机构速度和加速度分析的一般图解法
第三章 机构的运动分析--相对运动矢量方程图解法

VB VA VBA
大小
•
? √ 方向 ? √
LAB AB
n BA t BA
VA • aA
A V B
VBA
B
aB aA a a
大小
aB •
A
? 方向 ?
√ 2LAB LAB √ BA AB
0
2 1 2 1
a a a
n
大小: 21 vB B 2 1 vB B Sin 90 2 1 vB B
2 1
方向:将 v B B 的方向顺着 1的转向转 900
aB B
2
K
1
大小: 21 vB B 2 1 vB B Sin 90 2 1 vB B
0
2 1 2 1
连接点p与任一点的矢量便代表该点在机构图中的同名点
的绝对速度,其指向是从p指向该点。如p→x代表 vX
连接其他任意两点的矢量便代表该两点在机构图中的同名
点间的相对速度,其指向适与速度的角标相反。如x→y代 表 vYX
速度影像的应用条件是同一构件内。
加速度影像(梅姆克第二定理)
– 一个刚体上三个点的加速度矢量末端在加速度平面图 中所构成的三角形与原始三角形同向相似。 π称为极点,代表所有构件上绝对加速度为零的点。 连接点π与任一点的矢量便代表该点在机构图中的同名点的 绝对加速度,其指向是从π指向该点。如π→x’代表示 aX 连接带有角标’的其他任意两点的矢量便代表该两点在机构 图中的同名点间的相对加速度,其指向适与加速度的角标相 反。如x’→y’代表 aYX 加速度分量一般用虚线表示。切向加速度用同名而不同上标 的两个字母表示,方向指向单撇(’)点。如y”→y’代表 atYX。而Y→X的向心加速度x’ → y”代表 anYX
《机械原理》

?
方向: ? C→D
√ √
√ ⊥BC
图解上式得p’c’b’: aC =μ a p’c’ α 4= atC / lCD 方向:CCW α 3 = atCB/ lCB 方向:CCW 利用影象法求得p’c’e’ (d就是p) aE =μ a p’e’ 求构件6的加速度: aF = aE + anFE + atFE 大小: ? √ √ ? 方向: √ √ ‖FE ⊥FE 其中:anFE=ω 25lFE 求得: aF =μ a p’f’ atFE =μ
A
α
B
I5
3
3
2 ω 3α b
ω4
4D
4
x4 Eα 5ω 5 5
F
6
x5
e x
③构件3、5上速度为零的点I3、I5
求作△bcp∽△BCI3 △efp∽△EFI5 得I3 得I5
f
c
p
I3
④构件3、5上加速度为零的 点Q3、Q5
求作△b’c’p’∽△BCQ3 △e’f’p’∽△EFQ5 得Q3 得Q5
ω 3 = μ vpb3 / lCB
b2
②加速度关系
2
A 1
ω1
B aB3 = anB3+ atB3 = aB2+ arB3B2 + akB3B2 3 21 2 l 3 αω 3 ? 2 VB3B2ω 3 大小: ? ω 3 BC ? l1ω C √ b3 方向: ? B→C ⊥CB B→A ∥BC 方向:VB3B2顺ω 3转过90°。 p ak B3B2
已知摆式运输机运动简图、各构件尺寸、ω 2,求: ①VF、aF、ω 3、ω 4、ω 5、α 3、α 4、α 5 ②构件3、4、5中任一速度为Vx的点X3、X4、X5的位置 ③构件3、5上速度为零的点I3、I5 ④构件3、5上加速度为零的点Q3、Q5 C 3 ⑤点I3、I5的加速度。 aI3、aI5 ω4 B 解:1)速度分析 ω2 E 2 ω3 4 VB=LABω 2 ,pb =VB / μ V A D
第3.3节 用矢量方程图解法作运动分析

c
速度多边形的用途 由两点的速度求构件上任意点的速度 C A 例如,求BC中间点E的速度VE 时,bc上 中间点e为E点的影像,连接pe就是VE a p ω E B
e b
c
2、同一构件上两点加速度之间的关系 设已知角速度ω ,A点加速度,求B点的加速度 A B两点间加速度之间的关系有: A
BA
C ω B aB
2 2 2
方向:顺时针
+ω +ω +ω
4 4 4
= μ aa’b’ = μ a a’c’ = μ a b’c’ A p’ ω α aA C
B
aB
得:a’b’/ lAB=b’c’/ lBC= a’ c’/ lCA
∴△a’b’c’∽△ABC
p’a’b’c’-加速度多边形(或速度 图解), p’-极点 加速度多边形的特性: ①联接p’点和任一点的向量代表该 点在机构图中同名点的绝对加速 度,指向为p’→该点。
VB B
2
VB B
2
1
1
VB
2
2
B(B1,B2)
vB2 vB1 vB2B1
VB
1
1
A
ω1
VB B
2
VB B
2
1
1
VB
:
aB2 aB1 a k B2B1 a r B2B1
2
2
B(B1,B2)
VB
aB1 a n B1 a t B1
等速
1
1
A
ω1
④极点p’代表机构中所有加速度为零的点。 用途:根据相似性原理由两点的加速度求任 意点的加速度。 例如,求BC中间点E的加速度aE 时,b’c’上中间
矢量方程图解法作速度加速度分析

2、作图方法
具体方法为图解矢量方程。
基础知识:一个矢量有大小和方向两个要素。
用图解的方法一个矢量方程可以求出两个未知要素(包括大小和
方向均可以)。
例题:
C B
A P
A BC
大小 ? √ ?
方向 √ √ √
A BC
大小 √ √ ?
方向 √ √ ?
二、同一构件上两点之间的速度和加速度关系
8
8
B
3
P23 (P24)
2
4
C P34
1
A P12
(b) P13
8
P23 B 3 P34
2
A P12
1
4
P24 C P14
8
(d)
P13
3
A
M P23B
Vm
P24
2 A P12
1
C4
P14 P34
8
青岛滨海学院教师教案 §3-3 用矢量方程图解法作机构的速度及加速度分析
一、矢量方程图解法的基本原理及作图法
注意:速度影像只能应用于同一构件上的各点。 总结:
1) 一个矢量方程最多只能求解两个未知量; 2) P 称为极点,它代表机构中所有构件上绝对速度为零的点;
青岛滨海学院教师教案
(速度多边形中仅此一点,它可能对应机构中多个点:机架上的点或构件的绝 对瞬心点)
3)由 P 点指向速度多边形中任一点的矢量代表该点的绝对速度大小和方 向;
们可以得到:
(B1 B2 ) B
1 2
VB2 VB1 VB2B1
青岛滨海学院教师教案
aB2
a B1
aBr 2B1
机械原理第七版第三章

(二)、用解析法对平面连杆机构进行运动分析 用解析法对平面连杆机构进行运动分析又可分为:矢 量方程解析法、杆组法和矩阵法等。 矢量方程法是将机构中各种构件视为矢量,并构成封 闭矢量多边形,列出矢量方程,进而推导出未知量的表达 式。
复数矢量法 图示四杆机构,已知机构各构 件尺寸及原动件1的角位移θ 1和 角速度ω 1 ,现对机构进行位置、 速度、加速度分析 1、位置分析 矢量方程式:
第三章
平面机构的运动分析
§3-1 机构运动分析的任务、目的和方法 §3-2 用速度瞬心法作机构的速度分析
§3-3 用矢量方程图解法作机构的速度及 加速度分析
§3-4 综合运用瞬心法和矢量方程图解法 对复杂机构进行速度分析 §3-5 用解析法作机构的运动分析 返回
§3-1 机构运动分析的任务、目的和方法
i
2
l33e
i
3
l11 cos 1 l22 cos 2 l33 cos 3 l11 sin 1 l22 sin 2 l33 sin 3
3l3 sin( 3 2 ) 1l1 sin( 1 2 )
1L1 sin( 1 2 ) 3 L3 sin( 3 2 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
3、加速度分析
l11e i l22e i l33e i
1 2
3
2 i il1 1 e1
1
i l2 2e 2
1.任务 根据机构的尺寸及原动件已知运动规律,求构件中从动件上 某点的轨迹、位移、速度及加速度和构件的角位移、角速度及角 加速度。 2.目的 了解已有机构的运动性能,设计新的机械和研究机械动力性 能的必要前提。 3.方法 主要有图解法和解析法。图解法又有速度瞬心法和矢量方程 图解法(又称相对运动图解法)。 图解法: 形象、直观,用于平面机构简单方便,但精度 和求解效率较低。 解析法: 计算精度和求解效率高。可借助计算机计算。
考研机械原理第二讲 机构的运动分析

第二讲平面机构的运动分析一用速度瞬心法作机构的速度分析1 速度瞬心的定义:作平面相对运动两构件上任一瞬时其速度相等的点,称为这个瞬时的速度中心。
分类:相对瞬心-重合点绝对速度不为零绝对瞬心-重合点绝对速度为零2 瞬心数目 K=N(N-1)/23 机构瞬心位置的确定直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。
1)两构件组成转动副时,转动副中心即是它们的瞬心。
2)若两构件组成移动副时,其瞬心位于移动方向的垂直无穷远处。
3)若两构件形成纯滚动的高副时,其高副接触点就是它们的瞬心。
4)若两构件组成滚动兼滑动的高副时,其瞬心应位于过接触点的公法线上。
不直接形成运动副的两构件利用三心定理来确定其具体位置。
三心定理:三个彼此作平面平行运动的构件共有三个瞬心,且它们位于同一条直线上。
此法特别适用于两构件不直接相联的场合。
4传动比的计算ωi /ωj=P1j P ij / P1i P ij两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比5.角速度方向的确定相对瞬心位于两绝对瞬心的同一侧,两构件转向相同相对瞬心位于两绝对瞬心之间,两构件转向相反。
常见题型:1.速度瞬心的求解(会用正多形法)2利用速度瞬心求解速度。
ωi /ωj =P 1j P ij / P 1i P ij例题:在图示四杆机构中,AB l =60mm ,CD l =90mm ,AD l =BC l =120mm ,2ω=10rad/s ,试用瞬心法求: (1)当ϕ=45°时,点C 的速度C v;(2)当ϕ=165°时,构件3的BC 线上(或其延长线上)速度最小的一点E 的位置及其速度大小;(3)当C v =0时,ϕ角之值(有两个解)。
P 13C(a)解:以选定的比例尺0.005/l m mm μ=作机构运动简图如图3-2所示。
(1)定瞬心P 13的位置,求v c 。
131331 6.07rad /AP DP l l s ωω==30.547/c l v CD m s μω==(2)如图(b )所示,定出构件2的BC 线上速度最小的一点E 位置及速度的大小。
第3章机构的运动分析-1

an EB
C 3 4
ω3
aE e'
b'
ω2
A
2
aB
1
w4
D
a
t EB
a
n EB
(P12 )
以曲柄滑块机构为例,进一步说明用矢量方程图 解法作机构的速度分析和加速度分析的具体步骤。
例 : 已知曲柄滑块机构原动件 AB 的运动规律和各构件尺寸。求: (1)图示位置连杆BC的角速度和 其上各点速度。 (2)连杆BC的角加速度和其上C点 加速度。 ω2 2
极点
C
vEC
vCB vEB
b
bc 代表 vCB 。
e
3)在速度多边形中,极点p 代表机构中速 度为零的点。 4)已知某构件上两点的速度 ,可用速度影 像法求该构件上第三点的速度。
速度多边形
E B
A
C
vC x
p
极点
C
vEC e
vCB
vB
vEB
b
△bce ~ △BCE
已知连杆上两点的速度vB 、vC 用速度影像法可以确定vE 。
④确定点的轨迹(连杆曲线)。
V型发动机运动简图
D
E
C B
A
3-1
机构运动分析的任务、目的及方法
1.机构运动分析的任务与目的
(2)速度分析
5 4
①掌握从动件的度变化规律 是否满足工作要求。如牛 头刨床; ②为加速度分析作准备。
2
1 3
6
3-1 机构运动分析的任务、目的及方法
1.机构运动分析的任务与目的
用三心定理可以确定ω3、ω4 的大小。
平面铰链四杆机构
例2:用三心定理分析凸轮机构速度 (v3)。 1
机械原理 第二章-2相对运动图解、解析

1
3
aC1n c2 (c3) aC1t 4 D
A
4 P c1
一步减少未知数的个数。
n t k r aC2 aC3D aC3D aC1 aC2C1 aC2C1
2 3 l3
大小: 方向:
? 3l3
√ √
21vC 2C 1 ?
√ ∥AB
C→D ⊥CD
2) 取速度比例尺a , 作 加速度多边形。
P
c1
( 顺时针 )
2. 加速度分析:
1) 依据原理列矢量方程式 分析:
aC2 = aC1 + aC2C1
B
2 C akC2C1
当牵连点系(动参照系)为 转动时,存在科氏加速度。 3
D 4
ω1
1
1
c2 (c3)
r k aC2C1 aC2C1 aC2C1
科氏加速度
A
4 P c1
k r a 2 v
√
√
22lBC
C→B
?
⊥BC
b) 根据矢量方程式,取加速度比例尺
a
实际加速度
c´ 图示尺寸
m/
s2
p
mm
, 作矢量多边形。
c e b
p
极点
n
b
由加速度多边形得:
aC a pc m / s2
t 2 aCB l BC a nc l BC
同样,如果还需求出该构件上E 点的加速度 aE,则
pe 则代表 aE
由加速度多边形得:
p c´ n
aE pea
△b’c’e’ ~ △BCE , 叫 做
△BCE 的加速度影像,字 母的顺序方向一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-2 用图解法作机构的运动分析
1.矢量方程图解法
(1)矢量方程图解法的基本原理 理论力学中的运动合成原理 (2)矢量方程图解法的作法 在对机构进行速度和加速度分析时,首先根据运动合成原理 列出机构运动的矢量方程,然后再按方程作图求解 两构件以转动副相连时,在转动副中心处具有相同的速度和
加速度,两构件以移动副相连时,两构件具有相同的角速度和角
§3-2 用图解法作机构的运动分析
3.利用两构件重合点间的速度及加速度矢量方程作图求解 运动合成原理:构件i在重合点的运动可认为是随同构件j在重 合点的运动和构件i相对于构件j的相对运动的合成
重合点选取原则:选已知参数较多的点(一般为铰链点),
为此有时应将构件扩大至所选取的重合点 (1) 列矢量方程并分析各矢量 (2)选取适当比例尺按方程作速度多边形及加速度多边形图 (3)根据作图求解 (4)科氏加速度存在的条件
§3-2 用图解法作机构的运动分析
机构运动的图解法分析包括对机构的位置、速度和加速度的 分析。由于机构的位置图解分析实际上是按给定的机构尺寸及原 动件的位置作出其机构运动简图,在第2章已作介绍,所以本节 主要介绍机构的速度和加速度分析的图解法
一、机构速度及加速度分析的一般图解法
机构的速度及加速度分析的一般图解法为矢量方程图解法, 又称相对运动图解法
科氏加速度存在的条件
当两构件构成移动副,若移动方向无转动分量即只作平动时, 无科氏加速度; 当两构件构成移动副,若移动方向含有转动分量时,存在断
科氏加速度 3
2 2 3 2
2 3
3
大小:√ ?√√
方向:√ √ ?
?
方向:√ √ ? √
B
B
A D
C
A D
C
§3-2 用图解法作机构的运动分析
2.利用同一构件上两点间的速度和加速度矢量方程作图求解
运动合成原理:同一构件上任意一点的运动可认为是随该构 件上基点作平动与绕基点作相对转动的合成 (1) 列矢量方程并分析各矢量 (2)选取适当比例尺按方程作速度多边形及加速度多边形图 (3)根据作图求解 (4)速度及加速度影像
加速度
§3-2 用图解法作机构的运动分析
(3)矢量图的画法
D A B C
大小:? √ √ 方向:? √ √ √ √
D A B C
大小:√ 方向:√ ? ? √ √ √ √
B A
D
B
CADC来自§3-2 用图解法作机构的运动分析
D A B C
大小:√ √ √ √
D A B C