高三数学二轮专题平面解析几何复习教案

合集下载

高三平面解析几何复习的教学策略

高三平面解析几何复习的教学策略

高三平面解析几何复习的教学策略高三平面解析几何是高中数学课程的重要内容之一,在复习期间,学生需要掌握平面解析几何的基本概念、性质和解题方法,并能够熟练运用这些知识解决实际问题。

下面是一些教学策略,帮助学生有效复习高三平面解析几何。

1. 温故知新:对于平面解析几何的基本概念、性质和定理,学生需要进行温故知新的复习。

可以通过回顾教材中的重点内容,整理概念、公式和定理,制作复习笔记,并进行相关题目的练习,巩固基本知识。

2. 实题导入:在复习阶段,可以通过一些实际问题进行实题导入,引发学生对平面解析几何的兴趣。

通过一些生活中的实际问题,如建筑设计、地理测量、航空航天等,让学生思考如何利用平面解析几何的知识解决问题。

3. 典型例题:选择一些典型的例题进行讲解和分析,帮助学生理解和掌握解题思路和方法。

可以结合教材中的典型例题,解答学生在学习中遇到的困惑和疑问,帮助他们理解题目的要求和解题的关键。

4. 错题辨析:针对学生在解题过程中容易出错或经常出错的问题进行辨析和解析。

通过分析典型的错题和解题过程中的错误,找出学生容易犯的错误类型,并给予指导和纠正。

可以将一些典型的错误或易混淆点进行总结,让学生加强对这些知识点的复习。

5. 总结归纳:复习阶段,学生需要对平面解析几何的知识进行总结和归纳。

可以设置小结课的时间,让学生将学过的知识按照章节或主题进行归纳和总结,制作思维导图或知识结构图,帮助他们整理和理清知识体系。

6. 真题演练:针对高考真题和模拟题进行大量的练习。

通过解答真题和模拟题,让学生熟悉高考考点和题型的要求,提高解题的准确性和速度。

重点关注高考的热点难点,对这些题型进行详细的讲解和分析,帮助学生理解解题思路和方法。

7. 合作学习:组织学生进行小组合作学习,分析和解决平面解析几何的问题。

可以让学生互相讨论解题思路,相互解答问题,并进行对答案和解题思路的交流。

通过合作学习,激发学生的学习兴趣,加强解题的思维能力和团队合作意识。

高中数学几何复习教案

高中数学几何复习教案

高中数学几何复习教案一、教学目标1. 理解并掌握基本的几何概念、定理和公式。

2. 能够运用几何知识解决实际问题。

3. 培养空间想象能力和逻辑推理能力。

4. 通过习题训练,提高解题技巧和速度。

二、教学内容1. 平面几何基础:点、线、面的关系,角的基本性质,三角形的各类性质,多边形的性质等。

2. 解析几何基础:坐标系的概念,点的坐标,距离与中点公式,直线方程,圆的方程等。

3. 立体几何基础:空间几何体的性质,体积和表面积的计算,截面分析等。

三、教学方法1. 采用启发式教学,引导学生主动思考,发现问题和解决问题。

2. 结合实际例子,将抽象的几何知识具体化,便于学生理解。

3. 通过小组合作学习,促进学生之间的交流和讨论。

4. 利用多媒体教学工具,直观展示几何图形和变化过程。

四、教学步骤1. 复习引入:通过提问或小测验的方式,回顾之前学习的几何知识点。

2. 新课讲解:详细讲解新的几何概念和定理,结合例题进行演示。

3. 练习巩固:学生独立完成练习题,教师巡回指导,及时解答疑问。

4. 小组探究:分组讨论解决综合性较强的几何问题,培养学生的合作能力。

5. 总结提升:对本节课的主要内容进行总结,强调重点和难点。

6. 作业布置:根据本节课的内容,布置适量的作业,以便学生课后复习巩固。

五、评价方式1. 课堂表现:观察学生在课堂上的参与度和反应,了解学生的学习状态。

2. 作业检查:通过检查作业,评估学生对知识点的掌握情况。

3. 单元测试:定期进行单元测试,检验学生的综合运用能力。

六、注意事项1. 注意理论与实践的结合,鼓励学生将几何知识应用到实际中。

2. 重视基础知识的教学,确保每个学生都能够掌握基本概念和定理。

3. 关注学生的学习差异,对基础薄弱的学生给予更多的关注和帮助。

4. 创造良好的学习氛围,激发学生的学习兴趣和求知欲。

高三数学第二轮复习教案——解析几何

高三数学第二轮复习教案——解析几何

2020年高三数学第二轮复习教案——解析几何(4课时)一、考试内容回顾2009年高考,各地试题中解析几何内容在全卷的平均分值为26.9分,占17.9%;近几年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平面几何知识和向量的方法............,这一点值得强化二、高考大纲要求(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。

3.了解二元一次不等式表示平面区域。

4.了解线性规划的意义,并会简单的应用。

5.掌握圆的标准方程和一般方程,理解圆的参数方程。

(二)圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质。

2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。

3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。

4.了解圆锥曲线的初步应用。

三、复习目标1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.四、基础知识再现(一)直线的方程1.点斜式:)(11x x k y y -=-;2. 截距式:b kx y +=;3.两点式:121121x x x x y y y y --=--;4. 截距式:1=+bya x ;5.一般式:0=++C By Ax ,其中A 、B 不同时为0.(二)两条直线的位置关系两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.设直线1l :y =1k x +1b ,直线2l :y =2k x +2b ,则1l ∥2l 的充要条件是1k =2k ,且1b =2b ;1l ⊥2l 的充要条件是1k 2k =-1.(三)线性规划问题1.线性规划问题涉及如下概念:⑴存在一定的限制条件,这些约束条件如果由x 、y 的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.⑵都有一个目标要求,就是要求依赖于x 、y 的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x 、y 的一次解析式,就称为线性目标函数.⑶求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题. ⑷满足线性约束条件的解(x ,y )叫做可行解. ⑸所有可行解组成的集合,叫做可行域.⑹使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解. 2.线性规划问题有以下基本定理:⑴ 一个线性规划问题,若有可行解,则可行域一定是一个凸多边形. ⑵ 凸多边形的顶点个数是有限的.⑶ 对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到. 3.线性规划问题一般用图解法. (四)圆的有关问题 1.圆的标准方程222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r.特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+. 2.圆的一般方程022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,其圆心坐标为(2D -,2E -),半径为F E D r 42122-+=.当F E D 422-+=0时,方程表示一个点(2D -,2E -); 当F E D 422-+<0时,方程不表示任何图形. (四)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.(五)椭圆的简单几何性质1.椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ac e =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+b y a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即ca y 2±=.(六)椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan ab=; ⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. (七)双曲线及其标准方程1.双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (八)双曲线的简单几何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a ce =>1,离心率e 越大,双曲线的开口越大.2. 双曲线12222=-by a x 的渐近线方程为x a by ±=或表示为02222=-b y a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式: k y n x m =-2222,其中k 是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是c a x 2-=和ca x 2=.在双曲线中,a 、b 、c 、e 四个元素间有ac e =与222b a c +=的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件. (九)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

高考数学第二轮复习 解析几何教学案

高考数学第二轮复习 解析几何教学案

2011年高考第二轮专题复习(教学案):解析几何第1课时 直线与圆考纲指要:直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,以及直线间的平行和垂直的条件、与距离有关的问题。

圆的方程,从轨迹角度讲,尤其是参数问题,在对参数的讨论中确定圆的方程。

能借助数形结合的思想处理直线与圆的位置关系,特别是弦长问题。

考点扫描:1.直线方程:(1)倾斜角;(2) 斜率;(3)直线方程的五种形式。

2.圆的方程:(1)圆的标准方程;(2)圆的一般方程。

3.两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

4. 根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

考题先知:例1.某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α (90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b ) 问学生距离镜框下缘多远看画的效果最佳?分析 欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值解 建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,O为下边缘上的一点,在x 轴的正半轴上找一点C (x ,0)(x >0),欲使看画的效果最佳,应使∠ACB 取得最大值由三角函数的定义知 A 、B 两点坐标分别为(a cos α,a sin α)、 (b cos α,b sin α),于是直线AC 、BC 的斜率分别为 k AC =tan XCA =x a a -ααcos sin ,.cos sin tan xb b XCB k BC -==αα 于是tan ACB =AC BC AC BC k k k k ⋅+-1ααααcos )(sin )(cos )(sin )(2⋅+-+⋅-=++-⋅-=b a x xabb a x x b a ab x b a 由于∠ACB 为锐角,且x >0,则tan ACB ≤ααcos )(2sin )(b a ab b a +-⋅-,当且仅当xab=x ,即x =ab 时,等号成立, 此时∠ACB 取最大值,对应的点为C (ab ,0),因此,学生距离镜框下缘ab cm 处时,视角最大,即看画效果最佳点评:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tan ACB 的最大值 如果坐标系选择不当,或选择求sin ACB 的最大值 都将使问题变得复杂起来例2.设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线分析: 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-y x代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k 则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点点评:本题主要考查“参数法”求曲线的轨迹方程 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论复习智略:例3抛物线有光学性质 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y 2=2px (p >0) 一光源在点M (441,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ,折射后又射向抛物线上的点Q ,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l 2x -4y-17=0上的点N ,再折射后又射回点M (如下图所示)(1)设P 、Q 两点坐标分别为(x 1,y 1)、(x 2,y 2),证明 y 1·y 2=-p 2;(2)求抛物线的方程;(3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由分析:本题考查学生对韦达定理、点关于直线对称、直线关于直线对称、直线的点斜式方程、两点式方程等知识的掌握程度解: (1)证明 由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F (2p,0), 设直线PQ 的方程为y =k (x -2p) ①由①式得x =k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2当直线PQ 的斜率角为90°时,将x =2p代入抛物线方程,得y =±p ,同样得到y 1·y 2=-p 2(2)解 因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l对称,设点M (441,4)关于l 的对称点为M ′(x ′,y ′),则⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'017244244121214414y x x y 解得⎪⎩⎪⎨⎧-='='1451y x 直线QN 的方程为y =-1,Q 点的纵坐标y 2=-1,由题设P 点的纵坐标y 1=4,且由(1)知 y 1·y 2=-p 2,则4·(-1)=-p 2,得p =2,故所求抛物线方程为y 2=4x(3)解 将y =4代入y 2=4x ,得x =4,故P 点坐标为(4,4)将y =-1代入直线l 的方程为2x -4y -17=0,得x =213, 故N 点坐标为(213,-1) 由P 、N 两点坐标得直线PN 的方程为2x +y -12=0, 设M 点关于直线NP 的对称点M 1(x 1,y 1) ⎪⎩⎪⎨⎧-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--14101224244121)2(4414111111y x y x x y 解得则又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(41,-1)与点M 关于直线PN 对称 。

河北省高三数学复习指导 平面解析几何复习 新人教版

河北省高三数学复习指导 平面解析几何复习 新人教版

平面解析几何复习教学案一,知识要点 1直线的方程归纳2两直线的平行和垂直2.平面上两点间距离公式: 3.点到直线的距离公式: 4.(1)园的标准方程(2)方程022=++++F Ey Dx y x 表示的曲线不一定是圆只有当 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程轴上的截距和斜率y k 轴的直线不垂直于x 点斜式k y x P 和斜率,点)(111)(11x x k yy -=-轴的直线不垂直于x 两点式)()(222111y x P y x P ,和点,点211211x x x x y y y y --=--轴的直线、不垂直于y x 截距式by a x 轴上的截距在轴上的截距在1=+by a x 不过原点的直线轴的直线、不垂直于y x 一般式两个独立的条件0=++C By Ax 不同时为零、B A5.直线和园的三种位置关系:6. 圆与圆的位置关系问题<1>圆与圆的位置关系有几种?<2>你能分别用几何方法和代数方法判断圆与圆的位置关系吗?<1>外离、外切、相交、内切、内含(特殊情况:同心圆);<2>①几何法:若两圆的半径分别为21r r 、,两圆的圆心距为d ,则两圆的位置关系判断如表所示:②代数法:联立两圆的方程组成方程组.则方程组解的个数与两圆的位置关系如表所示.二,基础训练1.已知一直线经过点P(-1,2),斜率k=3,则这条直线方程的一般式为 .2.直线01553:=--y x l 在两坐标轴上的截距之和为3.两直线023)2(:,06:221=++-=++m my x m l y m x l ,当21//l l 时, m=_________ 4、圆2)3()2(22=++-y x 的圆心和半径分别是 5、方程052422=+-++m y x y x 表示圆的条件是 6、圆034222=++-+y x y x 的圆心到直线x-y=1的距离为 7、经过点)1,2(-M 作圆522=+y x 的切线,则切线的方程为 8、若圆822=+y x 和圆04422=-++y x y x 关于直线l 对称,则直线l 的方程 为_______________________三,例题例1:.求满足下列条件的圆的方程:①过A(4,3) B(5,2) C(1,0)三点②与两坐标轴都相切,且圆心在直线2x-3y+5=0上练习1; 一直线过点)23,3(--P,被圆2522=+yx截得的弦长为8,求此弦所在的直线方程。

届河北省石家庄市高三数学二轮复习研讨解析几何复习策略(共51张)PPT课件

届河北省石家庄市高三数学二轮复习研讨解析几何复习策略(共51张)PPT课件

2013年理科 分值 5 5 12
2014年理科 分值 5 5 12
2015年理科 分值 5 5 12
得分 4.97 4.61 6.18
名次 1 1 3
5.25
得分 4.86 4.86 9.78
名次 1 1 2
6.5
得分 4.72 4.61 9.07
名次 2 1 3
6.13
二、学生在圆锥曲线试题方面存在的主要问题:
1、条件的使用乱而无序;不能从前往后一个一个的使用条 件,不能将每句话转化为数学符号;
2、条件的本质不能抓住:条件的内涵没有挖掘出来,人为 的制造复杂; 3、化简变形没有方向; 4、典型试题方法不全;知识点(包括二级结论)不够扎实全 面、范围问题、最值问题、定点定值问题、切线问题方法单一 甚至没有方法;
注意:对于直线和双曲线问题要重视对二次项系数的讨论.
用来限制参数的取围 值范 (4)两个交点 0用来建立关于参数等 的式 不
注意:对直线和双曲线相交问题要注意两个交点在同一支上还是在不
同支上,从而建立不同的不等式.
(5)韦达定理的应用;x1x2,x1x2可以用一元二次方程中的系 数表示.
同时注意:A (x,y)B ,(x,y)两点在直线 ykxb上,则
虑直线斜率不存在的情况;
(3)若条件中涉及到两个交点,可设交点坐标 A (x,y)B ,(x,y),
பைடு நூலகம்11
22
同时将直线和椭圆的方程联立得:
y x a
2 2
kx y b
m
2
1
2
消去 y,得到关于x
的一元二次方程 x 2 ( b 2 a 2 k 2 ) 2 k 2 m a 2 m 2 a 2 b 2 a 0

高三数学第二轮复习教案

高三数学第二轮复习教案

高三数学第二轮复习教案第5讲 解析几何问题的题型与方法(二)七、强化训练1、已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF 21tan 21=∠F PF ,则椭圆的离心率为 ( )(A )21 (B )32 (C )31 (D )352、已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线的方程为6x +10y -59=0,∠B 的平分线所在直线的方程为:x -4y +10=0,求边BC 所在直线的方程。

3、求直线l 2:7x -y +4=0到l 1:x +y -2=0的角平分线的方程。

4、已知三种食物P 、Q 、R 的维生素含量与成本如下表所示。

现在将xk g 的食物P 和yk g 的食物Q 及zk g 的食物R 混合,制成100k g 的混合物.如果这100k g 的混合物中至少含维生素A44 000单位与维生素B48 000单位,那么x ,y ,z 为何值时,混合物的成本最小?5、某人有楼房一幢,室内面积共180 m 2,拟分隔成两类房间作为旅游客房.大房间每间面积为18m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15 m 2,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?6、已知△ABC 三边所在直线方程AB :x -6=0,BC :x -2y -8=0,CA :x +2y =0,求此三角形外接圆的方程。

7、已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,求点A 的坐标。

8、已知椭圆12222=+by a x (a >b >0)上两点A 、B ,直线k x y l +=:上有两点C 、D ,且ABCD 是正方形。

高三平面解析几何复习的教学策略

高三平面解析几何复习的教学策略

高三平面解析几何复习的教学策略高三平面解析几何是数学课程中的重要内容之一,也是考试中常考的题型。

为了帮助学生复习和掌握这一部分知识,教师需要制定相应的教学策略。

本文将从教学内容、教学方法和复习计划三个方面来介绍高三平面解析几何复习的教学策略。

一、教学内容在高三平面解析几何的复习中,教师需要重点复习以下内容:1. 平面方程的应用:包括点斜式、两点式、一般式等平面方程的互相转化和应用;2. 直线与平面的位置关系:直线的方程和位置关系、直线与平面的位置关系等内容;3. 空间几何体的平面截线:包括球、圆锥、圆柱等空间几何体与平面的截线问题;4. 空间向量的应用:包括向量的夹角、向量的共线、向量的运算等内容。

以上内容是高三平面解析几何的重点内容,复习时要注重学生的理解和掌握程度,尤其是与其他几何知识的联系和综合应用。

二、教学方法1. 综合性教学法:平面解析几何与向量、数学分析、几何等知识有很大的联系,复习时可以采用综合性教学法,将平面解析几何与其他知识点相结合,使学生能更好地理解和掌握知识。

2. 案例教学法:通过实际案例的讲解,让学生了解平面解析几何的应用,加深他们对知识点的理解。

学生可以通过解决实际问题来巩固和提升他们的解题能力。

3. 多维度教学法:平面解析几何涉及到三维空间的问题,教师需要引导学生将平面几何的题目转化为三维空间的问题,从多个角度来理解和解决问题。

4. 实践教学法:通过实践操作,比如利用几何软件进行模拟实验,让学生更直观地理解平面解析几何的内容,提高他们的学习兴趣和解题能力。

以上教学方法可以有效地帮助学生巩固和提高平面解析几何的学习成绩,加强和应用所学知识。

三、复习计划为了让学生更好地复习平面解析几何,教师可以制定以下复习计划:1. 明确复习内容:教师首先要明确定义好复习的内容和目标,包括重点、难点和易错点的整理和梳理。

2. 分阶段复习:根据复习内容的特点,可以将复习分为基础阶段、巩固阶段和强化阶段,逐步推进,循序渐进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学二轮专题复习教案――平面解析几何一、本章知识结构:二、重点知识回顾 1.直线(1).直线的倾斜角和斜率直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α;若A(x 1,y 1),B(x 2,y 2),则1212x x y y K AB --=。

(2) .直线的方程a.点斜式:)(11x x k y y -=-;b.斜截式:b kx y +=;c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b ya x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。

若直线1l 、2l 的斜率分别为1k 、2k ,则1l ∥2l ⇔1k =2k ,1l ⊥2l ⇔1k ·2k =-1。

(4)点、直线之间的距离点A (x 0,y 0)到直线0=++C By Ax 的距离为:d=2200||BA C By Ax +++。

两点之间的距离:|AB|=212212)()y y x x -+-(2. 圆(1)圆方程的三种形式标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中⎪⎭⎫ ⎝⎛--22E D ,为圆心F E D 42122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.参数式:以原点为圆心、r 为半径的圆的参数方程是⎩⎨⎧==θθsin ,cos r y r x (其中θ为参数).以(a ,b )为圆心、r 为半径的圆的参数方程为⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数),θ的几何意义是:以垂直于y 轴的直线与圆的右交点A 与圆心C 的连线为始边、以C 与动点P 的连线为终边的旋转角,如图所示.三种形式的方程可以相互转化,其流程图为:2.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且0422>-+AF E D ”,它可根据圆的一般方程推导而得. 3.参数方程与普通方程我们现在所学的曲线方程有两大类,其一是普通方程,它直接给出了曲线上点的横、纵坐标之间的关系;其二是参数方程,它是通过参数建立了曲线上的点的横、纵坐标之间的(间接)关系,参数方程中的参数,可以明显的物理、几何意义,也可以无明显意义.要搞清楚参数方程与含有参数的方程的区别,前者是利用参数将横、纵坐标间接地连结起来,3.圆锥曲线(1).椭圆的标准方程及其性质椭圆2222x b y a +=1的参数方程为:⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数)。

(2)双曲线的标准方程及其性质双曲线2222x b y a -=1的参数方程为:⎩⎨⎧==ϕϕtan sec b y a x (ϕ为参数)。

(3).抛物线的标准方程及其性质平面内,到一个定点F 和一条直线l 的距离相等的点的轨迹,叫做抛物线。

定点F 叫做抛物线的焦点,直线px y 22=叫做抛物线的准线。

四种标准方程的联系与区别:由于选取坐标系时,该坐标轴有四种不同的方向,因此抛物线的标准方程有四种不同的形式。

抛物线标准方程的四种形式为:()022>±=p px y ,()022>±=p py x ,其中:① 参数p 的几何意义:焦参数p 是焦点到准线的距离,所以p 恒为正值;p 值越大,张口越大;2p 等于焦点到抛物线顶点的距离。

②标准方程的特点:方程的左边是某变量的平方项,右边是另一变量的一次项,方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即对称轴为x 轴时,方程中的一次项变量就是x , 若x 的一次项前符号为正,则开口向右,若x 的一次项前符号为负,则开口向左;若对称轴为y 轴时,方程中的一次项变量就是y , 当y 的一次项前符号为正,则开口向上,若y 的一次项前符号为负,则开口向下。

抛物线的简单几何性质 方程设抛物线()022>=p px y 性质焦点范围对称性顶点 离心率准线通径⎪⎭⎫⎝⎛0,2p F 0≥x关于x 轴对称 原点1=e 2px -= p 2抛物线px y 22=的参数方程为:⎩⎨⎧==pt y pt x 222(t 为参数)。

(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线.4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的 a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法).b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离c.直线与双曲线、抛物线有自己的特殊性(2).a.求弦所在的直线方程;;b.根据其它条件求圆锥曲线方程(3).已知一点A 坐标,一直线与圆锥曲线交于两点P 、Q ,且中点为A ,求P 、Q 所在的直线方程 (4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称) 5.二次曲线在高考中的应用二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。

(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视二次曲线的标准方程和几何性质与导数的有机联系。

(3).重视二次曲线性质与数列的有机结合。

(4).重视解析几何与立体几何的有机结合。

三、考点剖析考点一 点、直线、圆的位置关系问题【内容解读】点与直线的位置关系有:点在直线上、直线外两种位置关系,点在直线外时,经常考查点到直线的距离问题;点与圆的位置关系有:点在圆外、圆上、圆外三种;直线与圆的位置关系有:直线与圆相离、相切、相交三点,经常用圆心到直线之间的距离与圆的半径比较来确定位置位置关系;圆与圆的位置关系有:两圆外离、外切、相交、内切、内含五种,一般用两点之间的距离公式求两圆之间的距离,再与两圆的半径之和或差比较。

【命题规律】本节内容一般以选择题或填空题为主,难度不大,属容易题。

例1、(2008全国Ⅱ卷文)原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5解:原点为(0,0),由公式,得:52152=+-=d ,故选(D)。

点评:本题直接应用点到直线的公式可求解,属容易题。

例2、(2007湖南理)圆心为(11),且与直线4x y +=相切的圆的方程是 .解:圆与直线相切,圆心到直线的距离为半径,所以,R=11|4-11|++=2,所以,所求方程为:22(1)(1)2x y -+-=点评:直线与圆的位置关系问题是经常考查的内容,对于相切问题,经常采用点到直线的距离公式求解。

例3、 (2008重庆理)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( )(A)相离 (B)相交 (C)外切 (D)内切解:配方,得:圆O 1:(x -1)2+y 2=1和圆O 2:x 2+(y -2)2=4, 圆心为(1,0),(0,2),半径为r =1,R=2,圆心之间距离为:222-00-1)()(+=5,因为2-1<5<2+1, 所以,两圆相交.选(B).点评:两圆的位置关系有五种,通常是求两圆心之间的距离,再与两圆的半径之和或之差来比较,确定位置关系.考点二 直线、圆的方程问题【内容解读】直线方程的解析式有点斜式、斜截式、两点式、.截距式、一般式五种形式,各有特点,根据具体问题,选择不同的解析式来方便求解。

圆的方程有标准式一般式两种;直线与圆的方程问题,经常与其它知识相结合,如直线与圆相切,直线与直线平行、垂直等问题。

【命题规律】直线与圆的方程问题多以选择题与填空题形式出现,属容易题。

例4、(2008广东文)经过圆0222=++y x x 的圆心C ,且与直线x+y =0垂直的直线方程是( ) A .01=+-y x B. 01=--y x C. 01=-+y x D. 01=++y x解:易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,因此,选(A.)。

点评:两直线垂直,斜率之积为-1,利用待定系数法求直线方程,简单、方便。

例5、(2008山东文)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭解:设圆心为(,1),a 由已知得|43|11,2().52a d a -==∴=-舍故选B.点评:圆与x 轴相切,则圆心的纵坐标与半径的值相等,注意用数形结合,画出草图来帮助理解。

考点三 曲线(轨迹)方程的求法【内容解读】轨迹问题是高中数学的一个难点,常见的求轨迹方程的方法: (1)单动点的轨迹问题——直接法+ 待定系数法; (2)双动点的轨迹问题——代入法;(3)多动点的轨迹问题——参数法 + 交轨法。

【命题规律】轨迹问题在高考中多以解答题出现,属中档题。

例6、(2008深圳福田模拟)已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =即动点M 到定点F 与到定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点, 1x =-为准线,∴动圆圆心的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-⋅+=,解得4k =-或0k =(舍去), 又40k =-<, ∴ 直线l 存在,其方程为440x y +-=点评:本题的轨迹问题采用抛物线的定义来求解,用圆锥曲线的定义求轨迹问题是经常采用的方法,要求充分掌握圆锥曲线的定义,灵活应用。

相关文档
最新文档