2003年高考第一轮复习第三讲整式、分式不等式与一元二次不等式的解法

合集下载

2025届高中数学一轮复习课件《一元二次不等式的解法》ppt

2025届高中数学一轮复习课件《一元二次不等式的解法》ppt

高考一轮总复习•数学
第27页
对点练 3 解关于 x 的不等式 x2-ax+1≤0.
解:由题意知,Δ=a2-4.
①当 a2-4>0,即 a>2 或 a<-2 时,方程 x2-ax+1=0 的两根为 x=a± a22-4,∴
原不等式的解集为x a-
2a2-4≤x≤a+
a2-4 2
.
②若 Δ=a2-4=0,则 a=±2.
高考一轮总复习•数学
第16页
解:(1)原不等式可化为 3x2+2x-8≤0,即(3x-4)(x+2)≤0,解得-2≤x≤43,
所以原不等式的解集为x-2≤x≤43
.
(2)原不等式等价于xx22--xx--22>≤04, ⇔xx22--xx--26>≤00, ⇔xx--23xx++12>≤00, ⇔
逆向思维,-1,2 是方程 ax2+bx+c=0 的两根.
b(x-1)+c>2ax 的解集是( )
A.{x|0<x<3}
B.{x|x<0 或 x>3}
C.{x|1<x<3}
D.{x|-1<x<3}
高考一轮总复习•数学
第30页
解析:由 a(x2+1)+b(x-1)+c>2ax,得 ax2+(b-2a)x+(a+c-b)>0. ①
高考一轮总复习•数学
第1页
第二章 不等式
第3讲 二次函数与一元二次不等式 第2课时 一元二次不等式的解法
高考一轮总复习•数学
第2页
复习要点 1.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的 联系.2.会解一元二次不等式和分式不等式.3.了解较简单的不等式恒成立问题的解法.
高考一轮总复习•数学
当 a>1 时,不等式的解集为x1a<x<1

一元二次不等式的解法课件

一元二次不等式的解法课件

栏目 导引
方法感悟
第三章 不等式
1.解一元二次不等式的一般步骤是:(1)化为标准形式;(2) 确定判别式Δ=b2-4ac的符号;(3)若Δ≥0,则求出该不等式 对应的二次方程的根;若Δ<0,则对应的二次方程无根;(4) 联系二次函数的图象得出不等式的解集.特别地,若一元二 次不等式的左边的二次三项式能分解因式,则可立即写出不 等式的解集(在两根之内或两根之外).
栏目 导引
第三章 不等式
跟踪训练 3.(1)关于x的不等式x2+bx+c>0的解集是{x|x<2或x>3},则 b=________,c=________; (2)若关于x的不等式ax2-6x+a2>0的解集为{x|1<x<m},则a =________,m=________.
栏目 导引
第三章 不等式
栏目 导引
第三章 不等式
(4)法一:方程-2x2+x+1=0 的解为 x1=-12,x2=1,函数 y=-2x2+x+1 的图象是开口向下的抛物线,与 x 轴的交点
为-12,0和(1,0),如图 1,观察图象知不等式的解集为:
{x|x<-12或 x>1}.
图1
栏目 导引
第三章 不等式
法二:在不等式两边同乘-1,可得 2x2-x-1>0, 方程 2x2-x-1=0 的解为 x1=-12,x2=1; 画出函数 y=2x2-x-1 的图象简图如图 2. 观察图象,可得原不等式的解集为 {x|x<-12或 x>1}.
x 轴交于(-2,0)和(1,0)两点,而且-2 和 1 是一元二次方程 ax2+bx+1=0 的两根,由根与系数的关系,得
-2+1=-ab, -2×1=1a,

(完整版)高中数学一元二次不等式及其解法-知识点剖析

(完整版)高中数学一元二次不等式及其解法-知识点剖析

一元二次不等式及其解法-知识点剖析一、一元二次不等式及一元二次不等式的解集1.一元二次不等式经过变形,可以化成以下两种标准形式: (1)ax 2+bx+c>0(a>0); (2)ax 2+bx+c<0(a>0).上述两种形式的一元二次不等式的解集,可通过方程ax 2+bx+c=0的根确定.设Δ=b 2-4ac ,则: ①Δ>0时,方程ax 2+bx+c=0有两个不相等的解x 1、x 2,则不等式(1)的解集为{x|x>x 2或x<x 1},不等式(2)的解集为{x|x 1<x<x 2};②Δ=0时,方程ax 2+bx+c=0有两个相等的解,即x 1=x 2,则不等式(1)的解集为{x|x≠x 1},不等式(2)的解集为;③Δ<0时,方程ax 2+bx+c=0无实数解,则不等式(1)的解集为R ,不等式(2)的解集为. 2.解一元二次不等式的一般步骤:当a>0时,解形如ax 2+bx+c>0(≥0)或ax 2+bx+c<0(≤0)的一元二次不等式,一般可分为三步: (1)确定对应方程ax 2+bx+c=0的解; (2)画出对应函数图象的简图; (3)由图象得出不等式的解集.二、一元二次函数图象、一元二次方程的根、一元二次不等式的解集之间的关系 由下表可以看出ax 2+bx+c>0对一切x ∈R 都成立的条件为⎩⎨⎧<∆>,,00a ax 2+bx+c<0对一切x ∈R 都成立的条件为⎩⎨⎧<∆<.00a ,判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c (a>0)的图象一元二次方程ax 2+bx+c=0(a>0)的根 有两相异实根x 1,2=aacb b 242-±-有两相等实根x 1=x 2=-a b 2 没有实根一元二次不等式的解集 ax 2+bx+c >0(a>0) {x|x>x 2或x<x 1}{x ∈R |x≠-ab2} Rax 2+bx+c <0(a>0){x|x 1<x<x 2}φφ三、简单的分式不等式的解法 分式不等式同解不等式四、简单的一元高次不等式的解法一元高次不等式f (x )>0用穿根法(或称根轴法、区间法)求解,其步骤是: (1)将f (x )最高次项的系数化为正数;(2)将f (x )分解为若干个一次因式的积或二次不可分因式之积;(3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过);(4)根据曲线显现出的f (x )值的符号变化规律,写出不等式的解集. 例:解不等式(x+2)(x+1)2(x-1)3(x-2)≤0.解:原不等式变为(x+2)(x-1)(x-2)≤0或x=-1,各因式的根为-2,1,2,利用穿根法,原不等式的解集为{x|x≤-2或1≤x≤2或x=-1}. 知识探究问题1:解一元二次不等式应该注意哪些问题?探究:①要将二次项系数化为正,例如:解不等式-x 2-2x-1<0,需首先转化为x 2+2x+1>0求解. ②若一元二次不等式中二次项系数含字母,一般需要对二次项系数进行讨论,当两根的大小不确定时,还应对两根的大小进行讨论.例如:解关于x 的不等式ax 2-(a+1)x+1<0.首先对a 进行讨论,若a=0,原不等式⇔-x+1⇔{x|x>1};若a<0,原不等式⇔(x-a 1)(x-1)>0⇔{x|x<a 1或x>1}; 若a>0,原不等式⇔(x-a1)(x-1)<0.①其解的情况应由a1与1的大小关系进行确定,故当a=1时,式①⇔{x|x ∈};当a>1时,式①⇔{x|a1<x<1};当0<a<1时,式①⇔{x|1<x<a1}.注:对上述类型的二次不等式要搞清楚讨论的依据. 问题2:解简单的分式不等式应该注意哪些问题?探究:对于简单的分式不等式不能直接去分母,要把不等号的一边化为0,然后用商的符号法则化为不等式(组)求解.例如:解不等式1x 15x ++<3,应先将不等式转化为1x 15x ++-3<0,即1x 1)2(x +-<0,可化为⎩⎨⎧>+<-0101x ,x 或⎩⎨⎧<+>-0101x ,x ,(即化为不等式①),也可直接等价于2(x-1)(x+1)<0(转化为不等式)来求.还应注意对含等号的分式不等式,首先保证分母不为0. 例如:解不等式1x 15x ++≤1⇔1x 1)2(x +-≤0⇔⎩⎨⎧>+≤-0101x ,x 或⎩⎨⎧<+≥-0101x ,x 或直接等价于()()⎩⎨⎧≠+≤+-.010112x ,x x 练习请你和你的同学根据下面所给的材料,探究、讨论窗户应设计成怎样的尺寸.要在墙上开一个上半部为半圆形,下部为矩形的窗户(如图3-2-4所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?图3-2-4。

高考数学一轮复习 一元二次不等式及其解法课件

高考数学一轮复习 一元二次不等式及其解法课件

解:(1)法一:原不等式可化为3x2-19x+6≤0, 方程3x2-19x+6=0的解为x1= ,x2=6. 函数y=3x2-19x+6的图象开口向上且与x轴有两个交点 ( ,0)和(6,0). 所以原不等式的解集为{x| ≤x≤6}.
法二:原不等式可化为3x2-19x+6≤0 ⇒(3x-1)(x-6)≤0⇒(x- )(x-6)≤0. ∴原不等式的解集为{x| ≤x≤6}. (2)原不等式等价于
(3)由12x2-ax-a2>0⇔(4x+a)(3x-a)>0 (xa)(xa)0,
43 ①a>0时, 解集为{x|x< 或x>- }. ②a=0时,x2>0,解集为{x|x∈R且x≠0}; ③a<0时,
解集为{x|x< 或x>- }.
1.解下列关于x的不等式 (1)19x-3x2≥6, (2)0<x2-x-2≤4, (3)ax2-(a+1)x+1<0(a>0).
(1)写出本年度预计的年利润y与投入成本增加的比例x的 关系式; (2)为使本年度的年利润比上年度有所增加,则投入成本 增加的比例x应在什么范围内?
解:(1)由题意得y=[1.2×(1+0.75x)-1×(1+x)]×1000 (1+0.6x)(0<x<1), 整理得y=-60x2+20x+200(0<x<1). (2)要保证本年度的年利润比上年度有所增加,必须 有
2.对于解含有参数的二次不等式,一般讨论的顺序是: (1)讨论二次项系数是否为0,这决定此不等式是否为二次 不等式; (2)当二次项系数不为0时,讨论判别式是否大于0; (3)当判别式大于0时,讨论二次项系数是否大于0,这决 定所求不等式的不等号的方向; (4)判断二次不等式两根的大小.
解下列不等式: (1)2x2+4x+3>0; (2)-3x2-2x+8≥0; (3)12x2-ax>a2(a∈R).

一元二次方程、不等式:高考数学一轮复习

一元二次方程、不等式:高考数学一轮复习

链接教材 夯基固本
典例精研
核心考点
课时分层作业
名师点评 解一元二次不等式的一般方法和步骤
(1)化:把不等式变形为二次项系数大于零的标准形式.
(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,
不等式的解集为R或∅).
(3)求:求出对应的一元二次方程的根(解集的端点对应方程的根).
一元二次方程、不等式
能从实际情景
结合二次函数图象,
中抽象出一元
会判断一元二次方程
二次不等式.
的根的个数,以及解
一元二次不等式.
考试
要求
了解简单的分式、绝对值不等式
的解法.
第5课时
一元二次方程、不等式
链接教材
夯基固本
二次函数与一元二次方程、不等式的解的对应关系
判别式
Δ=b2-4ac
二 次 函 数 y = ax2
=0的两个根是x1和x2.
( √ )

(3)
≥0等价于(x-a)(x-b)≥0.

( × )
(4)若ax2+bx+c>0恒成立,则a>0且Δ<0.
( × )
第5课时
一元二次方程、不等式
链接教材 夯基固本
典例精研
核心考点
课时分层作业
二、教材经典衍生
1.(人教A版必修第一册P53练习T1改编)不等式(x-1)(x-3)>0的解集为(
1


课时分层作业
第5课时
一元二次方程、不等式
链接教材
名师点评 解含参数的一元二次不等式的步骤
夯基固本
典例精研
核心考点
课时分层作业
第5课时

第一轮一元二次不等式及其解法详细过程

第一轮一元二次不等式及其解法详细过程

第一节一元二次不等式及其解法(见学生用书第1页)3.简单的分式不等式(1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔f (x )·g (x )≤0且g (x )≠0.ax 2+bx +c >0(a ≠0)对一切x ∈R 恒成立的条件是什么? 【提示】 a >0且b 2-4ac <0.1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0,∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).【答案】 D2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12}【解析】 原不等式等价于 (x -1)(2x +1)<0或x -1=0.∴原不等式的解集为(-12,1].【答案】 A 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8. 【答案】 (0,8)4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.【答案】 -14错误!(见学生用书第2页)(1)3+2x -x 2≥0; (2)x 2+3>2x ;(3)2x x -1≤1. 【思路点拨】 (1)先把二次项系数化为正数,再用因式分解法;(2)用配方法或用判别式法求解;(3)移项通分,转化为一元二次不等式求解.【尝试解答】 (1)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0,故所求不等式的解集为{x |-1≤x ≤3}. (2)原不等式化为x 2-2x +3>0,∵Δ=4-12=-8<0,又因二次项系数为正数, ∴不等式x 2+3>2x 的解集为R .(3)∵2x x -1≤1⇔2xx -1-1≤0⇔x +1x -1≤0⇔(x -1)(x +1)≤0且x ≠1.∴原不等式的解集为[-1,1).,1.熟记一元二次不等式的解集公式是掌握一元二次不等式求解的基础,可结合一元二次方程及判别式或二次函数的图象来记忆求解.2.解一元二次不等式的步骤:(1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法;(3)写出不等式的解集.解下列不等式:(1)-2x 2-5x +3>0; (2)-1≤x 2+2x -1≤2;【解】 (1)∵-2x 2-5x +3>0,∴2x 2+5x -3<0, ∴(2x -1)(x +3)<0,∴原不等式的解集为{x |-3<x <12}.(2)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1.【思路点拨】 先求方程12x 2-ax =a 2的根,讨论根的大小,确定不等式的解集. 【尝试解答】 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-a 4}.,解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.解关于x 的不等式x 2-(a +1)x +a <0.【解】 原不等式可化为(x -a )(x -1)<0. 当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,1).ax 2+x +b <0的解集.【思路点拨】 不等式解集的端点值是相应方程的根.【尝试解答】 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0 ∴不等式ax 2+x +b <0的解集为R .,(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根. (2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.若关于x 的不等式axx -1<1的解集是{x |x <1或x >2},求实数a 的取值范围.【解】 axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x<1或x >2},知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}.【思路点拨】 分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解. 【尝试解答】 要使mx 2-mx -1<0对一切实数x 恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0.即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0.解之,得x <1或x >3. 【答案】 x <1或x >3一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax +bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.(见学生用书第3页)从近两年的高考试题来看,一元二次不等式的解法、含参数不等式的解法以及二次函数、一元二次方程、一元二次不等式的综合应用等问题是高考的热点.常与集合、函数、导数等知识交汇命题,主要考查分析问题、解决问题的能力、推理论证能力及转化与化归的思想.思想方法之一 巧用一元二次不等式求代数式的最值(2011·浙江高考)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 【解析】 法一 设2x +y =t ,∴y =t -2x ,代入4x 2+y 2+xy =1,整理得6x 2-3tx +t 2-1=0.关于x 的方程有实根,因此Δ=(-3t )2-4×6×(t 2-1)≥0,解得-2105≤t ≤2105.则2x +y 的最大值是2105.法二 ∵1=4x 2+y 2+xy =(2x +y )2-3xy=(2x +y )2-32(2x )·y≥(2x +y )2-32·(2x +y 2)2=58(2x +y )2,∴(2x +y )2≤85,∴-85≤2x +y ≤ 85,即-2105≤2x +y ≤2105.【答案】 2105易错提示:(1)换元后,不会从关于x 的一元二次方程有实数解入手解决问题,致使思维受阻.(2)不会利用化归与转化思想化未知为已知,致使解题时无从下手,盲目作答.防范措施:(1)应熟练掌握一元二次方程与其判别式Δ之间的关系,关于x 的一元二次不等式有实根的充要条件是其对应的判别式非负.(2)遇到一个问题,要注意寻找结论和已知间的关系,化已知为未知或化未知为已知.1.(2012·天津高考)设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1},故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12.则“x >12”是“2x 2+x -1>0”的充分不必要条件.【答案】 A 2.(2013·清远模拟)不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2. 【答案】 (2,+∞)。

高中数学一轮复习 一元二次不等式及其解法

高中数学一轮复习 一元二次不等式及其解法
(Ⅰ)求 f(x)在[0,1]内的值域;
(Ⅱ)若 ax2+bx+c≤0 的解集为 R,求实数 c 的取值范围.
Байду номын сангаас解:(Ⅰ)依题意知,-3,2 是方程 ax2+(b-8)x-a-ab=0 的两
-3+2=-b-a 8,
根,且 a<0,则
所以 -3×2=-aa-ab,
a=-3,b=5,则
f(x)=-
1- k1-k2};
当 k=-1 时,不等式的解集为{x|x≠-1};
当 k<-1 时,不等式的解集为 R.
点 拨: 解一元二次不等式的步骤:第一步,将二次项系数化 为正数;第二步,解相应的一元二次方程;第三步,根据 一元二次方程的根,结合不等号的方向画图;第四步,写
出不等式的解集.容易出现的错误有:①未将二次项系数
-2152,所以实数 c 的取值范围为-∞,-2152.
点 拨: 三个“二次”在高考中举足轻重,每年高考中,至
少有三分之一的题目与之相关.直接考查的不多见,以 间接考查为主,贯穿高中数学的始终.其中二次函数居 核心地位.
(1) 已 知 不 等 式 ax2 - 3x + 6>4 的 解 集 为
+2>0 的解集为 R.
(2)若关于 x 的不等式 ax2-x+2a<0 的解集为∅,则
实数 a 的取值范围是________.
解:依题意知,问题等价于 ax2-x+2a≥0 恒成立, 当 a=0 时,-x≥0 不恒成立; 当 a≠0 时,要使 ax2-x+2a≥0 恒成立,
需aΔ>≤0,0,即1a->08,a2≤0,解得 a≥ 42,即 a 的取值
{x|x1<x<x2}
有两相等实根 x1=x2= -2ba

高考数学一轮总复习第一章集合与常用逻辑用语不等式1-4一元二次不等式与几类重要不等式的解法课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式1-4一元二次不等式与几类重要不等式的解法课件
(5)x(x+2)2>0 的解集是(-∞,-2)∪(0,+∞).
() ()
解:(1)×; (2)√; (3)×; (4)×; (5)×.
不等式 2x2-x-3>0 的解集为
()
A. x|-1<x<32 C. x|x<-1或x>32
B. {x|x<-3 或 x>1} D. {x|x<-1 或 x>1}
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)-x2+x>0 的解集为(-∞,0)∪(1,+∞).
()
(2)若二次不等式 ax2+bx+c>0 的解集为(x1,x2),则必有 a<0. (3)不等式 ax2+bx+c>0 恒成立,则 a>0 且 Δ<0.
() ()
(4)ax<b 的解集是ab,+∞.
(2020 年江苏淮阴中学高二期末)不等式
x2-x-4 x-1 >1
的解集为
()
A. {x|x<-1 或 x>3}
B. {x|x<-1 或 1<x<3}
C. {x|-1<x<1 或 x>3}
D. {x|-1<x<1 或 1<x<3}
解:原不等式可化为x2-x-x-1 4-1>0,即x2-x-2x1-3>0,等价于(x+1)(x-1)(x-3)>0.
(3)解关于 x 的不等式 ax2-2≥2x-ax(a∈R).
解:原不等式可化为 ax2+(a-2)x-2≥0(a∈R), 即(ax-2)(x+1)≥0(a∈R). 当 a=0 时,原不等式可化简为 x+1≤0, 原不等式的解集为{x|x≤-1}; 当 a≠0 时,原不等式的解集由2a和-1 的大小决定,当 a>0 时,2a>-1;当-2<a<0 时, 2a<-1;当 a=-2 时,2a=-1;当 a<-2 时,2a>-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 整式、分式不等式与一元二次不等式的解法
☆知识要点:
1、不等式的性质是证、解不等式的基础,特别是在不等式两边同乘以一个数或式时,要考虑它的正负.
2、一元一次不等式、一元二次不等的求解要正确、熟练、迅速,这是解分式不等式、无理不等式、指数不等式、对数不等式的基础.
3、带等号的分式不等式求解时,要注意分母不等于0二次函数c bx ax y ++=2的值恒大于0的条件是0>a 且0<∆;若恒大于或等于0,则0>a 且0≤∆.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形
4、一元二次方程根的分布情况。

5、含参数不等式的解法。

☆典型例题:
例1、己知关于x 的不等式0)32()(<-++b a x b a 的解为)3
1,(--∞,求关于x 的不等式0)2()3(>-+-a b x b a 的解集。

例2、解不等式:(1);23
25
32≤-+-x x x (2)04)2)(1()1(2<+-+-x x x x
2003年高考第一轮复习专题讲练 - 9 -
☆小结:
整式不等式和分式不等式的解法:数轴标根法。

解不等式f(x)>(<)0.
1、将多项式分解成最简形式;
2、变形去掉二次以上的项,各一次项系数为正;
3、在最右端的区间,f(x)>0;
4、在相邻区间,f(x)符号相反。

例3、己知不等式02>++c bx ax 的解集为}|{βα<<x x ,其中0>>αβ,求不等式02<++a bx cx 的解集。

例4、(1)若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围。

(2)若一元二次方程0332=-++k kx kx 的两根都是负数,求k 的取值范围。

(3)若一元二次方程0332=-++k kx kx 有一个正根和一个负根,求k 的取值范围。

(4)若一元二次方程03)12(2=-+-+k x k kx 有一根为0,求另一根是正根还是负根。

例5、(1)已知方程02112=-+-m x x 的两实根都大于1,求m 的取值范围。

(2)若一元二次方程03)1(2=++-x m mx 的两个实根都大于-1,求m 的取值范围。

(3)若一元二次方程03)1(2=++-x m mx 的两实根都小于2,求m 的取值范围。

例6、(1)已知方程032222=-++m mx x 有一根大于2,另一根比2小,求m 的取值范围。

(2)已知方程012)2(2=-+-+m x m x 有一实根在0和1之间,求m 的取值范围。

(3)已知方程012)2(2=-+-+m x m x 的较小实根在0和1之间,求实数m 的取值范围。

2003年高考第一轮复习专题讲练 - 11 -
(4)若方程0)2(2=-++k x k x 的两实根均在区间(1-、1)内,求k 的取值范围。

(5)若方程012)2(2=-+-+k x k x 的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围。

(6)已知关于x 的方程062)1(22=-++--m m mx x m 的两根为βα、且满足βα<<<10,求m 的取值范围。

例7、解关于x 的不等式
)10(12
)1(≠>>--a a x a a ,且。

例8、设关于x 的不等式组⎪⎩⎪⎨⎧<+++>--05)52(20222k x k x x x 的整数解的集合为{}2-,求实数a 的取
值范围。

相关文档
最新文档