截面与面板数据讲义法分析-CH3
面板数据分析方法

面板数据分析方法面板数据分析方法面板数据是指在时间序列上取多个截面,在这些截面上同时选取样本观测,也叫“平行数据”。
下面是小编想跟大家分享的面板数据分析方法,欢迎大家浏览。
面板数据的分析方法面板数据分析方法是最近几十年来发展起来的新的统计方法,面板数据可以克服时间序列分析受多重共线性的困扰,能够提供更多的信息、更多的变化、更少共线性、更多的自由度和更高的估计效率,而面板数据的单位根检验和协整分析是当前最前沿的领域之一。
在本文的研究中,我们首先运用面板数据的单位根检验与协整检验来考察能源消费、环境污染与经济增长之间的长期关系,然后建立计量模型来量化它们之间的内在联系。
面板数据的单位根检验的方法主要有Levin,Lin and CHU(2002)提出的LLC检验方法。
Im,Pesearn,Shin(2003)提出的'IPS检验, Maddala和Wu(1999),Choi(2001)提出的ADF和PP检验等。
面板数据的协整检验的方法主要有Pedroni[8] (1999,2004)和Kao(1999)提出的检验方法,这两种检验方法的原假设均为不存在协整关系,从面板数据中得到残差统计量进行检验。
Luciano(2003)中运用Monte Carlo模拟对协整检验的几种方法进行比较,说明在T较小(大)时,Kao检验比Pedroni检验更高(低)的功效。
具体面板数据单位根检验和协整检验的方法见参考文献。
面板数据的实证分析指标选取和数据来源经济增长:本文使用地区生产总值,以1999年为基期,根据各地区生产总值指数折算成实际,单位:亿元。
能源消费:考虑到近年来我国能源消费总量中,煤炭和石油供需存在着明显低估,而电力消费数据相当准确。
因此使用电力消费更能准确反映能源消费与经济增长之间的内在联系(林伯强,2003)。
所以本文使用各地区电力消费量作为能源消费量,单位:亿千瓦小时。
环境污染:污染物以气休、液体、固体形态存在,本文选取工业废水排放量作为环境污染的量化指标,单位:万吨。
面板数据分析PPT课件

相同(都是1),t 却因截面(时点)不同而异。可见时点固定效应 模型中的截距项t 包括了那些随不同截面(时点)变化,但不随个 体变化的难以观测的变量的影响。t 是一个随机变量。
以家庭消费性支出与可支配收入关系为例,“全国零售物价指数” 就是这样的一个变量。对于不同时点,这是一个变化的量,但是对 于不同省份(个体),这是一个不变化的量。
变换上式: yi = + X i ' +( i - + i ), i = 1, 2, …, N
称作平均数模型。对上式应用 OLS 估计,则参数估计量称作平均数 OLS 估 计量。此条件下的样本容量为 N,(T=1)。
如果 X i 与( i - + i )相互独立,和的平均数 OLS 估计量是一致估计量。
yit = + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T 如果模型是正确设定的,且解释变量与误差项不相关,即 Cov(Xit,it) = 0。 那么无论是 N,还是 T,模型参数的混合最小二乘估计量都具有 一致性。 对于经济序列每个个体 i 及其误差项来说通常是序列相关的。NT 个相关 观测值要比 NT 个相互独立的观测值包含的信息少。从而导致误差项的标 准差常常被低估,估计量的精度被虚假夸大。
为误差项(标量),满足通常假定条件。Xit 为 k 1 阶回归变量列
向量(包括 k 个回归变量),为 k 1 阶回归系数列向量,则称此
模型为时点固定效应模型。
第8页/共30页
2.2.2 时点固定效应模型(time fixed effects model)
设定时点固定效应模型的原因。假定有面板数据模型
面板数据讲义

面板数据模型与应用1.面板数据定义panel data的中译:面板数据、桌面数据、平行数据、纵列数据、时间序列截面数据、混合数据(pool data)、固定调查对象数据。
面板数据定义(1)面板数据定义为相同截面上的个体在不同时点的重复观测数据。
(2)称为纵向(longitudinal)变量序列(个体)的多次测量。
面板数据从横截面(cross section)看,是由若干个体(entity, unit, individual)在某一时点构成的截面观测值,从纵剖面(longitudinal section)看每个个体都是一个时间序列。
1图1 N=7,T=50的面板数据示意图2面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, Ti对应面板数据中不同个体。
N表示面板数据中含有N个个体。
t对应面板数据中不同时点。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
2. 面板数据模型面板数据模型是利用面板数据构建的模型。
面板数据系一组个体在一段时间内的观测值形成的数据集,这里“个体”可以是个人、家庭、企业、行业、地区3或国家(Baltagi,2008)。
1966年,Balestra & Nerlove发表了第一篇利用面板数据模型研究天然气需求估计的论文,此后,面板数据模型这一新的计量分析方法在理论和应用上得到迅速发展,已形成现代计量经济学的一个相对独立的分支。
面板数据模型由于同时使用了截面数据(cross-sectional data)和时间序列数据(time series data),因而可以控制个体的异质性,识别、测量单纯使用这两种数据无法估计的效应;并且具有包含更多的信息、更大的变异和自由度、变量间的共线性也更弱的特性,可得到更精确的参数估计(Hsiao,2003、2008)。
面板数据模型.讲课文档

其中,
称为复合误差(composite error)。
这一结果与1987年数据的横截面OLS回归结果不一 样。注意,使用混合OLS并不解决遗漏变量问题。
两时期面板数据分析(续4)
另一种方法,考虑了非观测效应与解释变量相关性。
(面板数据模型主要就是为了考虑非观测效应与解 释变量相关性的情形)例如在犯罪方程中,让ai中
为两类:一类是恒常不变的;另一类则随时间而变。
d2t表示当t=1时等于0而当t=2时等于1的一个虚拟变 量,它不随i而变。ai概括了影响yit的全部观测不到 的、在时间上恒定的因素,通常称作非观测效应, 也称为固定效应,即ai在时间上是固定的。特质误 差uit表示随时间变化的那些非观测因素。
两时期面板数据分析(续2)
第三,Panel Data Model可以通过设置虚拟变量对 个别差异(非观测效应)进行控制;即面板数据模 型可以用来有效处理遗漏变量(omitted varaiable) 的模型错误设定问题。
遗漏变量
使用面板数据的一个主要原因是,面板数据可以用 来处理某些遗漏变量问题。
例如,遗漏变量是不随时间而变化的表示个体异质 性的一些变量,如国家的初始技术效率、城市的历 史或个人的一些特征等。这些不可观测的不随时间 变化的变量往往和模型的解释变量相关,从而产生 内生性,导致OLS估计量有偏且不一致。
2000 4203.555 8206.271 5522.762 4361.555 3890.580 4077.961 5317.862 3612.722 4360.420 3877.345 5011.976 8651.893 3793.908 6145.622 6950.713
2001 4495.174 8654.433 6094.336 4457.463 4159.087 4281.560 5488.829 3914.080 4654.420 4170.596 5159.538 9336.100 4131.273 6904.368 7968.327
面板数据分析方法 ppt课件

it i t uit
i 1,2, N t 1,2,T
面板数据:多个观测对象的时间序列数据所组 成的样本数据。
i 反映不随时间变化的个体上的差异性,
被称为个体效应
t 反映不随个体变化的时间上的差异性,
被称为时间效应。
ppt课件 33
第二节 面板数据的模型形式
11,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 IP 2,000 3,000 5,000 7,000 9,000 11,000 13,000 CP_1996 CP_1997 CP_1998 CP_1999 CP_2000 CP_2001 CP_2002
安徽 北京 福建 河北 黑龙江 吉林 江苏 江西 辽宁 内蒙古 山东 上海 山西 天津 浙江
14000 12000 10000 8000 6000 4000 2000 0 1996 1997 1998 1999 2000 2001
浙江 山西 山东 辽宁 江苏
山西
14000 12000 10000 8000 6000 4000 2000
ppt课件
16
二、面板数据的分类
2.微观面板数据与宏观面板数据 微观面板数据一般指一段时期内不同个体或者家庭 的调查数据,其数据中往往个体单位较多,即 N较大( 通常均为几百或上千)而时期数 T较短(最短为两个时 期,最长一般不超过20个时期)。
ppt课件
17
二、面板数据的分类
2.微观面板数据与宏观面板数据 宏观面板数据通常为一段时间内不同国家或地区的 数据集合,其个体单位数量N不大(一般为7-200)而时 期数T较长(一般为20-60年)。
3面板数据分析方法步骤全解

面板数据分析方法步骤全解面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。
面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。
步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
《面板数据分析》课件
面板数据分析的步骤
1
数据描述
对数据进行描述性统计,确定数据在时间和个体方面的特征。
2
ห้องสมุดไป่ตู้
分类讨论
分析不同情况下个体间行为的差异和影响因素,如何影响个体行为的内部因素和外部 环境。
3
建模和估计
根据分类讨论的结论,运用面板数据模型建立样本分布,通过极大似然法和广义矩估 计法进行参数估计。
4
结果解释
对估计的结果进行解释,如何分析因素对个体行为的影响和相关关系等。
生产领域
跟踪生产的进度和效果,寻找 提高生产效率的方法。
总结和展望
总结
面板数据分析是一种高通量数据分析方法,通 过对个体间微观差异的捕捉和分析,提高了分 析数据的精确性,研究结果更具有真实性和普 遍性。
展望
随着数据分析和研究技术的不断发展,面板数 据分析将进一步被广泛接受和使用,为各行各 业的发展与创新提供支持。
《面板数据分析》PPT课 件
欢迎各位来到《面板数据分析》课件。本课程将向大家介绍如何运用面板数 据分析各种数据,并运用不同的分析方法提升数据的价值。
面板数据的定义和特点
什么是面板数据?
面板数据指的是在一定时间内,对相同个体做重复观测所得到的数据。
面板数据的特点
相对于横截面数据和时间序列数据,面板数据能够更精确地反映个体间的差异和发展。
面板数据模型的建立
线性回归模型
用于研究数值型因变量和数值 型自变量之间的关系。
逻辑回归模型
用于研究分类因变量和数值型 自变量之间的关系。
混合效应模型
考虑组间差异和个体内部差异, 更为精确地分析面板数据的特 点。
面板数据分析的常用方法
1 固定效应模型
Chap 8. Heteroskedasticity(截面和面板数据分析,复旦大学,陆铭、张晏)解析
White Test
8.3.2 The White Test for Heteroskedasticity
The White Test (B-P Test)
adds the squares and cross products of all of the
independent variables to equation (8.14).
Solutions:
Modify the OLS test statistics More efficient estimator
8.2 Heteroskedasticity-Robust Inferences after OLS Estimation
Heteroskedasticity-Robust
fmtothrs if spring==1 test female fmsat fmhsperc fmtothrs test fmsat fmhsperc fmtothrs reg cumgpa female sat hsperc tothrs if spring==1
8.3 Testing for Heteroskedasticity
squared residual by the inverse of the conditional variance of ui given xi
Examples of GLS The R-squares of OLS and WLS are not comparable
Example 8.6: Family Saving Function
8.4 Weighted Least Square Esபைடு நூலகம்imations (WLS)
横截面大数据、时间序列大数据、面板大数据
横截面数据、时间序列数据、面板数据横裁面数据:(时间固定)横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。
横截面 数据是按照统计单位排列的。
因此,横截面数据不要求统计对象及其范围相同,但要 求统计的时间相同。
也就是说必须是同一时间截面上的数据。
如:涨幅%-2.72 -1.00 -1.44 -0.98 -1.33 -2.92 -0.56 -1.18 -L94时间序列数据:(横坐标为t,纵坐标为y )在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化 状态或程度面板数据:(横坐标为t,斜坐标为y,纵坐标为z )是截面数据与时间序列数据综合起来的一种数据类型。
其有时间序列和截面两 个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据 排在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data 译作“面 板数据”。
举例:如:城市名:北京、上海、重庆、天津的GDP 分别为10、11、9、8 (单位亿 元)。
这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。
行场粉车贸粉场粉际称银机股汽国股机股国名发云钢风国创海钢能浦6■武东中首上包华如如:2000、2001、2002、2003、2004 各年的北京市GDP 分别为8、9、10、11、12 (单位亿元)。
这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。
如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为:北京市分别为8、9、10、11、12;上海市分别为9、10、11、12、13;天津市分别为5、6、7、8、9;重庆市分别为7、8、9、10、11 (单位亿元)。
这就是面板数据。
城2000200120022003北京1453上海2436重庆2135天津4531关于面板数据的统计分析在写论文时经常碰见一些即是时间序列又是截面的数据,比如分析1999-2010的公司盈余管理影响因素,而影响盈余管理的因素有6个,那么会形成如下图的数据公司1公司2公司100因素1因素6盈余管理程度因素1因素6盈余管理程度因素1因素6盈余管理程度1999 20002010如上图所示的数据即为面板数据。
计量经济学面板数据模型讲义
计量经济学面板数据模型讲义1.面板数据定义。
时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间失掉的数据;截面数据是变量在截面空间上的数据。
面板数据〔panel data〕也称时间序列截面数据〔time series and cross section data〕或混合数据〔pool data〕。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据表示图见图1。
面板数据从横截面〔cross section〕上看,是由假定干集体〔entity, unit, individual〕在某一时辰构成的截面观测值,从纵剖面〔longitudinal section〕上看是一个时间序列。
面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, TN表示面板数据中含有N个集体。
T表示时间序列的最大长度。
假定固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;假定固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列〔集体〕。
图1 N=7,T=50的面板数据表示图例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个集体组成。
共有330个观测值。
关于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T来说,假设从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,那么称此面板数据为平衡面板数据〔balanced panel data〕。
假定在面板数据中丧失假定干个观测值,那么称此面板数据为非平衡面板数据〔unbalanced panel data〕。
留意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估量模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– Under the four assumptions above, we have:
Notice 1: Zero conditional mean
• Exogenous
Endogenous
– Misspecification of function form (Chap 9) • Omitting the quadratic term • The level or log of variable
• Try to use exogenous variable! (Geography, History)
Omitted Variable Bias: The Simple Case
• Omitted Variable Bias – The true population model: – The underspecified OLS line: – The expectation of : (46)
前面3.2节中是x1对x2回归
The expectation of , where
n~x2~0来自(xi1 xi )xi2
i1 n
x1
(xi1 x1)2
the slope coefficient from the regression of x2 on x1, so
i1
~ x2~0~1x1
then, E ( ~ 1)12~ 1
• R-sq never decreases, and it usually increases when another independent variable is added to a regression.
• The factor that should determine whether an explanatory variable belongs in a model is whether the explanatory variable has a nonzero partial effect on y in the population.
reg consum laborage reg consum laborage laboredu corr laborage laboredu
Goodness-of-fit
• R-sq also equal the squared correlation coef. between the actual and the fitted values of y.
--The partial effect of x2 on y is zero in the sample. That is, -- x1 and x2 are uncorrelated in the sample. --Example
data1: 1832 rural household
reg consum laborage reg consum laborage financialK corr laborage financialK
Holding Other Factors Fixed
• The power of multiple regression analysis is that it provides this ceteris paribus interpretation even though the data have not been collected in a ceteris paribus fashion.
截面与面板数据法分析-CH3
精品jing
易水寒江雪敬奉
OLS Estimator
• OLS: Minimize
• ceteris paribus interpretations:
– Holding
fixed, then
– Thus, we have controlled for the variables when estimating the effect of x1 on y.
• it allows us to do in non-experimental environments what natural scientists are able to do in a controlled laboratory setting: keep other factors fixed.
– Omitting important factors that correlated with any independent v.
– Measurement Error (Chap 15, IV)
– Simultaneously determining one or more x-s with y (Chap 16)
OLS and Ceteris Paribus Effects
• measures the effect of x1 on y after x2,…, xk have been partialled or netted out.
• Two special cases in which the simple regression of y on x1 will produce the same OLS estimate on x1 as the regression of y on x1 and x2.
The Expectation of OLS Estimator
• Assumption 1-4
– Linear in parameters – Random sampling – Zero conditional mean
– No perfect co-linearity • none of the independent variables is constant; • and there are no exact linear relationships among the independent variables