第九章欧氏空间分析

合集下载

高教线性代数第九章 欧氏空间课后习题答案

高教线性代数第九章  欧氏空间课后习题答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, nR 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j iij y x a,),(αααα,由于A 是正定矩阵,因此∑ji j iij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =,因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,,(,)ij i ji ja x xααα==∑,,(,)iji ji jay y βββ==∑,故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

9.1 欧氏空间定义及性质

9.1  欧氏空间定义及性质

定义 4 称向量 , ( V) 正交,记成 (, ) 0 .
由定义 3 可知, (, ) cos ,故非零向量, 具有如
下结论: , 互相垂直 夹角 为 90 度 cos 0 .
这里正交的定义与解析几何中正交定义是一致的.
(α, kβ) = ( kβ,α) = k (β,α) = k (α,β) .
6) (α,β+γ) = (α,β) + (α,γ)
(α,β+γ) = (β+γ,α) = (β,α) + (γ,α)
= (α,β) + (α,γ) .
7) (0,α) = (α,0) = 0 ( 对任意的α∈V )
3) (α+β,γ) = (α,γ) + (β,γ) 4) (α,α)≥0 ,并且α = 0 当且仅当 (αα) = 0 这时,称V是欧几里德空间.
公理1称为对称性,公理2,3合称为线性性,公理4称 为恒正性. 对称性,线性性和恒正性正是数量积(如功) 的基本属性.
在此基础上可进一步建立向量长度、夹角、距离等概 念,这均为几何空间的特征,是以欧氏几何为基础的, 故称为欧氏空间.
r
r
(a11, b11) (a22, b11) (arr , b11) (aii, b11) aib1(i, 1)
i1
i1
r
r
(a11, b22 ) (a22, b22 ) (arr , b22 ) (aii , b22 ) aib2 (i , 2 )
x1 = x2 = ···= xn = 0 当且仅当 (ξ,ξ) = x12 + ···+ xn2 = 0.

第九章欧式空间 (2)

第九章欧式空间 (2)

( ), ( )
( ( )), ( ( )) ( ), ( )
( , )

为欧氏空间V到V"的同构映射.
§9.3 同构
5、两个有限维欧氏空间V与V'同构
d im V d im V .
'
§9.3 同构
标准正交基, 在这组基下,V中每个向量 可表成
x 1 1 x 2 2 x n n ,
xi R
作对应 : V R n , ( ) ( x 1 , x 2 , , x n ) 易证 是V到 R n 的 1 1 对应. 且 满足同构定义中条件1)、2)、3), 故 为由V到 R n 的同构映射,从而V与 R n 同构.
( , ) (

1


1
( )), (
1
( ))

1
ቤተ መጻሕፍቲ ባይዱ
( ),
1
( )


1
为欧氏空间V'到V的同构映射.
§9.3 同构
③ 若 , 分别是欧氏空间V到V'、V'到V"的同构映射, 则 是欧氏空间V到V"的同构映射. 事实上,首先, 是线性空间V到V"的同构映射. 其次,对 , V , 有
第九章 欧氏空间
§1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间
§6 对称矩阵的标准形
§7 向量到子空间的 距离─最小二乘法 §8酉空间介绍 小结与习题
§9.3 同构
一、欧氏空间的同构 二、同构的基本性质

第九章欧几里得空间

第九章欧几里得空间

xi 2
i 1
(4) , arccos
n
xi yi
i1
n
n
xi2
yi2
i1
i1
第九章欧几里得空间
12
首页 上页 下页 返回 结束
n
(5) d() (xi yi)2 i1
4. 标准正交基的存在性与正交化方法
设 1 ,2 , ,n 是 一 组 基 . 正 交 化 过 程 如i1aj1 ai2aj2 ainajn 0, i j A 是 正 交 矩 阵 A 的 列 向 量 组 和 行 向 量 组 都 构 成
R n 的 标 准 正 交 基 .
第九章欧几里得空间
15
首页 上页 下页 返回 结束
6. 对称变换与对称矩阵
设是n维欧氏空间V的一个线性变换. 是
长度: | | (,)
距离: d(,)||
夹角:,arccos|( |,|)|,0,.
第九章欧几里得空间
6
首页 上页 下页 返回 结束
(3) 度量矩阵
基 1 ,2 , ,n 的 度 量 矩 阵
(1,1) (1,2) A( aij)nn (2,1) (2,2)
(n,1) (n,2)
(1,n) (2,n)
对称变换的刻化:
矩阵是正交阵.
第九章欧几里得空间
14
首页 上页 下页 返回 结束
n 级 实 数 矩 阵 A 是 正 交 矩 阵 A A E . 标准正交基到标准正交基的过渡矩阵是正交矩阵; 设A (aij ),则A是正交矩阵
1, 当i j, a1ia1j a2ia2j anianj 0, 当i j.
3. 标准正交基下基本度量的表达式
设 1,2, ,n是 欧 氏 空 间 V的 一 个 标 准 正 交 基 ,

第09章 欧式空间

第09章 欧式空间

= α s−1

(α s−1, ε1 ) (ε1,ε1 )
ε
1
−⋯

(α s−1 (ε s−2
,ε ,ε
s −2 s−2
) )
ε
s
−2
,ε s
= αs

s −1 k=1
(α s (εk
− εk ) ,εk )
ε
k
① L(ε1 ,⋯,ε s ) = L (α1 ,⋯,αs ) ⇔ ε1,⋯,ε s 与 α1,⋯, αs 等价
α = (ε1,⋯,ε n ) X = (η1,⋯,ηn ) X , X = T X , β = (ε1,⋯,ε n)Y = (η1,⋯,η n)Y ,Y = T Y
(α, β )在基 ε1,⋯,ε n ,η1,⋯,ηn下的度量矩阵分别为 G, G
(α ,
β)
=
X
'GY
=
X
'
T
'GT Y
=
X
'
GY
∴G = T 'GT 即 G~G
⎧R欧式空间
线性空间定义度量性质后 ⎪⎪C酉空间
⎨⎪思维时空空间 ⎪⎩辛空间
三维几何空间 R3
R
2
:设
� a
=
(a1
,
a2
),
� b
=
(b1,
b2)
�� a ⋅b = a1b1 + a2b2 ∈R
� a 的长度:
� a
=
a2 + a2 =
�� a⋅a
1
2
�� a,b
的夹角:
<
�� a, b
>= ar

欧氏空间

欧氏空间
2
≤ α + 2 α ⋅ β + β = ( α + β )2
2 2
由于 α + β 与 α + β 此即三角不等式。
都是非负实数,故有
α+β ≤ α + β
第九章 欧几里得空间
(α , β ) 由于 ≤ 1, α⋅β
(α , β ) 有意义。 故 cos θ = α⋅β
定义3 设 α 与β 是欧氏空间V的两个非零向量,α 与β 的夹 (α , β ) , 0≤θ ≤π θ = arc cos 角规定为: α⋅β 例9.1.8 在欧氏空间 R 3 中,取向量 α = (1, 0, 0), β = (1,1, 0), 求 α 与β 的夹角。 解: 于是
(γ , γ ) = (α + t β , α + t β ) = (α , α ) + 2(α , β )t + ( β , β )t 2 ≥ 0 (9.1.4)
这是关于t的一个二次三项式,又 ( β , β ) > 0, 故 ∆ ≤ 0, 4(α , β )2 − 4(α , α )( β , β ) ≤ 0 (α , β )2 ≤ (α , α )( β , β ), 故有 (α , β ) ≤ α ⋅ β 因此 即
(α , β + γ ) = (α , β ) + (α , γ ) 。 (α , k β ) = k (α , β ) 。
∀α 1 , α 2 , k1 , k2 ,
n m
,α n , β1 , β 2 , , kn , l1 , l2 ,
n m
, β n ∈V
, ln ∈ R,
则有
( ∑ kiα i , ∑ li β i ) = ∑ ∑ ki li (α i , β j ) 。

定义与基本性质欧氏空间

定义与基本性质欧氏空间

欧氏空间的性质
完备性
在欧氏空间中,任意柯西序列都收敛,即任意两点之间的距离可 以由有限步的有限位移得到。
有限维性
欧氏空间是有限维的,其维度等于空间中独立坐标的个数。
连通性
欧氏空间是连通的,即任意两点之间都存在一条连续的路径。
欧氏空间的维度
一维欧氏空间
只有一条坐标轴。
二维欧氏空间
有两条相互垂直的坐标轴。
向量的模
欧氏空间中向量的模定义为向量长度或大小,表 示为$| vec{v} |$,计算公式为$sqrt{v_1^2 + v_2^2 + cdots + v_n^2}$。
向量的内积
欧氏空间中向量的内积定义为两个向量的点积, 表示为$vec{v} cdot vec{w}$,计算公式为 $v_1w_1 + v_2w_2 + cdots + v_nw_n$。
连续性的几何意义
在欧氏空间中,连续性意味着函数图像的每一点附近都有其他点,这些点与图像 上对应的点足够接近。
03
欧氏空间的应用
解析几何中的欧氏空间
解析几何是数学的一个重要分支,它使用代数方法研究几何对象。在解析几何中 ,欧氏空间是一个基本的、重要的概念,用于描述平面和三维空间中的点、线、 面等几何元素。
长度和半径
欧氏空间中,线段的长度和圆的 半径可以通过度量性质进行计算 。
欧氏空间的平行性
平行直线
在欧氏空间中,两条直线平行当且仅当它们的方向向量成比 例。
平行平面
在欧氏空间中,两个平面平行当且仅当它们的法向量共线。
欧氏空间的连续性
连续性定义
在欧氏空间中,如果对于任意给定的正数$epsilon$,都存在一个正数$delta$,使 得对于空间中的任意两点$P$和$Q$,只要$d(P, Q) < delta$,就有$d(f(P), f(Q)) < epsilon$,则称函数$f$在欧氏空间中是连续的。

欧几里得空间

欧几里得空间
即 (i , j ) 0, i j, i, j 1,2, ,m 则 1 2 m 2 1 2 2 2 m 2 .
例3 已知 2,1,3,2, 1,2,2,1
在通常的内积定义下,求 ,( , ), , , .
例1 C(a,b) 为闭区间 [a,b] 上的所有实连续函数
所成线性空间,对于函数 f ( x), g( x) ,定义
b
( f , g) a f ( x)g( x) dx

则 C(a,b) 对于②作成一个欧氏空间.
证: f ( x), g( x), h( x) C(a,b), k R
b
1 . ( f , g) a f ( x)g( x) dx
b
( g, f )=a g( x) f ( x) dx
b
b
2 . (k f , g) a k f ( x)g( x) dx ka f ( x)g( x) dx
k( f , g)
3
.
(f

g,
h)
b
a

f (x)
k 1
l 1
nn
nn

( k , l )ckiclj
aklckiclj CiAC j
k1 l 1
k1 l 1
B (i , j ) CiAC j
C1


C

2

A

C1
,
C2
,
Cn
,Cn CAC
欧氏空间的定义
设V是实数域 R上的线性空间,对V中任意两个向量
、 , 定义一个二元实函数,记作 ( , ) ,若 ( , ) 满足性质: , , V , k R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 欧氏空间练习题
1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立:
(1)2222||2||2||||ηξηξηξ+=-++; (2).||4
1
||41,22ηξηξηξ--+=
在解析几何里,等式(1)的几何意义是什么? 2.在区氏空间n R 里,求向量)1,,1,1(Λ=α与每一向量
)0,,0,1,0,,0()
(ΛΛi i =ε,n i ,,2,1Λ=
的夹角.
3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量
)
4,5,2,3()2,2,1,1()
0,4,1,2(=--=-=γβα 中每一个正交.
4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形.
5.设ηξ,是一个欧氏空间里彼此正交的向量.证明:
222||||||ηξηξ+=+(勾股定理)
6.设βααα,,,,21n Λ都是一个欧氏空间的向量,且β是n ααα,,,21Λ的线性组合.证明:如果β与i α正交,n i ,,2,1Λ=,那么0=β. 7.设n ααα,,,21Λ是欧氏空间的n 个向量. 行列式
>
<><><>
<><><><><>
<=
n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121Λ
ΛΛΛΛΛ
ΛΛ 叫做n ααα,,,21Λ的格拉姆(Gram)行列式.证明),,,(21n G αααΛ=0,必要且只要
n ααα,,,21Λ线性相关.
8.设βα,是欧氏空间两个线性无关的向量,满足以下条件:
><><ααβα,,2和>
<>
<βββα,,2都是0≤的整数.
证明: βα,的夹角只可能是
6
54
3,32,2π
π
ππ或
. 9.证明:对于任意实数n a a a ,,,21Λ,
2
3322211
(||n n
i i
a a a a n a
++++≤∑=Λ).
10.已知
)0,1,2,0(1=α,)0,0,1,1(2-=α, )1,0,2,1(3-=α,)1,0,0,1(4=α
是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基.
11.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组.
12.令},,,{21n αααΛ是欧氏空间V 的一组线性无关的向量,},,,{21n βββΛ是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即
><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121ΛΛΛ
13.令n γγγ,,,21Λ是n 维欧氏空间V 的一个规范正交基,又令
},2,1,10,|{1n i x x V K n
i i i i Λ=≤≤=∈=∑=γξξ
K 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少?
14.设},,,{21m αααΛ是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:
∑=≤m
i i
1
22||,ξα
.
15.设V 是一个n 维欧氏空间.证明
)(i 如果W 是V 的一个子空间,那么W W =⊥⊥)(.
)(ii 如果21,W W 都是V 的子空间,且21W W ⊆,那么⊥⊥⊆12W W )(iii 如果21,W W 都是V 的子空间,那么⊥⊥⊥+=+2121)(W W W W
16.证明,3R 中向量),,(000z y x 到平面
}0|),,{(3=++∈=cz by ax R z y x W
的最短距离等于
2
2
2
000||c
b a cz by ax ++++.
17.证明,实系数线性方程组
∑===n
j i j ij
n i b x a
1
,,2,1,Λ
有解的充分且必要条件是向量n n R b b b ∈=),,,(21Λβ与齐次线性方程组
∑===n
j j ji
n i x a
1
,,2,1,0Λ
的解空间正交.
18.令α是n 维欧氏空间V 的一个非零向量.令
}0,|{>=<∈=αξξαV P .
αP 称为垂直于α的超平面,它是V 的一个1-n 维子空间.V 中有两个向量ξ,η说是
位于αP 的同侧,如果><><αηαξ,,与同时为正或同时为负.证明,V 中一组位于超平面αP 同侧,且两两夹角都2
π≥
的非零向量一定线性无关.
[提示:设},,,{21r βββΛ是满足题设条件的一组向量.则)(0,j i j i ≠>≤<ββ,并且不妨设)1(0,r i i ≤≤>><αβ.如果∑==r
i i i c 10β,那么适当编号,可设
0,,,0,,,121≤≥+r s s c c c c c ΛΛ,)1(r s ≤≤,令∑∑+==-==r
s j j j s i i i c c 1
1
ββγ,证明0=γ.由
此推出0=i c )1(r i ≤≤.] 19.设U 是一个正交矩阵.证明:
)(i U 的行列式等于1或-1; )(ii U 的特征根的模等于1; )(iii 如果λ是U 的一个特征根,那么
λ
1
也是U 的一个特征根; )(iv U 的伴随矩阵*U 也是正交矩阵.
20.设02
cos
≠θ
,且
⎪⎪⎪⎭⎫

⎛-=θθθθ
cos sin 0sin cos 00
01U . 证明,U I +可逆,并且
⎪⎪⎪⎭

⎝⎛-=+--010*******tan ))((1
θU I U I
21.证明:如果一个上三角形矩阵
⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝
⎛=nn n n n a a a a a a a a a a A Λ
ΛΛΛΛΛΛΛΛ00000
0333223221131211 是正交矩阵,那么A 一定是对角形矩阵,且主对角线上元素ij a 是1或-1.
22.证明:n 维欧氏空间的两个正交变换的乘积是一个正交变换;一个正交变换的逆变换还是一个正交变换.
23.设σ是n 维欧氏空间V 的一个正交变换.证明:如果V 的一个子空间W 在σ之下不变,那么W 的正交补⊥W 也在σ下不变.
24.设σ是欧氏空间V 到自身的一个映射,对ηξ,有,)(),(ηησξσ=证明σ是
V 的一个线性变换,因而是一个正交变换. 25.设U 是一个三阶正交矩阵,且1det =U .证明:
)(i U 有一个特征根等于1; )(ii U 的特征多项式有形状
1)(23-+-=tx tx x x f
这里31≤≤-t .
26.设},,,{21n αααΛ和},,,{21n βββΛ是n 维欧氏空间V 的两个规范正交基.
)(i 证明:存在V 的一个正交变换σ,使n i i i ,,2,1,)(Λ==βασ.
)(ii 如果V 的一个正交变换τ使得11)(βατ=,那么)(,),(2n ατατΛ所生成的子空
间与由n ββ,,2Λ所生成的子空间重合.
27.设σ是n 维欧氏空间V 的一个线性变换.证明,如果σ满足下列三个条件的任意两个,那么它必然满足第三个:)(i σ是正交变换;)(ii σ是对称变换;)(iii ισ=2是单位变换.
28.设σ是n 维欧氏空间V 的一个对称变换,且σσ=2.证明,存在V 的一个规范正交基,使得σ关于这个基的矩阵有形状
⎪⎪⎪⎪⎪⎪⎪⎪⎭


⎛000101O
O 29.证明:两个对称变换的和还是一个对称变换.两个对称变换的乘积是不是对称变换?找出两个对称变换的乘积是对称变换的一个充要条件.
30.
n 维欧氏空间V 的一个线性变换σ说是斜对称的,如果对于任意向量V ∈βα,, )(,),(βσαβασ-=.
证明:
)(i 斜对称变换关于V 的任意规范正交基的矩阵都是斜对称的实矩阵(满足条
件A A -='的矩阵叫做斜对称矩阵)
)(ii 反之,如果线性变换σ关于V 的某一规范正交基的矩阵是斜对称的,那么
σ一定是斜对称线性变换.
)(iii 斜对称实矩阵的特征根或者是零,或者是纯虚数.
31.令A 是一个斜对称实矩阵.证明,A I +可逆,并且1))((-+-=A I A I U 是一个正交矩阵.
32.对于下列对称矩阵A,各求出一个正交矩阵U,使得AU U '是对角形式:
)(i ⎪
⎪⎪

⎫ ⎝⎛--=510810228211A ; )(ii ⎪⎪⎪⎭⎫
⎝⎛----=114441784817A。

相关文档
最新文档