(完整版)北师大新版八年级下册数学期中考试知识点复习
北师大版数学八年级下册《期中测试卷》及答案

(2)求线段OA在平移过程中扫过的面积.
23.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(2)在(1)中,过点D作 ,交AB于点E,若CD=4,则BC的长为.
四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)
21.若关于 的方程组 的解满足 ,求 的取值范围.
22.如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).三角形AOB中任意一点 经平移后的对应点为 ,并且点A,O,B的对应点分别为点D,E,F.
综合上述可得
故选A.
[点睛]本题主要考查不等式的非整数解,关键在于非整数解的确定.
9.如图,函数y=kx+b(k+b<2x的解集为()
A. B. C. D.
[答案]A
[解析]
[分析]
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=2x都在直线y=kx+b的上方,当x<2时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<2x的解集.
A.2.5B.3C.3.5D.4
二、填空题(每题4分,满分28分,将答案填在答题纸上)
11.等腰三角形的一个外角是60°,则它的顶角的度数是__.
12.若 ,则 _______ .
13.不等式组 ,的解集是_______.
14.如图,将 沿 方向平移 得到 ,如果 周长为 ,那么四边形 的周长为______ .
北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
八年级下册数学期中考试知识点复习(北师大版)

八年级下册数学期中考试知识点复习(北师大版)第一章一元一次不等式和一元一次不等式组一.不等关系※1.一般地,用符号“”(或“≥”)连接的式子叫做不等式.※2.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数:大于等于0(≥0)、0和正数、不小于0非正数:小于等于0(≤0)、0和负数、不大于0二.不等式的基本性质※1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c※2.比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a即:a>b,则a-b>0a=b,则a-b=0a(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2.不等式的解可以有无数多个,一般是在某个范围内的所有数.※3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①定点:有等号的是实心圆点,无等号的是空心圆圈;②方向:大向右,小向左四.一元一次不等式:※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.※3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向改变的问题)※4.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设:设出适当的未知数;③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;⑤答:写出答案,并检验答案是否符合题意.五.一元一次不等式与一次函数六.一元一次不等式组※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a(同大取大;同小取小;大小小大中间找;大大小小无解)第二章分解因式一.分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.※2.因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二.提公共因式法※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.※2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,a•b+a•c=a•(b+c)※3.易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提彻底;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三.运用公式法※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2.主要公式:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)因式分解的最后结果必须是几个整式的乘积;(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.第三章分式一.分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.※4.分子与分母没有公因式的分式,叫做最简分式.二.分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三.分式的加减法※1.分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的最高次幂的积,(3)如果分母是多项式,则首先对多项式进行因式分解.四.分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验.※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案.。
北师大版八年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习等腰三角形(基础)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
北师大版数学八年级下册《期中测试题》及答案

故正确的有3个,
故选B.
二、填空题(本大题7小题,每小题4分,共28分)
11.若二次根式 有意义,则 的取值范围是_____.
[答案]a≥2
[解析]
[分析]
根据二次根式有意义的条件列出不等式并求解即可.
根据两组对角分别相等的四边形是平行四边形进行判断即可.
[详解]由两组对角分别相等的四边形是平行四边形易知,
要使四边形ABCD是平行四边形需满足∠A=∠C,∠B=∠D,
因此∠A与∠C,∠B与∠D所占的份数分别相等
故选C.
4.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()
A. B. C. D.
A.5cmB.4.8cmC.4.6cmD.4cm
[答案]A
[解析]
[分析]
作AR⊥BC于R,AS⊥CD于S边形ABCD是菱形,再根据根据勾股定理求出AB即可.
[详解]解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
[答案]A
[解析]
[分析]
先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
6.如图,函数 和 图象相交于A(m,3),则不等式 的解集为()
北师大版八年级下册数学期中测试题(含答案)

最新北师大版八年级下册数学期中测试题(含答案)班级___________ 姓名___________ 得分_______一、选择题 (每小题3分,共24分)1.下列各组数中,能够组成直角三角形的是 【 】 A .3,4,5 B .4,5,6 C .5,6,7 D .6,7,82.若式子21x -12x +1有意义,则x 的取值范围是 【 】A .x ≥12 B .x ≤12 C .x =12D .以上答案都不对3.在根式①21x ②5x③2x xy ④27xy 中,最简二次根式是 【 】A .① ②B .③ ④C .① ③D .① ④4.若三角形的三边长分别为2,6,2,则此三角形的面积为 【 】 A .22B .2C .32D .35.如图所示,△ABC 和△DCE 都是边长为4的 等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 的长为 【 】 A .3 B .23 C .33 D .43 6.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC =130°,则∠AOE 的大小为 【 】 A .75° B .65° C .55° D .50°7.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长是 【 】 A . 4 B . 6 C . 8 D .10第5题图A BDE第6题图OE AB CD第7题图AB COEDy x第8题图8.如图,是4个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x ,y 表示直角三角形的两条直角边(x > y ),请观察图案,指出下列关系式不正确...的是 【 】 A .2249x y B .2x y C .2449xy D .13x y二、填空题( 每小题3分,共21分) 9.若x ,y 为实数,且∣x +23y =0,则(x +y )2017的值为 .1022(23)(31) .11. 实数a ,b 在数轴上的对应点如图所示,则∣a -b2a .12.若x =237+3x 2+(23)x 3= . 13.如图,在平面直角坐标系中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0), (2,0),点D 在y 轴上,则点C 的坐标是 .14.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D ,B 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF = .15.如图,R t △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在斜边AC 上,与点B '重合,AE 为折痕,则E B '= .三、解答题:(本大题共8个小题,满分75分) 16.(每小题4分 共8分)计算:(102818(51)22; (2)a 3358350322a a a a a . 第11题图0baB 'ABCEaAB CDEFA OB CD第13题图xy 第14题图第15题图17.(8分) 8a与172a 是同类二次根式,那么要使式子2ax xa 有意义, x 的取值范围是什么?18.(9分)如图,每个小正方形的边长都是1, (1)求四边形ABCD 的周长和面积 (2)∠BCD 是直角吗?19.(9分)如图所示,在□ABCD 中,点E ,F 分别在边BC 和AD 上,且CE =AF ,(1)求证:△ABE ≌ △CDF ;(2)求证:四边形AECF 是平行四边形.20.(10分) 如图所示,在菱形ABCD 中,点E ,F 分别是边BC ,AD 的中点,(1)求证:△ABE ≌ △CDF ;(2)若∠B =60°,AB =4,求线段AE 的长.第18题图AB第19题图A B CDEF 第20题图ABC DFE21.(10分)如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE ,过点C 作CF ∥BD 交线段OE 的延长线于点F ,连接DF .求证: (1)OD =CF ;(2)四边形ODFC 是菱形.22.(10分)如图所示,矩形ABCD 的对角线相交于点O ,OF ⊥AD 于点F ,OF =2cm ,AE ⊥BD 于点E ,且BE ﹕BD =1﹕4,求AC 的长.23.(11分)在平面内,正方形ABCD 与正方形CEFH 如图放置,连接DE ,BH ,两线交于M ,求证: (1)BH =DE ; (2)BH ⊥DE .参考答案一、选择题 题号 1 2 3 4 5 6 7 8 答案ACCBDBCD第21题图ABCDFE OABOEDFC第22题图HM A BFEC D第23题图二、填空题题号9 10 11 12 13 14 15 答案 1 1 b 2+3(5,4)7 32三、解答题16.(1)321(4分)(2)272a a(4分)17.a=5;……………………3分5≤x≤10 ……………………8分18.(1)周长263517……………………3分面积14.5 ……………………6分(2)是……………………7分,证明:略.……………………9分19.(1)略5分(2)略9分20.(1)略5分(2)证出AE是高8分,AE=2310分21.证明:(1)∵CF∥BD ∴∠DOE=∠CFE,∵E是CD的中点,∴CE=DE在△ODE和△FCE中,DOE CFECE DEDEO CEF,∴△ODE≌△FCE(ASA)∴OD=CF.……………………6分(2)由(1)知OD=CF,∵CF∥BD,∴四边形ODFC是平行四边形在矩形ABCD中,OC=OD,∴四边形ODFC是菱形.……………………10分22.解法一:∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD,AC=BD,又∵OF⊥AD,∴OF∥AB,又∵OB=OD,∴AB=2OF=4cm,∵BE︰BD=1︰4,∴BE︰ED=1︰3 ……………………3分设BE=x,ED=3 x,则BD=4 x,∵AE⊥BD于点E∴22222AE AB BE AD ED,∴16-x2=AD2-9x2………………6分又∵AD2=BD2-AB2=16 x2-16 ,∴16-x2=16 x2-16-9x2,8 x2=32∴x2=4,∴x=2 ……………………9分∴BD=2×4 =8(cm),∴AC=8 cm .……………………10分解法二:在矩形ABCD中,BO=OD=12BD,∵BE︰BD=1︰4,∴BE︰BO=1︰2,即E是BO的中点……………………3分又AE⊥BO,∴AB=A O,由矩形的对角线互相平分且相等,∴AO=BO ……………………5分∴△ABO是正三角形,∴∠BAO=60°,∴∠OAD=90°-60°=30°……………………8分在Rt△AOF中,AO=2OF=4,∴AC=2AO=8 ……………………10分23.(1)提示:证明:△BCH≌△DCE(SAS)……………………6分(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.……………………11分附:初中数学学习方法总结(1) 整理重点有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学注重推理,不必死背,所以什麼都不背,这观念并不正确。
北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >
>
< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度
易
1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20
中
9,10,21,22
难
16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角
形
直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24
北师大版2020八年级数学下册第二章一元一次不等式和一元一次不等式组期中复习题B(附答案)

北师大版2020八年级数学下册第二章一元一次不等式和一元一次不等式组期中复习题B (附答案)1.某同学在解不等式组的过程中,画的数轴除不完整外,没有其它问题.他解的不等式组可能是( )A .B .C .D . 2.下列数学表达式中是不等式的是( )A .5x =4B .2x +5yC .6<2xD .0 3.若a b >,则下列各式正确的是( )A .a b 0-<B .3a 3b -<-C .a b >D .a b 33< 4.不等式2x -6≤0的解集在数轴上表示正确的是( )A .B .C .D .5.某品牌智能手机的标价比成本价高%a ,根据市场需求,该手机需降价%x ,若不亏本,则x 应满( )A .100a x a ≤+B .100a x a ≤-C .100100a x a ≤+D .100100a x a ≤- 6.不等式4-2x >0的最大正整数解是( ).A .4B .3C .2D .17.如下图,一次函数y 1=x 十b 与一次函数y 2=kx +4的图象交于点P(1,3)则关于x 的不等式x +b >kx +4的解集是( )A .x <3B .x >3C .x >1D .x <18.若一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式04kx b <+<的解集是( )A .3x <B .23x -<<C .13x <<D .03x <<9.下列不等式是一元一次不等式的是( )A .x>3B .x+1x <0C .x+y>0D .x 2+x+9≥010.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x 为正整数,则x 可以取的所有值是__.11.已知关于x 的不等式350x a +≥的负整数解共有5个,则整数a 的值是_____. 12.如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①23x x ≥⎧⎨>-⎩;②23x x ≤⎧⎨<-⎩;③23x x ≥⎧⎨<-⎩;④23x x ≤⎧⎨>-⎩中的_____(只填写序号)13.不等式组13x x <⎧⎨<-⎩的解集为_____.14.已知50x n -≤的正整数解为1,2,3,4,则n 的取值范围是_________.15.若已知方程组y kx b y x a =-⎧⎨=-+⎩的解是13x y =-⎧⎨=⎩,则直线y=-kx+b 与直线y=x-a 的交点坐标是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年北师大新版八年级下册数学期末考试知识点复习第一章三角形的证明(二)一.等腰三角形海1•性质:等腰三角形的两个底角相等(等边对等角)探2.判定:有两个角相等的三角形是等腰三角形(等角对等边)探3.推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”).探4.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60。
的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形探5.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二.直角三角形探1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.探2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定探3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,—共有5种判定方法.三.线段的垂直平分线探1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上探2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等探3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的长为半径作弧,两弧交于点M N;作直线MN则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题四•角平分线探1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上探2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等探3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法•遇到角平分线时,要构造全等三角形第二章一元一次不等式和一元一次不等式组一.不等关系探1. 一般地,用符号“(或“w” ), “>” (或)连接的式子叫做不等式…..a 2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.探3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语•非负数<===> 大于等于0( > 0) <===> 0 和正数<===> 不小于0非正数<===> 小于等于0( W 0) <===> 0 和负数<===> 不大于0二.不等式的基本性质探1.掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a_c>b_c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即a b如果a>b,并且c>0,那么ac>bc,——.c c(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, —bc c探2.比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了•三.不等式的解集:探1.能使不等式成立的未知数的值,叫做不等式的解.;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式….探2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同•O 3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四• 一元一次不等式:探1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.探2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向•探3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)探4. 一元一次不等式基本情形为ax>b(或ax<b)b①当a>0时,解为x —;②当a=0时,且b<0,则x取一切实数;当a=0时,且b > 0,则无解;a③当a<0时,解为x b;aa5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设:设出适当的未知数;③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;⑤答:写出答案,并检验答案是否符合题意 五• 一元一次不等式与一次函数 六• 一元一次不等式组探1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组探2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集 共部分,就说这个不等式组无解•几个不等式解集的公共部分,通常是利用数轴来确定• 探3.解一元一次不等式组的步骤 : (1) 分别求出不等式组中各个不等式的解集 ;(2)利用数轴求出这些解集的公共部分 ,即这个不等式组的解集• 两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b )第三章平移和旋转一. 图形的平移探1・概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
探2.性质:(1)平移前后图形全等; (2)对应点连线平行或在同一直线上且相等。
探3・平移的作图步骤和方法:(1)分清题目要求,确定平移的方向和平移的距离; (2)分析所作的图形,找出构成图形的关健点;(3)沿定的方向,按一定的距离平移各个关健点; (4)连接所作的各个关键点,并标上相应的字母; (5)写出结论二. 图形的旋转,叫做一元一次不等式组.如果这些不等式的解集无公探1・概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明: (1)图形的旋转是由旋转中心和旋转的角度所决定的;(2 )旋转过程中旋转中心始终保持不动. (3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的. ⑤旋转不改变图形的大小和形状.探2•性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.探3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形. 说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.三.中心对称探1.概念:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
探2.基本性质:(1)成中心对称的两个图形具有图形旋转的一切性质。
(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
探3.中心对称图形(1)中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
(2)中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。
(3)图形的平移、轴对称(折叠)、中心对称(旋转)的对比探1.把一个多项式化成几个整式的积的形式,这种变形叫做把这.个多项式分解因式探2.因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘•二.提公共因式法探1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式•这种分解因式的方法叫做提公.因式.法…….如:ab ac a(b c)探2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即:ma mb me m(a b c)探3.易错点点评:(1)注意项的符号与幕指数是否搞错;(2)公因式是否提“干净”;(3) 多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉•三.运用公式法探1.如果把乘法公式反过来,就可以用来把某些多项式分解因式•这种分解因式的方法叫做运用公式法…….探2.主要公式:(1) 平方差公式:a2 b2 (a b)(a b)(2) 完全平方公式:a2 2ab b2 (a b)22 2 2a 2ab b (a b)a 3.易错点点评:因式分解要分解到底.如x4y4(x2y2)(x2y2)就没有分解到底.探4.运用公式法:(1) 平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2) 完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幕的底数乘积的2倍.探5.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3) 用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4) 因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5) 因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止第五章分式.分式,出现了分数;类似地,当两个整式不能整除时,就出现了分式•AAB ,可以表示成-的形式.如果除式B 中含有字母,那么称-为分式,对于任意一个分BB式,分母都不能为零•M(M 0)探4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它二.分式的乘除法,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.A C AC ACADB D BD , B D BC B C分式乘方,把分子、分母分别乘方.探3.分子与分母没有公因式的分式 ,叫做最简分式.三.分式的加减法探1.分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相 等的同分母的分式,叫做分式的通分….探2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减 (1)同分母的分式相加减,分母不变,把分子相加减;探1.两个整数不能整除时整式A 除以整式探2.整式和分式统称为有理式整式,即有:有理式整式分式探3.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质分式的分子与分母都乘以 (或除以)同一个不等于零的整式,分式的值不变•的们的公因式,也就是把分子、分母的公因式约去 ,这叫做约分•探1.分式乘以分式,用分子的积做积的分子 逆向运用n nA nB n(n 为正整数)A n AB n B nA,当n 为整数时,仍然有一BA成立.B n上述法则用式子表示是(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减探3.概念内涵字母,取各分母所有字母的最高次幕的积,如果分母是多项式,则首先对多项式进行因式分解四. 分式方程 探1.解分式方程的一般步骤:① 在方程的两边都乘最简公分母,约去分母,化成整式方程; ② 解这个整式方程;③把整式方程的根代入最简公分母 ,看结果是不是零,使最简公母为零的根是原方程的增根 探2.列分式方程解应用题的一般步骤 ① 审清题意; ② 设未知数;③ 根据题意找相等关系,列出(分式)方程; ④ 解方程,并验根; ⑤ 写出答案.上述法则用式子表示是AD BCBD BDAD BC BD通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的,必须舍去。