电子科技大学-集成电路原理实验-CMOS模拟集成电路设计与仿真-王向展
低噪声CMOS电荷敏放大器设计与研制

低噪声CMOS电荷敏放大器设计与研制于奇;杨谟华;李竞春;王向展;肖海燕【期刊名称】《电子科技大学学报》【年(卷),期】2003(032)002【摘要】提出了一种新的低噪声低功耗电荷敏感放大器设计方案.用EDA软件Cadence进行模拟,得到了满意的仿真结果:直流开环增益为82.9 dB,f-2dB为28 kHz,相位裕度为46.9°,低频下输出噪声频谱密度为1.5 μv/Hz2.采用标准的3 μmP 阱CMOS工艺进行了流片,测试结果与模拟情况相近.%A new design of low-noise low-power consumption charge sensitive amplifier ispresented. Simulated by EDA software Cadence, the results obtained are satisfied. The DC open-loopgain is 82.9 dB with a 28 kHz -3 dB bandwidth and its phase margin is 46.9°. The maximum output noisespectral density is 1.5 μV/Hz2 at very low frequency. Using standard 3 μm P-Well CMOS technology, theproposed amplifier is fabricated, and the measurement results are closed to the simulation.【总页数】4页(P146-148,163)【作者】于奇;杨谟华;李竞春;王向展;肖海燕【作者单位】电子科技大学微电子与固体电子学院,成都,610054;电子科技大学微电子与固体电子学院,成都,610054;电子科技大学微电子与固体电子学院,成都,610054;电子科技大学微电子与固体电子学院,成都,610054;电子科技大学微电子与固体电子学院,成都,610054【正文语种】中文【中图分类】TN431.1【相关文献】1.0.18μm CMOS射频低噪声放大器设计 [J], 张子博;郝建华;孟泽;陈宜文2.2.4 GHz CMOS低噪声放大器设计 [J], 程远垚;宋树祥;蒋品群3.基于3.1~10.6 GHz CMOS超宽带低噪声放大器设计 [J], 赵小荣;范洪辉;朱明放;傅中君;黄海军;陈鉴富4.一种基于65纳米CMOS工艺的77GHz低噪声放大器设计 [J], 张书豪;何进;李硕;王豪;常胜;黄启俊5.基于锗硅BiCMOS工艺的低噪声差分放大器设计 [J], 张华斌;刘萍;邓春健;杨健君;刘黎明;陈卉;王红航;熊召新因版权原因,仅展示原文概要,查看原文内容请购买。
集成电路实验 王向展

电子科技大学实验报告二、实验项目名称:CMOS模拟集成电路设计与仿真三、实验地点:211大楼606房间四、实验学时:4五、实验目的:(1)综合运用课程所学知识自主完成相应的模拟集成电路版图设计,掌握基本的IC版图布局布线技巧。
(2)学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行版图的的设计与验证六、实验原理:IC设计一般规则:①根据用途要求,确定系统总体方案②根据电路的指标和工作条件,确定电路结构与类型,然后通过模拟计算,决定电路中各器件的参数(包括电参数、几何参数等),EDA软件进行模拟仿真。
③根据电路特点选择适当的工艺,再按电路中各器件的参数要求,确定满足这些参数的工艺参数、工艺流程和工艺条件。
④按电路设计和确定的工艺流程,把电路中有源器件、阻容元件及互连以一定的规则布置在硅片上,绘制出相互套合的版图,以供制作各次光刻掩模版用。
⑤生成PG带制作掩模版⑥工艺流片⑦测试,划片封装实验模拟基于Cadence 平台的电路设计与仿真七、实验内容:1、UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。
2、设计一个运算放大器电路,要求其增益大于60dB, 相位裕度大于45º,功耗小于10mW。
3、根据设计指标要求,选取、确定适合的电路结构,并进行计算分析。
4、电路的仿真与分析,重点进行直流工作点、交流AC分析、瞬态Trans分析、建立时间小信号特性和压摆率大信号分析,能熟练掌握各种分析的参数设置方法。
5、电路性能的优化与器件参数调试,要求达到预定的技术指标。
6、整理仿真数据与曲线图表,撰写并提交实验报告。
八、实验仪器与器材(1)工作站或微机终端一台(2)EDA仿真软件 1套九、实验结果:1、根据实验指导书熟悉UNIX操作系统常用命令的使用,掌握Cadence EDA仿真环境的调用。
2、根据设计指标要求,设计出如下图所示的电路结构。
并进行计算分析,确定其中各器件的参数。
电子科技大学 集成电路原理实验模拟集成电路版图设计与验证 王向展

实验报告课程名称:集成电路原理实验名称:模拟集成电路版图设计与验证小组成员:实验地点:科技实验大楼606实验时间:2017年6月19日2017年6月19日微电子与固体电子学院一、实验名称:模拟集成电路版图设计与验证二、实验学时:4三、实验原理1、电路设计与仿真实验2内容,根据电路的指标和工作条件,然后通过模拟计算,决定电路中各器件的参数(包括电参数、几何参数等),EDA软件进行模拟仿真。
2、工艺设计根据电路特点结合所给的工艺,再按电路中各器件的参数要求,确定满足这些参数的工艺参数、工艺流程和工艺条件。
3、版图设计按电路设计和确定的工艺流程,把电路中有源器件、阻容元件及互连以一定的规则布置在Candence下的版图编辑器内。
并优化版图结构。
四、实验目的本实验是基于微电子技术应用背景和《集成电路原理》课程设置及其特点而设置,为IC设计性实验。
其目的在于:1、根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路版图设计,掌握基本的IC版图布局布线技巧。
2、学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行版图的的设计与验证。
通过该实验,使学生掌握CMOS模拟IC版图设计的流程,加深对课程知识的感性认识,增强学生的设计与综合分析能力。
五、实验内容1、UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。
2、根据实验2所得参数,自主完成版图设计,并掌握布局布线的基本技巧。
3、整理版图生成文件,总结、撰写并提交实验报告。
六、实验仪器设备(1)工作站或微机终端一台(2)EDA仿真软件1套七、实验步骤1、根据实验指导书掌握Cadence EDA仿真环境的调用。
熟悉版图编辑器Layout Editor的使用。
了解基本的布局布线方法及元器件的画法。
2、根据实验2所计算验证的两级共源CMOS运放的元器件参数如表1所示,在版图设计器里画出相应的元器件,对V+、V-、V out、V DD、GND的压焊点位置合理化放置,通过金属画线将各个元器件按实验2的电路图合理连接,避免跳线。
电子科技大学-集成电路原理实验-集成电路版图识别与提取-王向展

实验报告一、实验名称:集成电路版图识别与提取二、实验学时:4三、实验原理本实验重点放在版图识别、电路拓扑提取、电路功能分析三大模块,1、仔细观察芯片图形总体的布局布线,找出电源线、地线、输入端、输出端及其对应的压焊点。
2、判定此IC采用P阱还是N阱工艺;进行版图中元器件的辨认,要求分出MOS管、多晶硅电阻和MOS电容。
3、根据以上的判别依据,提取芯片上图形所表示的电路连接拓扑结构;复查,加以修正;完成电路的提取,并分析电路功能,应用Visio 或Cadence等软件对电路进行复原。
六、实验仪器设备(1)工作站或微机终端 1台(2)芯片显微图片 1张图11、观察芯片布局明确V DD、GND、V in1、V in2、V out、Test的压焊点。
2、根据V DD连接的有源区可以判断为PMOS管,根据比较环数推测出此IC采用了P阱工艺。
3、确定P阱工艺后,从输入端开始逐一对元器件及其连线进行辨认。
从输入端出来,直接看到在输入压焊点到输入管之间有一段多晶硅,但又无连线的“交叉”出现,排除了“过桥”的可能,初步判断为电阻,再根据其后的二极管可以判定为是与二极管组成保护电路最终与输入管相接,可断定是输入端起限流作用的电阻。
其中绿色圈标识有大片的多晶硅覆盖扩散区的区域判断为MOS电容。
图22、可见,实验图片为一个采用CMOS P阱工艺制造的放大器电路,该电路为典型的差分放大输入级。
由电路图可以看出,器件连接方式正确,逻辑上能完成确定的功能,说明提取结果是正确的。
3、整个实验过程是对IC逆向设计的尝试,IC逆向设计是IC设计的一条关键技术之一,一方面可借鉴并消化吸收先进、富有创意的版图步提取;由将二者提取的电路结合所学知识修改、完善,并最终确定电路;由用Cadence 软件搭建出所提取的电路,并完善布局;最后,由二者共同完成该实验报告。
报告评分:指导教师签字:。
电子科大微固学院专业课集成电路原理与设计课件第六章——考研专业全

王向展
2024年10月17日12时22分
18
集成电路原理与设计 2、威尔逊电流镜 – Wilson Current Mirror
通过电流负反馈提高输出电阻,是一种改进型电流镜。
Iout I DS 2 VGS 2 VGS1 I DS1
参考电流Ir恒定
VDS1 (VGS 3 VGS 2 )
VGS3Iout并趋于原稳定值,即Iout 受Vout影响减弱,输出电阻提高。
图6.7威尔逊电流镜
王向展
2024年10月17日12时22分
19
集成电路原理与设计
Rout
ro3
ro
2
1
ro3
gm
3
(13 ) gm1
1 gm2 ro2
rds1
gm
3
ro
集成电路原理与设计
第六章 MOS模拟集成电路
§ 6.1 MOS模拟集成电路基础 6.1.1 MOS模拟集成电路中的元件
§ 6.2 MOS模拟IC子电路 6.2.1 电流源与电流沉 6.2.2 电流镜和电流放大器 6.2.3 基准源 6.2.4 MOS差分放大器 6.2.5 反相放大器 6.2.6 输出级
VDD
R2 R1 R2
VREF对VDD的灵敏度:
VREF
S
VREF
VREF
VREF VDD
1
VDD
VDD VDD
VDD VREF
(a)电阻分压器
(b)有源器件分压器
图6.9 简单分压器
王向展
2024年10月17日12时22分
24
集成电路原理与设计
2、pn结基准电压源 (1)简单的pn结基准源
模拟cmos集成电路设计研究生课程实验报告

模拟CMOS集成电路设计研究生课程实验报告一、概述在现代集成电路设计领域,模拟CMOS集成电路设计一直是一个备受关注的课题。
本实验旨在通过对模拟CMOS集成电路设计相关内容的学习和实践,加深对该领域的理解,并提升设计实践能力。
本文将介绍实验内容、实验过程和实验结果,并结合个人观点对模拟CMOS集成电路设计进行探讨。
二、实验内容1. 实验名称:基于CMOS工艺的运算放大器设计与仿真2. 实验目的:通过对基本运算放大器的设计与仿真,理解模拟CMOS 集成电路设计的基本原理和方法。
3. 实验要求:设计一个基于CMOS工艺的运算放大器电路,并进行仿真验证。
4. 实验器材与软件:PSPICE仿真软件、计算机、基本电路元件。
三、实验过程1. 设计基本运算放大器电路a. 根据理论知识,选择合适的CMOS工艺器件,并进行电路拓扑设计。
b. 计算电路的主要参数,如增益、带宽、输入输出阻抗等。
c. 优化设计,满足实际应用需求。
2. 运算放大器电路仿真a. 在PSPICE软件中建立电路模型。
b. 分析仿真结果,验证设计参数是否符合预期。
c. 优化设计,使得电路性能达到最佳状态。
四、实验结果经过反复设计与仿真,最终得到了一个基于CMOS工艺的运算放大器电路。
在PSPICE软件中进行仿真测试,结果表明设计的运算放大器电路性能良好,能够满足设计要求。
在输入端加入正弦波信号,输出端得到经过放大和处理的信号,验证了电路的正常工作。
五、总结与回顾通过本次实验,我深刻理解了模拟CMOS集成电路设计的基本原理和方法。
从初步设计到最终仿真,我逐步掌握了电路设计与优化的过程,并将理论知识应用到实践中。
在今后的学习和工作中,我将继续深入研究模拟CMOS集成电路设计,不断提升自己的技能。
六、个人观点与理解模拟CMOS集成电路设计是一个复杂而又具有挑战性的领域。
在实验过程中,我深刻意识到了理论知识与实际应用的紧密通联,只有不断实践与探索,才能够更好地理解与掌握。
电子科技大学-集成电路原理实验-CMOS模拟集成电路设计与仿真

实验报告课程名称:集成电路原理实验名称:CMOS模拟集成电路设计与仿真一、实验名称:CMOS模拟集成电路设计与仿真二、实验学时:4三、实验原理1、转换速率(SR):也称压摆率,单位是V/μs。
运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。
2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。
3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。
4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。
5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。
6、输出电压摆幅:一般指输出电压最大值和最小值的差。
图1两级共源CMOS运放电路图实验所用原理图如图1所示。
图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。
M6、M7为二级放大电路,Cc为引入的米勒补偿电容。
其中主要技术指标与电路的电气参数及几何尺寸的关系:转换速率:第一级增益:第二级增益:单位增益带宽:输出级极点:零点:正CMR:负CMR:饱和饱和电压:饱和功耗:四、实验目的本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。
其目的在于:∙根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。
∙学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。
五、实验内容1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。
2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。
3、电路性能的优化与器件参数调试,要求达到预定的技术指标。
逻辑IC功能和参数测试准实验报告

电子科技大学实验报告学生姓名:鄢传宗,梁成豪学号:2011031030010,2011031030009 指导教师:王向展实验地点:211楼307 实验时间:2014.5.28一、实验室名称:微电子技术实验室二、实验项目名称:逻辑IC功能和参数测试三、实验学时:4四、实验原理:1.MOSIC静态功耗(也称维持功耗)P DDMOSIC的静态功耗是:当输入端为固定的逻辑电乎,输出端空载,输出状态固定不变时电路所消耗的能量。
静态功耗是温度的函数。
由于静态时从电源到地没有直流通路,MOSIC静态功耗很小,它只取决于漏电情况。
2.输出高电平V OH(低电平V OL),输入高电平V IH(低电平V IL)(1)当输入端为固定的V CC或V SS,输出端空载时,所输出的固定电平称为输出高电平V OH及输出低电平V OL。
(2)当输出端维持应有的V OH和V OL时,输入端所能输入的最小高电平V IH或最大低电平V IL。
V OH(V OL)越接近V CC(V SS),V IH(V IL)越远离V CC(V SS),其电路性能越好。
3.逻辑功能和最高工作频率f MAX(1)先根据被测的IC应有的逻辑功能确定输入波形的时序,搭一个相应的测试电路产生这些输入波形并把共送入被测IC的输入端,用示波器或逻辑分析仪测试输入输出波形所对应的时序关系。
(2)最高工作频率f MAX取决于电路各级在动态工作中的充放电速度。
在额定的负载下,保持正确的逻辑关系和额定的波形幅度,电路所能承受的输入脉冲的频率为f MAX。
4.工作功耗P W静态功耗和动态功耗的总和为电路的工作功耗。
(1)动态功耗包括瞬态功耗P T和交变功耗P A。
其中P T是在动态工作中电源对电容(包括级间栅电容、pn结电容和输出级负载电容等)的充放电所消耗的能量。
(2)P A是由于在交变时波形的上升沿和下降沿使得电路从V CC到V SS有直流通路而消耗的能量。
(3)动态功耗是无法单独测试的,而对于CMOS电路由于P DD很小,因此(4)在固定负载情况下它与工作频率成正比,在固定工作频率时,它与负载电容成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称:集成电路原理实验名称:CMOS模拟集成电路设计与仿真小组成员:实验地点:科技实验大楼606实验时间:2017年6月12日2017年6月12日微电子与固体电子学院实验报告–CMOS模拟集成电路设计与仿真一、实验名称:CMOS模拟集成电路设计与仿真二、实验学时:4三、实验原理1、转换速率(SR):也称压摆率,单位是V/μs。
运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。
2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。
3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。
4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。
5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。
6、输出电压摆幅:一般指输出电压最大值和最小值的差。
图1两级共源CMOS运放电路图实验所用原理图如图1所示。
图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。
M6、M7为二级放大电路,Cc为引入的米勒补偿电容。
其中主要技术指标与电路的电气参数及几何尺寸的关系:转换速率:SR=I5C c第一级增益:A v1=−g m2g ds2+g ds4=−2g m1I5(λ2+λ3)第二级增益:A v2=−g m6g ds6+g ds7=−2g m6I6(λ6+λ7)单位增益带宽:GB=g m2C c输出级极点:P2=−g m6C L零点:Z1=g m6C c正CMR:V in,max=V DD−√I5β3−|V tℎ3|(max)+V tℎ1,min负CMR:V in,min=√I5β1+Vds5,饱和+V tℎ1,max+V ss饱和电压:Vds,饱和=√2I dsβ功耗:P diss=(I8+I5+I7)(V DD+V SS)四、实验目的本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。
其目的在于:•根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。
•学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。
五、实验内容1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。
2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。
3、电路性能的优化与器件参数调试,要求达到预定的技术指标。
4、整理仿真数据与曲线图表,撰写并提交实验报告。
5、运放指标要求:•驱动负载电容C L为1.5pF;•开环增益Av≥65dB;•增益带宽积GB≥60MHz;•转换速率SR≥20V/μs;•输入共模范围0.6V到2.8V;•输出电压摆幅大于2.3V;•相位裕度45°≤PM≤75°。
六、实验仪器设备(1)工作站或微机终端一台(2)EDA仿真软件1套七、实验步骤1、参数计算:由umc18工艺得对应的一些基本参数:V thn=0.59,V thp=0.72,u n=341,u p=81,t ox=7e-9,L min=3.4e-7,通过计算得出参数:K n=1.68e-4,K p=4e-5(1)计算最小补偿电容Cc根据指标要求,在此预设相位裕度为60°,则由零点Z1和第二极点P2对补偿电容的要求,得:(P2>2.2GB)C c>2.210⋅C L=2.210×1.5=0.33pF保守做法,取Cc为0.5pF。
(2)由SR 、Cc 求出偏置电流I 5:I 5=C c ⋅SR =0.5×10−12×20×106=10uA此为最小I 5,取I 5=20uA 。
(3)用CMR 计算(W/L)3:(W L )3=2I 3K 3[V DD−Vin,max −|V tℎ3|max +V tℎ1,min ]2 =20×10−64×10−5×(3.3−2.8−0.72+0.59)2=3.65 (4)由GB 、C C 求出g m1、g m2g m1=GB ⋅C C =2π×60×106×0.5×10−12=188.5uS(W L )1=(W L )2=g m12K 1⋅I 5=(188.5)2168×20=10.57 (5)计算(W/L)6g m6=2.2⋅g m2⋅C L C C =2.2∙(188.5×10−6)⋅1.50.5=1244.1uSg m4=√2C ox ⋅μ⋅WLI ds =54uS (W L )6=(W L )4g m6g m4=3.65×1244.154=84.1 I 6=g m622⋅K 6⋅(W L )6=(1244.1×10−6)22×4×10−5×84.1=230uA (6)计算(W/L)7(W L )7=(W L )5⋅I 6I 5=(W L )5⋅23020=11.5(W L )5(7)剩余参数的确定M9和M8构成偏置电路给M5提供栅压,M8和M5又构成电流镜,由于M5工作在饱和区间,所以由经验取(W/L)9=1.2,(W/L)8=10。
(8)利用计算所得参数对电路进行仿真,根据仿真结果再进行细调参数。
根据实验原理和设计指标要求,最终各个元器件的参数如表1所示;Candence 下电路图如图2所示。
表 1运放各器件版图参数器件W(μm)L(μm)M1 40 2M2 40 2M3 3.9 1M4 3.9 1M5 6 0.5M6 60 0.5M7 44 0.35 M8 5 0.5M9 1.2 1C L 1.5pFCc 0.6pF图2两级运放电路图2 共模输入范围ICMR仿真对输入信号在0~V DD范围内进行DC分析,测试输出电压能够跟随输入电压的的范围,即为运放的共模输入范围。
测得的V out随输入的变化波形如图3,从图中可知ICMR在0.18V到2.9V之间的情况下,运放都能工作。
满足设计指标要求。
图3共模输入范围曲线3 输出摆幅仿真输出摆幅的测试方法在0~V DD范围内,对电路进行DC分析。
观察V o点波形,测试输出电压的线性跟踪范围,即为输出动态范围。
测得的V out随输入的变化波形如图4所示,可以从图中看到输出摆幅约在0 V到3V之间。
大于2.3V,满足设计要求。
图4输出摆幅曲线4 Av和GB及相位裕度仿真进行AC分析,取两个输入正弦信号V+和V-的直流偏置为1.5V,AC magnitude为1V,Amplitude为0.1mV,Frequency为100Hz,相位差180°。
测得的输出V out的AC 20dB波形如图5所示,可知低频(小于200Hz)增益Av=77.3dB>65dB,GB=65.41MHz >60MHz满足要求。
可以看出在65.41MHz处(0dB带宽处)的相位裕度为50.63°,满足设计要求45°≤PM≤75°。
图5幅频相频特性曲线5 转换速率SR的测试建立时间是表示大信号工作时运放性能的一个重要参数,输入阶跃大信号,输出电压从开始响应到稳定值为止的时间。
稳定值的误差范围一般为0.1%V out,建立时间既反映了运放的转换速率,又表征了其阻尼特性。
仿真建立时间需要进行TRAN分析,测得的波形如图6所示,可以看到在70ns内完成了3.14V的建立,所以SR=3.14/0.070 = 44.9V/μs > 20V/μs,满足设计要求。
图6转换速率曲线八、实验数据及结果分析1、通过本次实验掌握了UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。
达到了实验目的。
2、根据设计指标要求,设计两级共源CMOS运算放大器,并进行了参数优化,最终增益、带宽、相位裕度满足要求(见图5),3、实验过程中,通过理论值到实际值的过程,清楚了运放中各个管对整个运放功能的影响。
随着运算放大器的功能在个人通信和数据处理尤其是笔记本电脑、移动通信等便携式设备中扮演着越来越重要的角色,所以本次对于运放设计的实验有着重要的学习应用价值。
九、实验心得与体会通过这次实验,首先促使了自己更加深入地学习Cadence的相关使用方法,学会了如何使用Cadence较为娴熟地构造电路,然后结合自己所学知识,计算出电路中各个元器件的相关理论参数;然后在Cadence中对电路进行仿真,通过合理调整各个元器件的相关参数,使得仿真结果满足要求。
虽然这个过程较为漫长和枯燥,但是让自己明白了电路中一个小小参数的变化也能对整个电路产生较大的影响,也让自己明白了理论与实践结合的重要性和必要性。
在修改器件相关参数,进行各种仿真,得到需要的仿真结果,这时方知要成为一名科研工作者所需付出的辛勤努力。
在整个实验中的收获,为我们在未来的科研学习、工作打下了良好的实践基础。
十、实验分工由搭建初始电路,听讲老师相关讲解;由二人各自计算电路的相关参数,然后对比、总结,确定初始的电路参数;由调整电路参数以得到指定的电路功能;由最终微调电路参数,得到指定的仿真结果;由二者共同完成该实验报告。
报告评分:指导教师签字:。