴.高考自选模块柯西不等式常见题型解法例说[J].中学数学教学,2014(1):25-26.
[2]; 孙浩.浅谈柯西不等式在高考试题中的妙用[J].数理化解题研究,2016(3):39-40.
(责任编辑黄桂坚)。

洛必达法则巧解高考压轴题(好东西)

洛必达法则巧解高考压轴题(好东西)
许多省市的高考试卷的压轴题都是导数应用问 题,其中求参数的取值范围就是一类重点考查的 题型.这类题目容易让学生想到用分离参数的方 法,一部分题用这种方法很凑效,另一部分题在 高中范围内用分离参数的方法却不能顺利解决, 高中阶段解决它只有华山一条路——分类讨论 和假设反证的方法.
3.洛必达法则
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
①当
x
0
时,
a
R
;②当
x
0
时,
ex
1
x
ax2
等价于
a
ex
1 x2
x
.

g(x)
ex
1 x2
x
x
(0,+)
,则
g
'( x)
(x
2)ex x3
x
2
.
记 h(x) (x 2)ex x 2 x (0,+) ,则 h '(x) (x 1)ex 1,当 x (0,+) 时, h ''(x) xex 0 ,

当 x 0 ,且 x 1时, f (x) ln x k ,即 ln x 1 ln x k , x 1 x x 1 x x 1 x
也即 k
x ln x x 1
1 x
x ln x x 1
2x ln x 1 x2
1,记
g(x)
2x ln x 1 x2
1,
x
0 ,且
x
1

g
'( x)
2( x 2
1 x
(Ⅰ)设 a 0 ,讨论 y f x 的单调性;

【巧解妙解】高考数学向量与其他问题结合的经典题型

【巧解妙解】高考数学向量与其他问题结合的经典题型

平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。

运用大学数学思想巧解高考题

运用大学数学思想巧解高考题

运用大学数学思想巧解高考题摘要:高考数学试题中的一些难理解的问题往往让同学们花费很多时间。

传统的作法,学生讨论的过程比较复杂,甚至许多同学不知从何入手。

本文结合大学数学对洛必达法则解高考导数问题、行列式知识解高考数列问题、柯西不等式解高考中最值问题进行了解析。

通过引入大学中一些简单知识得到新的方法,简化解题过程,帮助同学们提高解题技巧,让同学们在高考中增加很多优势。

关键词:高考数学大学数学思想洛必达法则行列式柯西不等式引言:近年来,高考数学试题经常与大学数学思想有机接轨,运用大学数学知识解一些高考题反而会很简单且容易被同学们接受.不管高中数学还是大学数学,其思想、方法一直主导着对本学科的学习效果。

大学数学中的一些思想能将高中的一些复杂问题转化为简单,理想的问题。

因此了解和掌握一些大学数学思想方法可以使学生在解决高中问题的实际运用中更加得心应手,同时也有助于学生思维能力的拓宽和解题技巧的提高。

下面,笔者就中学巧妙运用大学数学思想解题举几个例子。

一.洛必达法则巧解高考题近年来,导数问题中的求参数取值范围成为许多数学高考试卷的压轴题中一类重点考查题型。

对于这种题目,很多同学会想到分离参数方法。

但在高中范围内,用分离参数的方法解这类题经常需要复杂的讨论,学生理解与应用起来常常会遇到很多困难。

而利用大学数学知识中的洛必达法则来解决这一问题往往会轻松很多。

洛必达法则设函数 f( x)、g( x)满足:(1)limx→af(x)=limx→ag(x)=0;(2)在u0(a)内,f′(x)和g′(x)都存在,且g′(x)≠0;(3)limx→af′(x)g′(x)=a(a可为实数,也可以是±∞)则limx→af(x)g(x)=limx→af′(x)g′(x)=a。

例:( 2011 年全国新课标理)已知函数曲线 y = f( x)在点[1,f( 1) ]处的切线方程为 x +2y -3 =0。

(ⅰ)求 a、b 的值;(ⅱ)如果当 x >0,且 x≠1 时,f( x) >lnxx-1+kx,求 k 的取值范围。

一道高考题的巧解

一道高考题的巧解

只有一个冠军),有多少种不同的结果?假设把学生当作“小球”,则冠军项目当作“位置”,如果1号“小球”可以投到三个“位置”中的任何一个,同样2号“小球”也可以投到三个“位置”中的任何一个,那么1号和2号“小球”可能投到同一个“位置”中,这样在同一个“位置”上就出现了两个不同的“小球”,即两名同学同时获得同一个项目的冠军,与已知条件产生矛盾.由此可把冠军项目当作“小球”,学生当作“位置”,把“小球”投到“位置”中,根据分步乘法计数原理有35=125种方法,这说明了三个项目的冠军可以由一个人取得,也可以由其中两个人或不同的人取得.应用类比的数学方法,正确地处理好“小球”与“位置”关系的有关问题,可以帮助学生掌握解题的基本方法,充分调动学生进行创造性思维的积极性,以逐步提高运用数学知识来分析问题和解决问题的能力,发展其数学基本技能,优化认知结构,变“学会”为“会学”,使学生在良好的情感体验的过程中,获得足够的自尊和自信,促进他们创新精神的形成,对培养学生的独立思考、大胆创新的能力,将起着举足轻重的作用.一道高考题的巧解杨禄栋山东省莘县第一中学(252400)2007年高考广东卷理科第20题:已知a 是实数,函数()2223f x ax x a =+,如果函数()y f x =在区间[1,1]上有零点,求a 的取值范围.本文给出一种巧解.解:若函数()y f x =在区间[1,1]上有零点,则方程22230ax x a +=在区间[1,1]上有解.即方程2(21)32a x x =在区间[1,1]上有解.当2/2x =±时,上述方程不成立.当22x ≠±时,方程23221xa x =在区间[1,1]上有解.令32t x =,则32t x =且15t ≤≤,故2232237212()162x t a t x t t===+.由15t ≤≤易知727662t t≤+≤,故(37)/21a a ≤≥或.综上所述,函数()y f x =在区间[1,1]上有零点,则实数a 的取值范围是(37)/21a a ≤≥或.高中阶段的二次函数综合问题浅析念其云福建省平潭县第三中学(350400)二次函数作为最基本的初等函数,可以以它作为素材来研究函数的单调性、奇偶性、最大(小)值等性质,还可以建立起二次函数、一元二次方程、一元二次不等式之间的有机联系,结合图形,一元二次函数的图象是一条抛物线,它可以联系其它平面曲线讨论相互之间的关系,这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题.而为了九年制义务教育的需要,初中数学教2008年第8期福建中学数学41。

洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。

利用柯西不等式的推广巧解一类高考试题

[关键词]柯西不等式;推广;高考试题 ;解法 [中图分类号] G633.6 [文献标识码] A [文章编号] 1674-6058(2019)05-0025-02
笔者以近几年的高考真题为例,对柯西不等式的推
广在高考试题中的应用做一些粗浅的归纳与总结,以期
抛砖引玉 .
一、柯西不等式简介
( ) ( ) a1b1 + a2b2 + ⋯ + anbn
am an
=
bn bm

m
=
n
时取最小值
2.
推广 3:若 px + qy + rz = m(p、q、r、m 为常数),则(x2+
y2+z2)(p2+q2+r2)≥(px+qy+rz)(2 当且仅当
x p
=
y q
=
z r
时取
等号),(x2 +
r2 +
z2)min= p2
m2 + q2
+
r2
.
证明:(作差法)
(ac+bd)(bc+ad)≥ m2n(当且仅当 c = d 时取等号).
证明:(作差法)
(ac + bd)(bc + ad)- cd(a + b)2 = abc2 + abd2 - 2 ≥ 0(当且仅当 c = d 时取等号).
[例题 2]已知 a,b,m,n 均为正数,且 a+b =1,mn
=
a2 b2
=

=
an bn
时取等号 .
二、柯西不等式的推广应用
推广 1:若a2 + b2 = m,c2 + d2 = n ( m、n为常数 ),则ac +

利用加减法巧解化学上的7个问题以及对知识点的道高考题及答案

量风市然必阳光实验学校利用加减法巧解化学上的7个问题以及对知识点的2004~11道高考题及答案化学教,有许多化学内容具有隐含的数量关系,挖掘这些内在的数量关系,利用加减法进行教学,对记忆有良好的效果。

1、揭示非金属元素最高正价与最低负价的关系加法关系1:较活泼非金属最高正价与最低负价的绝对值之和为8。

IVA~VIIA的较活泼非金属最高正价与最低负价的绝对值之和的加法关系有:4+4=8,5+3=8,6+2=8,7+1=8。

非金属元素O 、F 例外。

说明:在号左边:前边的数字代表非金属元素的最高正价也是非金属元素所在的主族序数,后边的数字代表非金属元素的最低负价的绝对值,也是该非金属元素最低价氢化物中的氢原子个数,还是该非金属元素最高价氧化物对水化物〔最高价含氧酸〕分子中的氢原子个数〔N、C、O、F例外〕;在号右边8是非金属到达稳结构状态时的最外层电子数〔H、B例外〕。

2、判断共价化合物分子中非金属原子是否满足8电子稳结构加法关系2:非金属原子的最外层电子数与该元素化合价的绝对值之和为8。

例题:〔〕以下分子中的所有原子都满足最外层8电子结构的是〔〕A、BF3B、H2OC、SiCl4D、PCl5分析:A选项中的B元素和B选项中的H元素最外层电子数与该元素化合价的绝对值之和小于8,而D选项中的P元素最外层电子数与该元素化合价的绝对值之和大于8,其余元素最外层电子数与该元素化合价的绝对值之和为8,所以只有C选项符合题意。

3、判断有机物分子的效取代问题加法关系3:丙烷分子中有8个氢原子可被氯原子取代,其加法关系为:1+7=8,2+6=8,3+5=8 。

说明:式左边的数字是几就代表丙烷的几氯取代物,加法的含义为:丙烷的一氯代物和七氯代物的同分异构体数量一样多〔2种〕,丙烷的二氯代物和六氯代物的同分异构体数量与一样多〔4种〕,丙烷的三氯代物和五氯代物的同分异构体数量一样多〔5种〕。

加法关系4:苯环上有6个氢原子可被取代,其加法关系为:1+5=6,2+4=6。

洛必达法则巧解高考数学压轴题_函数与导数中的参数问题求解_唐伟


x2 + 4x + 2 则有k ≥ g(x) , max 2ex (x + 1)
2 4x + 2 , (4) 若 x ∈ [ 0, + ∞) , 有 k≥ x + 令 g(x) = 2ex (x + 1)
g(x) max=g(0) = 1, 所以k ≥ 1
又 g′(x) =
ห้องสมุดไป่ตู้
-2ex x(x + 2)2 , 当 x ∈ [ 0, + ∞) 时, g′(x)>0, [2ex (x + 1)]2
又 g′(x) = 单调递增.
三、 解决思路
-2ex x(x + 2)2 , 当x ∈[-1,0]时, g′(x)>0,g(x) x 2 [2e (x + 1)]
例1 (2013 年全国卷 · 理) 已知函数 f(x)=x2+ax+ b, g(x) =ex(cx + d), 若曲线 y=f(x) 和曲线 y=g(x) 都过 点 P(0, 2), 且在点 P 处有相同的切线 y=4x+2
· 54 ·
考试与复习
g(x)单调递增.
程为 x+2y-3=0.
f (x) = a ln x + b , 曲线 y = f(x)在点 (1,f (1) ) 处的切线方 x+1 x
例 2 (2011 年 全 国 卷 · 理 ) 已 知 函 数
综上所述, k的取值范围为[1,e2].
g(x) max=g(0) = 1, 所以k ≥ 1
h( x) = xex - 2ex + x + 2 ( x > 0 )



(x = 2∙
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档