2019年中考数学试题分类汇编28:圆的基本性质
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档

2019年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019年山东省滨州市)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019年山东省德州市)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是( )130∘140∘150∘160∘A. B. C. D.【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019年山东省菏泽市)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是( )A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.4.(2019年四川省资阳市)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为( )A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.5. (2019年广西贵港市)如图,AD 是⊙O 的直径,=,若∠AOB =40°,则圆周角⏜AB ⏜CD ∠BPC 的度数是( )A. B.C. D. 40∘50∘60∘70∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B .6. (2019年湖北省十堰市)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =,则AE =( )13A .3B .3C .4D .2233【考点】圆内接四边形的性质、勾股定理【解答】解:连接AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,。
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档

2019年全国中考数学真题分类汇编:圆内有关性质、选择题1(2019年山东省滨州市)如图,AB为O O的直径,C, D为O O上两点,若/ BCD = 40°,A . 60°【考点】圆周角定理、【解答】解:连接AD , B . 50°C. 40°D. 20°直角三角形的性质T AB为O O的直径,ADB = 90 ° .BCD = 40°,A=Z BCD = 40°ABD = 90 ° - 40°=50°.故选:B.2. (2019年山东省德州市)若/ ABC=40°,则/ ADCA. 130 如图,点O为线段的度数是()B. 140 BC的中点, 到点O的距离相等, C. 150【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD ,作出圆O,如图所示, •四边形ABCD为圆O的内接四边形,•••/ ABC+ / ADC=180 °•/ / ABC=40 °•••/ ADC=140 :故选:B.D.1603. (2019年山东省荷泽市)如图,AB是O O的直径, C,D是O O上的两点,且BC平分/ ABD, AD分别与BC,论不一定成立的是()A . OC// BDB . AD 丄OC C.A CEFBED D . AF = FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:I AB是O O的直径,BC平分/ ABD ,•••/ ADB = 90。
,/ OBC = Z DBC ,••• AD 丄BD,•/ OB= OC,•••/ OCB=Z OBC,•••/ DBC = Z OCB,•OC // BD,选项A成立;•AD丄OC,选项B成立;•AF = FD,选项D成立;•••△CEF和厶BED中,没有相等的边,•△ CEF与厶BED不全等,选项C不成立;故选:C.4. (2019年四川省资阳市)如图,直径为2cm的圆在直线I上滚动一周,则圆所扫过的图A. 5 nB. 6 nC. 20 nD. 24 n【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积= n+2 nX 2 = 5 n,故选:A.5. (2019年广西贵港市)如图,AD是O O的直径,AB=CD,若ZAOB=40°,则圆周角ZBPC 的度数是()A. 40B. 50C. 60D. 70【考点】圆周角定理【解答】解::•二二:,/ AOB=40 ,•••/ COD= / AOB=40 ,•••/ AOB+ / BOC+ / COD=18° ,•••/ BOC=100 ,•••/ BPC=三/ BOC=50 ,故选:B.6. (2019年湖北省十堰市)如图,四边形ABCD内接于O O , AE丄CB交CB的延长线于点E,若BA 平分/ DBE , AD = 5, CE = v!3,贝U AE =()A . 3B . 3V2 C. 4v3 D . 2v3【考点】圆内接四边形的性质、勾股定理【解答】解:连接AC,如图,•/ BA 平分/ DBE ,•••/ 1 = 7 2,•••/ 1 = 7 CDA, 7 2=7 3,•••7 3=7 CDA,•AC= AD = 5,••• AE丄CB,•7 AEC= 90°•AE= V AC? - CE2 = V52 -(打3)2= 2V3.【考点】垂径定理的应用【解答】解:连结OD, OA ,如图,设半径为r ,• AD=4,点O 、D 、C 三点共线,7. (2019年陕西省)如图, AB 是O O 的直径,EF 、EB 是O O 的弦,且 AB交于点C ,连接OF .若/ AOF = 40°,则/ F 的度数是()A . 20°B . 35°C . 40°D . 55°【考点】圆内有关性质【解答】连接FB ,得到FOB = 140 ° ;•••/ FEB = 70°•/ EF = EB• / EFB = Z EBF -FO = BO ,• / OFB = Z OBF , • / EFO = Z EBO ,/ F = 35°8. (2019年浙江省衢州市)一块圆形宣传标志牌如图所示,点A , B, C 在O O 上,CD 垂直平分AB 于点D ,现测得AB=8dm , DC=2dm ,则圆形标志牌的半径为()A. 6dmB. 5dmC. 4dmD. 3dm故选:D . D•/ CD=2, /. OD=r-2,在 Rt A ADO 中, ••• AO 2=AD 2+OD 2 ,, 即 r 2=42+ (r-2) 2 , 解得:r=5, 故答案为:B.9. (2019年甘肃省天水市) 如图,四边形 ABCD 是菱形,O O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE •若/ D = 80°,则/ EAC 的度数为( )【考点】菱形的性质,三角形的内角和,圆内接四边形的性质 【解答】解:•••四边形 ABCD 是菱形,/ D = 80°,•••/ ACB = - / DCB = - (180 ° -Z D )= 50 ° ,2 2•••四边形AECD 是圆内接四边形, • Z AEB =Z D = 80°, • Z EAC =Z AEB -Z ACE = 30°,故选:C .10. (2019年甘肃省)如图,AB 是O O 的直径,点 C 、D 是圆上两点,且Z AOC = 126 则Z CDB =()B • 25°C . 30D . 35B . 64C . 27°D . 37A • 20°【考点】圆周角定理【解答】解:TZ AOC = 126° ,• Z BOC= 180°-Z AOC= 54•••/ CDB = _Z BOC= 27° 故选:C.P,下列结论错11. (2019年湖北省襄阳市)如图,AD是O O的直径,BC是弦,四边形OBCD是平行四A . AP= 2OPB . CD = 2OP C. OB 丄ACD . AC 平分OB 【考点】圆内有关性质【解答】解:••• AD为直径,•••/ ACD = 90°,•••四边形OBCD为平行四边形,•CD // OB, CD = OB ,在Rt△ACD 中,sinA =型=丄,AD 2:丄 A= 30°在Rt△AOP中,AP= :';OP,所以A选项的结论错误;•/ OP// CD , CD 丄AC,•OP丄AC,所以C选项的结论正确;•AP= CP,•OP为△ACD的中位线,•CD = 2OP,所以B选项的结论正确;•OB= 2OP,•AC平分OB,所以D选项的结论正确.故选:A.12. (2019年湖北省宜昌市)如图,点A, B, C均在O O上,当/ OBC = 40°时,/ A的度数是()【考点】圆周角定理【解答】解:设圆心为 O ,连接OA 、OB ,如图, •••弦AB 的长度等于圆半径的卜迁倍, 即 AB = . _:OA , • OA 2+OB 2= AB 2,• △ OAB 为等腰直角三角形,/ AOB = 90 ° , •••/ ASB =丄/ AOB = 45°.2CA . 50°B . 55°【考点】圆周角定理【解答】解:••• OB = OC , C . 60D . 65•••/ OCB=Z OBC= 40•••/ BOC = 180°— 40°— 40°= 100°,•••/ A =二/ BOC = 50°. 2 故选:A . 13. (2019年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的 :倍,则/ ASB 的度数是 A . 22.5 B . 30°C . 45D . 6014. (2019年内蒙古包头市)如图,在Rt△ABC中,/ ACB = 90° AC= BC = 2匝,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()C BA . n—1B . 4 — nC ED . 2【考点】圆周角定理【解答】解:连接CD ,•/ BC是半圆的直径,••• CD 丄AB,•••在Rt A ABC 中,/ ACB = 90° AC = BC= 2血,•△ ACB是等腰直角三角形,•CD = BD,••阴影部分的面积= 丄X丄㊁*2=2,2 2故选:D.C S15. (2019年内蒙古赤峰市)如图,AB是O O的弦,OC丄AB交O O于点C,点D是O O上一点,/ ADC = 30°,则/ BOC的度数为()DA. 30° B . 40°C. 50°D. 60【考点】圆内有关性质【解答】解:如图,•••/ ADC = 30° ,•••/ AOC= 2/ADC = 60°.•/ AB是O O的弦,OC丄AB交O O于点C,•••/ AOC=Z BOC= 60°.故选:D.16. (2019年西藏)如图,在O O中,半径OC垂直弦AB于D,点E在O O上,/ E = 22.5A . 1B ..】C. 2 D. 2 . ■:【考点】勾股定理、垂径定理、圆周角定理【解答】解:•••半径OC丄弦AB于点D ,•••/ E=二/ BOC = 22.5° ,2•••/ BOD = 45°,• △ ODB是等腰直角三角形,•/ AB= 2,DB = OD= 1 ,则半径OB等于:+ ]2 =血.故选:B.17. (2019年海南省)如图,直线11// 12,点A在直线11上,以点A为圆心,适当长度为半径画弧,分别交直线11、12于B、C两点,连结AC、BC .若/ ABC = 70°,则/ 1的大小为2. ( 2019年湖北省随州市) 则/ C 的度数为 .【考点】圆周角定理A . 20°B . 35°C . 40° 【考点】圆内有关性质 【解答】解::•点A 为圆心,适当长度为半径画弧,分别交直线D . 70°11、12 于 B 、C ,••• AC = AB , •••/ CBA =Z BCA = 70°,TH // 12,•••/ CBA+ / BCA+ / 1 =180•••/ 1 = 180° - 70°- 70°= 40故选:C .、填空题1. (2019年山东省德州市)如图, CD 为O O 的直径,弦 AB 丄CD ,垂足为E , ???????? CE=1, AB =6,则弦AF 的长度为 ________ .【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA 、OB , OB 交AF 于G ,如图,•/ AB 丄 CD ,1• AE=BE= 2AB=3 ,设O O 的半径为r ,则OE=r-1 , OA=r , 在 Rt △OAE 中,32+ (r-1) 2=r 2,解得 r=5,T ' ■-=—,• OB 丄 AF , AG=FG , 在 Rt △ OAG 中,AG 2+OG 2=52,①在 Rt △ ABG 中,AG 2+ (5-OG ) 2=62,②解由①② 组成的方程组得到 AG=24,5• AF=2AG=警.故答案为48.5 5【解答】解:T OA=OB ,点C在优弧??上?,若/ OBA=50°,如图,点A, B, C在O O 上,C•••/ OAB= / OBA=50 ,•••/ AOB=180 -50 °-50 °80° ,•••/ C= ' / AOB=40 . 2故答案为40°3. (2019年黑龙江省伊春市) 如图,在O O 中,半径 OA 垂直于弦BC ,点D 在圆上且/•••/ AOB = 2 / ADC ,•••/ ADC = 30°,•••/ AOB = 60 ° ,故答案为60°.4. (2019年江苏省泰州市)如图, O O 的半径为5,点P 在O O 上,点A 在O O 内,且AP =3,过点A 作AP 的垂线交于O O 点B 、C •设PB=x,PC=y,则y 与x 的函数表达式为 __________ .【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接PO 并延长交O O 于点N ,连接BN•/ PN 是直径,•/ PBN=90 .•/ AP 丄 BC,•••/ PAC =90 ,•••/ PBN= / PAC,又•••/ PNB= / PCA ,•••△ PBN PAC ,【考点】圆周角定理【解答】解:I OA 丄BC ,• PB PN "PA = PC ,.x_103 y30 …y= .x故答案为:30 y= . x三、解答题1. (2019年上海市)已知:如图,AB、AC是O O的两条弦,且AB= AC, D是AO延长线上一点,联结BD并延长交O O于点E,联结CD并延长交O O于点F .(1)求证:BD = CD ;(2)如果AB2= AO2AD,求证:四边形ABDC是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC, OB , OD ,T AB、AC是O O的两条弦,且AB= AC,.A在BC的垂直平分线上,OB= OA= OD ,.O在BC的垂直平分线上,.AO垂直平分BC,.BD = CD ;(2)如图2,连接OB,•••/ BAO =Z DAB , •••△ ABO s^ ADB ,•••/ OBA =Z ADB ,•/ OA = OB ,•••/ OBA =Z OAB ,•••/ OAB =Z BDA ,• AB = BD ,•/ AB = AC , BD = CD ,AB = AC = BD = CD ,•四边形ABDC 是菱形.2. (2019年江苏省苏州市)如图, AE 为e O 的直径,D 是弧BC 的中点BC 与AD , OD 分别 交于点E , F.(1) 求证:DO// AC ;(2) 求证:DE DA DC 2;1(3 )若 tan CAD ,求 sin CDA 的值.2【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:T D 为弧BC 的中点,OD 为e O 的半径• OD 丄 BC???? ????=—, ???? ????B又••• AB 为e O 的直径• ACB 90• AC // OD(2)证明:T D 为弧BC 的中点••• C D ?DDCB DACDCE s DAC DEDC2DA DC DCD A 即DE (3)解:T DCE s DAC , tan CAD• CD …DA 设 CD=2a,贝U DE DC CE 1AC 2,DA 4aAEC s DEF.CE 如 3EF DE所以BC 8CE3又 AC 2CE• AB 10 CE 3即卩 sin CDA sin CBA CA AB3. (2019年河南省)如图,在35△ABC 中,BA = BC,Z ABC = 90 °以AB 为直径的半圆 O 交AC 于点D ,点E 是’上不与点 B , D 重合的任意一点,连接 AE 交BD 于点F ,连接BE 并延 长交AC 于点G .(1)求证:(2)填空:①若AB = 4,且点E 是」的中点,贝U DF 的长为②取匚上的中点H ,当/ EAB 的度数为 _____ 时,四边形OBEH 为菱形.【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图1,v BA = BC,/ ABC = 90°•••/ BAC= 45°•/ AB是O O的直径,•••/ ADB = / AEB = 90°•••/ DAF + / BGD = / DBG+ / BGD = 90°•••/ DAF = / DBG•// ABD+ / BAC = 90°•••/ ABD = / BAC = 45°•AD = BD•△ ADF◎△ BDG (ASA);(2)①如图2,过F作FH丄AB于H ,••点E是亍〕的中点,•••/ BAE =/ DAE•/ FD 丄AD, FH 丄AB•FH = FD•,即BF =^:7FD=sin/ ABD = sin45BF 2•/ AB= 4,•BD = 4cos45°= 2打;:|,即卩BF + FD = 2 :':, ( . ':+ 1) FD = 2 :■:•FD = = 4 - 2 :■:V2+1故答案为■ - . ■:.②连接OE, EH,•点H是一止的中点,• OH 丄AE,•••/ AEB = 90°••• BE 丄AE••• BE// OH•••四边形OBEH为菱形,•••/ EAB = 30°.故答案为:30°4. (2019年浙江省温州市)如图,在厶ABC中,/ BAC = 90 °过A, C, E三点的O O交AB于另一点F,作直径AD ,连结CD , CF .(1)求证:四边形DCFG是平行四边形.【解答】(1)证明:连接AE, ,求O O的直径长.平行四边形的判定和性质、勾股定理、圆周角定理•••/ BAC= 90 ° ,• CF是O O的直径, •/ AC=EC, ,点E在BC连结DE 并延长交AB于点G,•/ AD是O O的直径,•••/ AED = 90 ° ,即GD丄AE,•CF // DG ,•/ AD是O O的直径,•••/ ACD = 90°,•••/ ACD+ / BAC = 180° ,•AB// CD ,•四边形DCFG是平行四边形;(2)解:由CD = -AB ,8设CD = 3x, AB = 8x,•CD = FG = 3x,•••/ AOF = Z COD ,•AF = CD = 3x,•BG = 8x - 3x - 3x= 2x,•/ GE// CF,•丄+「I•/ BE= 4,•AC= CE= 6,•BC= 6+4= 10,•AB= {1 0^-6 N = 8 = 8x,•x= 1,在Rt△ ACF 中,AF = 10, AC= 6,•CF =时+醪=3妬,即O O的直径长为3 一;5. (2019年湖北省宜昌市) 已知:在矩形 ABCD 中,E , F 分别是边AB , AD 上的点,过 点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆 O .FN ,当 AE = AD 时,FN = 4, HN = 3,求 tan / AEF 的值.•••/ EAF = 90°, O 为 EF 中点,EF ,•••点A 在O O 上,当 L l= L 时,/ AEF = 45• tan / AEF = tan45°= 1,(1) 填空:点A(填“在”或“不在” )O O 上;当U .=计时,tan /AEF 的值是; (3) (4) 如图 如图 如图 在厶EFH 当厶EFH 的顶点 点M 在线段FH FE = FH 时,求证:AD = AE+DH ; F 是边AD 的中点时,求证: EH = AE+DH ; 的延长线上,若 FM = FE ,连接EM 交DC 于点N ,连接 D ]H 【考点】圆的有关性质、 全等三角形的判定和性质、 相似三角形的判定和性质、三角函 C圍1 3图1故答案为:在,1;(2 )T EF 丄FH ,•••/ EFH = 90 ° ,在矩形ABCD 中,/ A=Z D = 90°,•••/ AEF + Z AFE = 90°,/ AFE+ / DFH = 90°,•••/ AEF = Z DFH ,又FE=FH,•△ AEF◎△ DFH (AAS),•AF = DH , AE = DF ,•AD = AF+DF = AE+DH ;(3)延长EF交HD的延长线于点G,G••• F分别是边AD上的中点,•AF = DF ,•••/ A=Z FDG = 90°,/ AFE = Z DFG ,•△AEF◎△ DGF (ASA),•AE= DG , EF = FG ,•/ EF 丄FG,•EH = GH ,•GH = DH + DG = DH+AE ,•EH = AE+DH ;(4)过点M作MQ丄AD于点Q.设 AF = x , AE = a ,•/ FM = FEEF 丄 FH ,•••△ EFM 为等腰直角三角形,•••/ FEM = Z FMN = 45°,•/ FM = FE ,/ A =Z MQF = 90°,/ AEF = Z MFQ ,• △ AEF ◎△ QFM (ASA ),• AE = EQ = a , AF = QM ,•/ AE = AD ,• AF = DQ = QM = x ,•••DC // QM ,•ID.k _,•/ DC // AB // QM ,•Z •RD •空•/ FE = FM ,•二./ FEM = Z FMN = 45° ,• △ FEN 〜△ HMN ,•竺6. (2019年内蒙古包头市)如图,在O O 中,B 是O O 上的一点,/ ABC = 120 °,弦AC =D O严——1* / Ax/f2 二弦BM平分/ ABC交AC于点D,连接MA, MC .(1 )求0 O半径的长;(2)求证:AB+BC = BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O作OH丄AC于点H,如图1 , •••/ ABC= 120°,•••/ AMC = 180°-/ ABC = 60°•••/ AOC= 2/AMC = 120°AOH = —/AOC = 60°• OA =•••AH = - AC= .gin60 '故O O的半径为2.(2)证明:在BM上截取BE = BC,连接CE,如图2,2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)•••/ MBC = 60°BE = BC,•••△EBC是等边三角形,CE= CB= BE ,Z BCE= 60°,•••/ BCD+ / DCE = 60°•••// ACM = 60°•/ ECM + Z DCE = 60°•/ ECM = Z BCD ,•••/ ABC= 120° BM 平分/ ABC,•/ ABM = Z CBM = 60°•/ CAM = Z CBM = 60° / ACM = Z ABM = 60°,•△ ACM是等边三角形,•AC= CM,•△ACB^A MCE,•AB= ME ,•/ ME+EB = BM ,•AB+BC= BM .。
2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)

2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)(word版可编辑修改)的全部内容。
2019年全国中考数学真题分类汇编:圆内有关性质一、选择题1。
(2019年山东省滨州市)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD 的大小为( )A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2。
(2019年山东省德州市)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是( )A。
B。
C。
D.130∘140∘150∘160∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3. (2019年山东省菏泽市)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是( )A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C .4. (2019年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为( )A .5πB .6πC .20πD .24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A .5. (2019年广西贵港市)如图,AD 是⊙O 的直径,=,若∠AOB =40°,则圆周角∠BPC 的度⏜AB ⏜CD 数是( )A. B. C 。
2019年中考数学试题分类汇编28:圆的基本性质[1]
![2019年中考数学试题分类汇编28:圆的基本性质[1]](https://img.taocdn.com/s3/m/0b39f60bb14e852459fb57ce.png)
2019年中考数学试题分类汇编28:圆的基本性质(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年中考数学试题分类汇编28:圆的基本性质(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年中考数学试题分类汇编28:圆的基本性质(word版可编辑修改)的全部内容。
一、选择题1. (2019山东滨州,6,3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【知识点】圆周角定理及其推论2。
(2019山东聊城,8,3分)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A。
35° B.38°C。
40°D。
42°第8题图【答案】C【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C.【知识点】三角形内角和定理,圆周角定理3。
(2019山东省潍坊市,11,3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD.过点D作DE⊥AB于点E.连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A.8 B.10 C.12 D.16【答案】C【思路分析】连接BD,先证明∠DAC=∠ACD=∠ABD=∠ADE,从而可得AF=DF=5,根据sin∠CAB=3 5 ,求得EF和AE的长度,再利用射影定理求出BE的长度从而得到直径AB,根据sin∠CAB=35求得BC的长度.【解题过程】连接BD.∵AD=CD,∴∠DAC=∠ACD.∵AB为直径,∴∠ADB=∠ACB=90°.∴∠DAB+∠ABD=90°.∵DE⊥AB,∴∠DAB+∠ADE=90°.∴∠ADE=∠ABD.∵∠ABD=∠ACD,∴∠DAC=∠ADE.∴AF=DF=5.在Rt△AEF中,sin∠CAB=35 EFAF=∴EF=3,AE=4.∴DE=3+5=8.由DE2=AE▪EB,得228164DEBEAE===.∴AB=16+4=20.在R t△ABC中,sin∠CAB=35 BC AB=∴BC=12.【知识点】圆周角,锐角三角比4。
初三数学中考总复习圆的基本性质专题复习练习含答案

2019 初三数学中考总复习圆的基天性质专题复习练习︵ ︵ ︵1. 如图,AB 是⊙O 的直径, BC =CD =DE ,∠COD =34°,则∠ AEO 的度数是 ( A )A .51°B .56°C .68°D .78°2.如图,在 ⊙O 中,直径 CD ⊥弦 AB ,则以下结论中正确的选项是 ( B )1A .AC =ABB .∠C =2∠ BODC .∠ C = ∠BD .∠ A =∠BOD3.如图, AB 是⊙O 的直径, BC 是⊙O 的弦.若 ∠ OBC =60°,则 ∠BAC 的 度数是(D)A .75°B .60°C .45°D .30°4.如图,⊙ O 为△ABC 的外接圆,∠ A =72°,则 ∠BCO 的度数为 ( B )A .15°B .18°C .20°D .28°5.如图是以 △ABC 的边 AB 为直径的半圆 O ,点 C 恰幸亏半圆上,过点 C 作 CD ⊥ AB 交 AB 于点 D. 已知 ∠ACD =3,BC =4,则 AC 的长为 ( D ) cos 52016A .1 B. 3 C .3 D. 3 如图, 是⊙ 外一点, , 分别交 ⊙ 于 , 两点,已知 ︵ ︵P O PB O AB 和CD 所对6. PAC D 的圆心角分别为 90°和 20°,则 ∠P =( D )A .45°B .20°C .25°D .35°7.(2019 ·南宁 )如图,AB 是⊙O 的直径,AB =8,点 M 在⊙O 上,∠MAB =20°,点 N 是弧 MB 的中点, P 是直径 AB 上的一动点.若 MN =1,则△PMN 周长的第1页/共4页最小值为(B)A .4B. 5C.6D.7.如图,已知⊙O 是等腰△的外接圆,点D是︵上一点, BD 交 AC8Rt ABC AC4于点 E,若 BC=4,AD =5,则 AE 的长是 ( C )A .3B. 2C.1D.1.29. 如图,A,D 是⊙ O 上的两个点, BC 是直径.若∠ D=32°,则∠ OAC =()A .64°B.58°C.72°D.55°10.如图, AB 为⊙O 的弦,⊙ O 的半径为 5,OC⊥AB 于点 D,交⊙ O 于点 C,且 CD=1,则弦 AB 的长是 __6__.11.如图,边长为 1 的小正方形组成的网格中,半径为 1 的⊙O 在格点上,则1∠AED 的正切值为 __2__.12.如图,在⊙O 中,弦 AC=2 3,点 B 是圆上一点,且∠ABC =45°,则⊙O 的半径 R 为__ 6__.13.(2019 ·东营 )如图,水平搁置的圆柱形排水管道的截面直径是1 m,此中水面的宽 AB 为 0.8 m,则排水管内水的深度为__0.8__m.14.如图,AB 是⊙O 的直径,点 C 是⊙O 上的一点,若∠BOC=60°,AB =8,︵点 E 是劣弧 AC 上一动点, OD⊥BE 于点 D,则 OD 的长的最大值为 __2 3__.15.如图,在△ ABC 中, AB =AC=10,以 AB 为直径的⊙ O 与 BC 交于点 D,与 AC 交于点 E,连 OD 交 BE 于点 M,且 MD =2,则 BE 长为 __8__.16.如图,在 Rt△ABC 中,∠ACB =90°,AC =5,CB=12,AD 是△ABC 的角均分线,过 A,C,D 三点的圆 O 与斜边 AB 交于点 E,连结 DE.(1)求证: AC=AE;第2页/共4页(2)求 AD 的长.解:(1)∵∠ ACB =90°,且 ∠ACB 为圆 O 的圆周角,∴ AD 为圆 O 的直径,∴∠ A ED =90°,又 AD 是△ ABC 的∠BAC 的均分线,∴∠ CAD =∠EAD ,∴CD =ED ,CD =DE ,在 Rt △ACD 和 Rt △AED 中,∴Rt △ACD ≌Rt △AED(HL) , AD =AD ,∴ A C =AE(2)∵△ ABC 为直角三角形,且AC = 5,CB = 12,∴依据勾股定理得 AB =52+122=13,由 (1)获得 ∠AED =90°,则有 ∠BED =90°,设 CD =DE =x ,则 DB =BC -CD =12-x ,EB =AB -AE =AB -AC =13-5= 8,在 Rt △BED中,依据勾股定理得 BD 2=BE 2+ED 2,即(12-x)2=x 2+82,解得 x =103,∴ CD=103,又 AC =5,△ACD 为直角三角形,∴依据勾股定理得 AD =AC 2+CD 25 13=317.如图,等腰三角形 ABC 中, BA =BC ,以 AB 为直径作圆,交 BC 于点 E ,圆心为 O.在 EB 上截取 ED =EC ,连结 AD 并延伸,交 ⊙O 于点 F ,连结 OE ,EF.(1)试判断 △ACD 的形状,并说明原因;(2)求证: ∠ADE =∠OEF.解:(1)△ ACD 是等腰三角形, 连结 AE ,∵AB 是⊙O 的直径,∴∠ AED =90°, ∴AE ⊥ CD ,∵ CE =ED ,∴ AC =AD ,∴△ ACD 是等腰三角形(2)∵∠ ADE =∠DEF +∠ F ,∠ OEF =∠OED + ∠DEF ,而 ∠ OED = ∠B ,∠ B=∠ F ,∴∠ ADE =∠OEF18.如图,以 △ABC 的一边 AB 为直径的半圆与其余两边AC ,BC 的交点分别第3页/共4页︵ ︵为 D ,E ,且 DE =BE.(1)试判断 △ABC 的形状,并说明原因;(2)已知半圆的半径为 5,BC =12,求 sin ∠ABD 的值.︵ ︵解:(1)△ABC 为等腰三角形.原因以下:连结 AE ,∵DE =BE ,∴∠ DAE =∠ BAE ,即 AE 均分 ∠BAC ,∵ AB 为直径,∴∠ AEB =90°,∴ AE ⊥BC ,∴△ ABC 为等腰三角形1 1(2)∵△ ABC 为等腰三角形, AE ⊥BC ,∴BE =CE =2BC =2×12=6,在 Rt △ABE中,∵AB =10,BE = 6,∴AE = 102-62=8,∵AB 为直径, ∴∠ ADB =90°,∴1 · =1 · ,∴ BD=8×12=48,在 Rt △ABD 中,∵AB =10,BD =48,2AE BC2BD AC10551414 AD5 7 ∴AD = AB2 -BD 2=5 ,∴ sin ∠ABD =AB=10=25第4页/共4页。
2019年全国中考数学真题分类汇编:圆内有关性质 含答案)

2019年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019年山东省滨州市)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019年山东省德州市)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. B. C. D.【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3. (2019年山东省菏泽市)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.4. (2019年四川省资阳市)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.5. (2019年广西贵港市)如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC 的度数是()A. B. C. D.【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.6. (2019年湖北省十堰市)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2【考点】圆内接四边形的性质、勾股定理【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE==2.故选:D.7. (2019年陕西省)如图,AB是⊙O的直径,EF、EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8. (2019年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB.5dmC.4dmD.3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C三点共线,∵CD=2,∴OD=r-2,在Rt△ADO中,∵AO2=AD2+OD2, ,即r2=42+(r-2)2,解得:r=5,故答案为:B.9. (2019年甘肃省天水市)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD是菱形,∠D=80°,∴∠ACB=∠DCB=(180°﹣∠D)=50°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10. (2019年甘肃省)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11. (2019年湖北省襄阳市)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB【考点】圆内有关性质【解答】解:∵AD为直径,∴∠ACD=90°,∵四边形OBCD为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD中,sin A==,∴∠A=30°,在Rt△AOP中,AP=OP,所以A选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C选项的结论正确;∴AP=CP,∴OP为△ACD的中位线,∴CD=2OP,所以B选项的结论正确;∴OB=2OP,∴AC平分OB,所以D选项的结论正确.故选:A.12. (2019年湖北省宜昌市)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13. (2019年甘肃省武威市)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14. (2019年内蒙古包头市)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC是半圆的直径,∴CD⊥AB,∵在Rt△ABC中,∠ACB=90°,AC=BC=2,∴△ACB是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×22=2,故选:D.15. (2019年内蒙古赤峰市)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16. (2019年西藏)如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2,则半径OB等于()A.1 B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB等于:=.故选:B.17. (2019年海南省)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1. (2019年山东省德州市)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为______.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.2. (2019年湖北省随州市)如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为______.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3. (2019年黑龙江省伊春市)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4. (2019年江苏省泰州市)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接PO并延长交⊙O于点N,连接BN,∵PN 是直径,∴∠P BN=90°.∵AP ⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC ,又∵∠PNB=∠PCA ,∴△PBN ∽△PAC , ∴PA PB =PCPN , ∴3x =y10 ∴y=x30. 故答案为:y=x 30. 三、解答题1.(2019年上海市)已知:如图,AB 、AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E ,联结CD 并延长交⊙O 于点F .(1)求证:BD =CD ;(2)如果AB 2=AO •AD ,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC ,OB ,OD ,∵AB 、AC 是⊙O 的两条弦,且AB =AC ,∴A在BC的垂直平分线上,∵OB=OA=OD,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.2. (2019年江苏省苏州市)如图,AE为O的直径,D是弧BC的中点BC与AD,OD分别交于点E,F.(1)求证:DO AC∥;(2)求证:2DE DA DC⋅=;(3)若1tan2CAD∠=,求sin CDA∠的值.【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧BC 的中点,OD 为O 的半径∴OD BC ⊥又∵AB 为O 的直径∴90ACB ∠=︒∴AC OD ∥(2)证明:∵D 为弧BC 的中点∴CD BD =∴DCB DAC ∠=∠∴DCE DAC ∆∆∽∴DC DE DA DC= 即2DE DA DC ⋅= (3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠=∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a =又∵AC OD ∥∴AEC DEF ∆∽ ∴3CE AE EF DE== 所以83BC CE = 又2AC CE =∴103AB CE = 即3sin sin 5CA CDA CBA AB ∠=∠== 3. (2019年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以AB 为直径的半圆O 交AC 于点D ,点E 是上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G . (1)求证:△ADF ≌△BDG ;(2)填空:A①若AB=4,且点E是的中点,则DF的长为;②取的中点H,当∠EAB的度数为时,四边形OBEH为菱形.【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=FD∵=sin∠ABD=sin45°=,∴,即BF=FD∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2∴FD==4﹣2故答案为.②连接OE,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4. (2019年浙江省温州市)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.5. (2019年湖北省宜昌市)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.6. (2019年内蒙古包头市)如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.。
新课标版2019年全国各地中考真题分类详解 - ——圆的基本性质

新课标版2019年全国各地中考真题分类详解圆的基本性质一、选择题7.(2019·嘉兴)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线PA 交OC 延长线于点P ,则PA 的长为( )A .2B .C .D .【答案】B【解析】连接OA ,因为∠ ABC=30°,所以∠AOC=60°,又因为PA 为切线,所以∠OAP=90°,因为OC=1,所以.3.(2019·杭州)如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,若PA=3,则PB= ( ) A .2 B.3 C.4 D.5【答案】B【解析】因为PA 和PB 与⊙O 相切,根据切线长定理,可知: PA =PB =3,故选B . 12.(2019·烟台)如图,AB 是O 的直径,直线DE 与O 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥,垂足为点D ,E ,连接AC ,BC.若AD =3CE =,则AC 的长为( ).A.3 B.3 C.2 D.3【答案】D【解题过程】连接OC ,因为AD DE ⊥,BE DE ⊥,所以90ADC CEB ∠=∠=︒ 所以90DAC ACD ∠+∠=︒ 因为AB 是O 的直径,所以90ACB ∠=︒,所以90BCE ACD ∠+∠=︒, 所以BCE DAC ∠=∠, 在△ADC 与△CED ,因为90ADC CEB ∠=∠=︒,BCE DAC ∠=∠ 所以△ADC ∽△CED ,所以BC CE AC AD ===在Rt △ACB中,sin BCBAC AC∠== 所以60BAC ∠=︒, 又因为OA OC =,所以△AOC 是等边三角形, 所以60ACO ∠=︒, 因为直线DE 与O 相切于点C ,所以OC DE ⊥,因为AD DE ⊥,OC DE ⊥, 所以AD//OC ,所以60DAC ACO ∠=∠=︒,ODEBA 第12题答图所以9030ACD DAC ∠=︒-∠=︒,所以2AC AD ==, 所以△AOC 是等边三角形,所以OA AC ==,60AOC ∠=︒,所以AC的长为601803π⨯⨯=.12.(2019·威海)如图,⊙P 与x 轴交与点A (—5,0),B (1,0),与y 轴的正半轴交于点C ,若∠ACB =60°,则点C 的纵坐标为A.B. C. .2【答案】D【解题过程】连接PA 、PB 、PC ,过点P 分别作PF ⊥AB ,PE ⊥OC ,垂足为F,E. 由题意可知:四边形PFOE 为矩形, ∴PE =OF ,PF =OE . ∵∠ACB =60°, ∴∠APB =120°. ∵PA =PB , ∴∠PAB =∠PBA =30°. ∵PF ⊥AB , ∴AF=BF =3. ∴PE =OF =2.cos30°=AF AP,∴PF,AP=∴OE,PC=在RT△PEC中,CE==∴OC=CE+EO=+2.5.(2019·青岛)如圈,结段AB经过⊙O的圆心,AC BD分别与⊙O相切于点D.若AC= BD = 4,∠A=45°,则圆弧CD的长度为A.πB. 2πC. πD.4π【答案】B【解析】连接CO,DO,因为AC,BD分别与⊙O相切于C,D,所以∠ACO=∠DBO=90°,所以∠AOC=∠A=45°,所以CO=AC=4,因为AC=BD,CO=DO,所以△ACO≌△BDO,所以∠DOB=∠AOC=45°,所以∠DOC=180°-∠DOB-∠AOC=180°-45°-45°=90°,CD=904180π⨯=2π,故选B.9.(2019·益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO 的延长线交圆O于点D,下列结论不一定成立的是()A. PA=PBB.∠BPD=∠APDC.AB⊥PDD.AB平分PD第9题图【答案】D【解析】∵PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O 于点D,∴PA=PB,∠BPD=∠APD,故A、B正确;∵PA=PB,∠BPD=∠APD,∴PD⊥AB,PD平分AB,但AB不一定平分PD,故C正确,D错误.7.(2019·黄冈)如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,点D是AB的中点,且CD=10m.则这段弯路所在圆的半径为()A.25mB.24mC.30mD.60m【答案】A【解析】连接OD,由垂径定理可知O,C,D在同一条直线上,OC⊥AB,设半径为r,则OC =OA=r,AD=20,OD=OA-CD=r-10,在Rt△ADO,由勾股定理知:r2=202+(r-10)2,解得r=25.9.(2019·陇南)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB 的度数是()A .22.5°B .30°C .45°D .60°【答案】C【解析】作AB 的垂直平分线,交圆与点C ,D ,设圆心为O ,CD 与AB 交于点E ,∵OA ,∴AE=,∴2s i n 2OE AOE OA OA ∠===,∴∠AOE=45°,∴∠AOB=90°,∴∠ASB=45°, 故选:C .1.(2019·滨州)如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,若∠BCD =40°,则∠ABD 的大小为( )A .60°B .50°C .40°D .20°【答案】B【解析】如图,连接AD ,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠A 和∠BCD 都是弧BD 所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B .2. (2019·聊城)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A.35°B.38°C.40°D.42°【答案】C【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD -180°=40°,故选C.3.(2019·潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD.过点D作DE⊥AB于点E.连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为()A.8 B.10 C.12 D.16 【答案】C【解析】连接BD.∵AD=CD,∴∠DAC=∠ACD.∵AB为直径,∴∠ADB=∠ACB=90°.∴∠DAB+∠ABD=90°.∵DE⊥AB,∴∠DAB+∠ADE=90°.∴∠ADE=∠ABD.∵∠ABD=∠ACD,∴∠DAC=∠ADE.∴AF=DF=5.在Rt△AEF中,sin∠CAB=35 EFAF=∴EF=3,AE=4.∴DE=3+5=8.由DE2=AE▪EB,得228164DEBEAE===.∴AB=16+4=20.在Rt△ABC中,sin∠CAB=35 BC AB=∴BC=12.4. (2019·凉山)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数(▲)A.1 B.2 C.3 D.4【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选A.5.(2019·眉山)如图,⊙O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为A.B..6 D.12【答案】A【解析】∵∠A=22.5°,∴∠COE=45°,∵⊙O的直径AB垂直于弦CD,OC=6,∴∠CEO=90°,∵∠COE=45°,∴OC=CD=2CE= D.6.(2019·衢州)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为(A)A.6dmB.5dmC.4dmD.3dm【答案】B【解析】连接OD,OB,则O,C,D三点在一条直线上,因为CD垂直平分AB,AB=8dm,所以BD=4dm,OD=(r-2)dm,由勾股定理得42+(r-2)2=r2,r=5dm,故选B.7.(2019·泰安) 如图,△ABC是O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为A.32 °B.31°C.29°D.61°【答案】A【解析】连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°,∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.8.9.10.11.二、填空题7.(2019·嘉兴)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B.C.D.【答案】B【解析】连接OA,因为∠ABC=30°,所以∠AOC=60°,又因为PA为切线,所以∠OAP=90°,因为OC=1,所以.3.(2019·杭州)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB=()A.2 B.3 C.4 D.5【答案】B【解析】因为PA 和PB 与⊙O 相切,根据切线长定理,可知: PA =PB =3,故选B . 12.(2019·烟台)如图,AB 是O 的直径,直线DE 与O 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥,垂足为点D ,E ,连接AC ,BC.若AD =3CE =,则AC 的长为( ).ABCD【答案】D【解题过程】连接OC ,因为AD DE ⊥,BE DE ⊥,所以90ADC CEB ∠=∠=︒ 所以90DAC ACD ∠+∠=︒ 因为AB 是O 的直径,所以90ACB ∠=︒,所以90BCE ACD ∠+∠=︒, 所以BCE DAC ∠=∠, 在△ADC 与△CED ,ODEBA 第12题答图因为90ADC CEB ∠=∠=︒,BCE DAC ∠=∠ 所以△ADC ∽△CED ,所以BC CE AC AD ===在Rt △ACB中,sin BCBAC AC∠== 所以60BAC ∠=︒, 又因为OA OC =,所以△AOC 是等边三角形, 所以60ACO ∠=︒, 因为直线DE 与O 相切于点C ,所以OC DE ⊥,因为AD DE ⊥,OC DE ⊥, 所以AD//OC ,所以60DAC ACO ∠=∠=︒,所以9030ACD DAC ∠=︒-∠=︒,所以2AC AD ==, 所以△AOC 是等边三角形,所以OA AC ==,60AOC ∠=︒,所以AC的长为601803π⨯⨯=.12.(2019·威海)如图,⊙P 与x 轴交与点A (—5,0),B (1,0),与y 轴的正半轴交于点C ,若∠ACB =60°,则点C 的纵坐标为B.B. C. .2【答案】D【解题过程】连接PA 、PB 、PC ,过点P 分别作PF ⊥AB ,PE ⊥OC ,垂足为F,E. 由题意可知:四边形PFOE 为矩形, ∴PE =OF ,PF =OE . ∵∠ACB =60°, ∴∠APB =120°. ∵PA =PB ,30°.cos30°=AFAP, ∴PF,AP =∴OE,PC =在RT △PEC中,CE ==∴OC =CE +EO =+2.5.(2019·青岛) 如圈, 结段AB 经过⊙O 的圆心,AC BD 分别与⊙O 相切于点D .若AC =BD = 4,∠A =45°, 则圆弧CD 的长度为A .πB . 2πC . πD.4π【答案】B【解析】连接CO ,DO ,因为AC ,BD 分别与⊙O相切于C,D ,所以∠ACO =∠DBO =90°, 所以∠AOC =∠A =45°, 所以CO =AC =4,因为AC =BD ,CO =DO ,所以△ACO ≌△BDO ,所以∠DOB =∠AOC =45°,所以∠DOC =180°-∠DOB -∠AOC =180°-45°-45°=90°,CD =904180π⨯=2π,故选B . 16.(2019·娄底)如图(9),C 、D 两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =_____________.【答案】1.【解析】如图,图9-1,连结AD ,∵由AB 为⊙O 的直径, ∴∠ADB =90°,又∵在⊙O 中有∠ACD =30°, ∴∠B =∠ACD =30°,∴112122AD AB ==⨯=. 17.(2019·衡阳)已知圆的半径是6,则圆内接正三角形的边长是.【答案】【解析】如图,作OD ⊥BC 于D ,∵OB =6,∠OBD =30,∴BD =12BC =,∴BC =故答案为13.(2019·安徽)如图,△ABC 内接于⊙O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为 .【答案】2【解析】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.连接CO 并延长交⊙O 于E ,连接BE ,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.连接CO 并延长交⊙O 于E ,连接BE , 则∠E=∠A=30°,∠EBC=90°,∵⊙O 的半径为2,∴CE=4,∴BC=21CE=2,∵CD ⊥AB ,∠CBA=45°,∴CD=22BC=2,故答案为2.16.(2019·株洲)如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD =度.第16题【答案】20°【解析】如图,连接DO ,因为CO ⊥AB,所以∠COB=90°,∵∠AEC =65°,∴∠C=25°, ∵OD=OC,∴∠ODC=∠C=25°,△DCO 中,∠DOC=130°,∴∠DOB=40°,∴2∠BAD=∠DOB,∴∠BAD=20°。
2019年中考真题 圆的基本性质分类汇编(PDF版含解析)

所以 DAC ACO 60 , 所以 ACD 90 DAC 30 ,
所以 AC 2AD 2 3 ,
所以△AOC 是等边三角形,
所以 OA AC 2 3 , AOC 60 ,
所以 AC 的长为 60 2 3 2 3 .
2
2019 中考试题分类汇编
∴∠ PAB=∠ PBA=30°.
∵PF⊥AB ,
∴AF= BF= 3.
∴PE= OF= 2.
∵tan30 °= PF ,cos30°= AF ,
AF
AP
∴PF= 3 ,AP= 2 3 .
∴OE= 3 ,PC= 2 3 .
在 RT△PEC 中,CE=
PC 2 PE2 = 2 2 ,
所以△ADC∽△CED,
所以 BC CE 3 3 AC AD 3
在 Rt△ACB 中, sin BAC BC 3 , AC
所以 BAC 60 , 又因为 OA OC ,
所以△AOC 是等边三角形,
所以 ACO 60 , 因为直线 DE 与 O 相切于点 C, 所以 OC DE , 因为 A来自 DE , OC DE ,
D.42°
【答案】C 【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°= 40°,故选 C.
.(2019·潍坊)如图,四边形 ABCD 内接于⊙O,AB 为直径,AD=CD.过点 D 作 DE⊥AB 于点 E.连
3
接 AC 交 DE 于点 F.若 sin∠CAB= ,DF=5,则 BC 的长为()
.(2019·陇南)如图,点 A,B,S 在圆上,若弦 AB 的长度等于圆半径的 倍,则∠ASB 的度数是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. (2019滨州,6,3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【知识点】圆周角定理及其推论2. (2019聊城,8,3分)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A.35°B.38°C.40°D.42°第8题图【答案】C【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C.【知识点】三角形角和定理,圆周角定理3. (2019省潍坊市,11,3分)如图,四边形ABCD接于⊙O,AB为直径,AD=CD.过点D作DE⊥AB于点E.连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为()A.8 B.10 C.12 D.16 【答案】C【思路分析】连接BD,先证明∠DAC=∠ACD=∠ABD=∠ADE,从而可得AF=DF=5,根据sin∠CAB=35,求得EF和AE的长度,再利用射影定理求出BE的长度从而得到直径AB,根据sin∠CAB=35求得BC的长度.【解题过程】连接BD.∵AD=CD,∴∠DAC=∠ACD.∵AB为直径,∴∠ADB=∠ACB=90°.∴∠DAB+∠ABD=90°.∵DE⊥AB,∴∠DAB+∠ADE=90°.∴∠ADE=∠ABD.∵∠ABD=∠ACD,∴∠DAC=∠ADE.∴AF=DF=5.在Rt△AEF中,sin∠CAB=35 EFAF∴EF=3,AE=4.∴DE=3+5=8.由DE2=AE▪EB,得228164DEBEAE===.∴AB=16+4=20.在R t△ABC中,sin∠CAB=35 BC AB=∴BC=12.【知识点】圆周角,锐角三角比4. (2019省凉山市,7,4)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数(▲)A. 1 B. 2 C. 3 D. 4【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选A.【知识点】点到直线的距离概念;线段基本事实;在同圆或等圆中圆心角与弧的关系;垂径定理的推论5. (2019省眉山市,10,3分)如图,⊙O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为A.62B.32C.6 D.12【答案】A【思路分析】【解题过程】解:∵∠A=22.5°,∴∠COE=45°,∵⊙O的直径AB垂直于弦CD,OC=6,∴∠CEO=90°,∵∠COE=45°,∴2OC=32CD=2CE=62 D.【知识点】三角形的外角的性质,垂径定理,锐角三角形函数6.(2019省市,8,3分)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为(A)A.6dmB.5dmC.4dmD.3dm【答案】B【解析】连接OD,OB,则O,C,D三点在一条直线上,因为CD垂直平分AB,AB=8dm,所以BD=4 dm,OD=(r-2)dm,由勾股定理得42+(r-2)2=r2,r=5dm,故选B。
【知识点】垂径定理勾股定理7. (2019,9题,4分) 如图,△ABC是O的接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P 的度数为A.32 °B.31°C.29°D.61°第9题图【答案】A【解析】连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°,∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.【知识点】圆的接四边形,圆周角定理,直角三角形两锐角互余8. (2019,6,4分)如图,四边形ABCD 接于O ,若40A ∠=︒,则(C ∠= )A .110︒B .120︒C .135︒D .140︒【答案】D【解析】解:四边形ABCD 接于O ,180C A ∴∠+∠=︒,18040140C ∴∠=︒-︒=︒.故选:D .【知识点】圆接四边形的性质9.(2019,9,4分)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°【答案】C【解析】解:∵四边形ABCD 是菱形,∠D =80°,∴∠ACB ∠DCB (180°﹣∠D )=50°, ∵四边形AECD 是圆接四边形,∴∠AEB =∠D =80°,∴∠EAC =∠AEB ﹣∠ACE =30°,故选:C .【知识点】菱形的性质;圆周角定理10. (2019,9,3分)如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( )A .22.5︒B .30︒C .45︒D .60︒【答案】C【解析】解:设圆心为O ,连接OA 、OB ,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB ∆为等腰直角三角形,90AOB ∠=︒, ∴1452ASB AOB ∠=∠=︒, 故选C .【知识点】圆周角定理11. (2019省,8,3分)如图,AB 是O 的直径,点C 、D 是圆上两点,且126AOC ∠=︒,则(CDB ∠= )A .54︒B .64︒C .27︒D .37︒【答案】C 【解析】解:∵126AOC ∠=︒,∴18054BOC AOC ∠=︒-∠=︒,∴1272CDB BOC ∠=∠=︒,故选C .【知识点】圆的有关概念及性质12.(2019,12,3分)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【答案】A【解析】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A∠BOC=50°.故选:A.【知识点】圆周角定理13.(2019,8,3分)如图,在矩形ABCD中,22AD AB=.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①CMP∆是直角三角形;②点C、E、G不在同一条直线上;③6PC MP=;④2BP AB=;⑤点F是CMP∆外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】B【解析】解:∵沿着CM折叠,点D的对应点为E,∴DMC EMC∠=∠,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,AMP EMP∴∠=∠,180AMD ∠=︒,1180902PME CME ∴∠+∠=⨯︒=︒,CMP ∴∆是直角三角形;故①正确;∵沿着CM 折叠,点D 的对应点为E ,90D MEC ∴∠=∠=︒,∵再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,90MEG A ∴∠=∠=︒,180GEC ∴∠=︒,∴点C 、E 、G 在同一条直线上,故②错误; 2AD =,∴设AB x=,则AD =,∵将矩形ABCD 对折,得到折痕MN ;12DM AD ∴=,CM ∴==, 90PMC ∠=︒,MN PC ⊥,2CM CN CP ∴=,2CP ∴==,2PN CP CN x ∴=-=,PM ∴==,∴PCPM ==PC ∴=,故③错误; 2PC =,2PB ∴==,∴AB PB =2PB AB ∴=,故④, CD CE =,EG AB =,AB CD =,CE EG ∴=,90CEM G ∠=∠=︒,//FE PG ∴,CF PF ∴=,90PMC ∠=︒,∵CF PF MF ==,∴点F 是CMP ∆外接圆的圆心,故⑤正确;故选B .【知识点】翻折变换(折叠问题);三角形的外接圆与外心;矩形的性质;直角三角形的性质14. (2019,9,4分)如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若40ABC ∠=︒,则ADC ∠的度数是( )A .130︒B .140︒C .150︒D .160︒【答案】B【解析】解:由题意得到OA OB OC OD ===,作出圆O ,如图所示,∴四边形ABCD 为圆O 的接四边形,180ABC ADC ∴∠+∠=︒,40ABC ∠=︒,140ADC ∴∠=︒,故选B .【知识点】圆接四边形的性质15. (2019,6,3分)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC ∥BDB .AD ⊥OC C .△CEF ≌△BED D .AF =FD【答案】C【解析】解:∵AB 是⊙O 的直径,BC 平分∠ABD ,∴∠ADB =90°,∠OBC =∠DBC ,∴AD ⊥BD ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠DBC =∠OCB ,∴OC ∥BD ,选项A 成立;∴AD ⊥OC ,选项B 成立;∴AF =FD ,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立,故选C .【知识点】圆周角定理16.(2019省,24,3分)如图表示A 、B 、C 、D 四点在O 上的位置,其中180AD =︒,且AB BD =,BC CD =.若阿超在AB 上取一点P ,在BD 上取一点Q ,使得130APQ ∠=︒,则下列叙述何者正确?A .Q 点在BC 上,且BQ QC >B .Q 点在BC 上,且BQ QC <C .Q 点在CD 上,且CQ QD > D .Q 点在CD 上,且CQ QD <【答案】B【解析】解:连接AD ,OB ,OC ,180AD =︒,且AB BD =,BC CD =,45BOC DOC ∴∠=∠=︒,在圆周上取一点E 连接AE ,CE ,167.52E AOC ∴∠=∠=︒,122.5130ABC ∴∠=︒<︒,取BC 的中点F ,连接OF ,则67.5AOF ∠=︒,123.25130ABF ∴∠=︒<︒,Q ∴点在BC 上,且BQ QC <,故选:B .【知识点】圆心角,弧,弦的关系;圆接四边形的性质;圆周角定理二、填空题1. (2019省凉山市,15,4)如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于H ,∠A =30°,CD =23,则⊙O 的半径是 .第15题图【答案】2【解析】连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°,∵OB⊥CD,CD=23,∴CH=3,∴OH=1,∴OC=2.第15题答图【知识点】等腰三角形性质;三角形外角性质;垂径定理;勾股定理2.(2019天津市,18,3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上,(1)线段AB的长等于;(2)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠P AC=∠PBC=∠PCB,并简要说明点P的位置是如何找到的(不需要证明)【答案】(1)(2)如图,取圆与网格线的交点E,F连接EF与AC相交,得圆心O;AB与网格线相交于点D,连接DO并延长,交O于点Q,连接QC并延长,与点B,O的连线BO相交于点P,连接AP,则点P满足∠PAC=∠PBC=∠PCB【解析】(1)如图,Rt △ABD 中,AD=2,BD=21,由勾股定理可得AB=(2)由于点A 在格点上,可得直角,根据圆周角是直角所对的弦是直径可以作出直径,又因为圆心在AC 上,所以取圆与网格线的交点E,F 连接EF 与AC 相交,得圆心O ;AB 与网格线相交于点D ,则点D 为AB 的中点,连接DO 并延长,根据垂径定理可得则DO 垂直平分AB ,连接BO ,则∠OAB=∠OBA=30°,因为∠ABC=50°,所以∠OBC=20°,DO 的延长线交O 于点Q ,连接QC 并延长,与点B,O 的连线BO 相交于点P ,连接AP ,则点P 满足∠P AC=∠PBC=∠PCB【知识点】勾股定理,圆周角的性质,垂径定理3. (2019,12,4)已知一条弧所对的圆周角的度数为15°,则它所对的圆心角的度数是 .【答案】30°.【解析】根据在同圆或等圆中,同弧或等弧所对圆心角的度数是该弧所对圆周角的度数的2倍,可知答案为30°.【知识点】圆周角定理.4. (2019,14题,5分)如图,AC 是圆接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE,若∠ABC =64°,则∠BAE 的度数为________.第14题图【答案】52°【解析】∵圆接四边形ABCD,∴∠B+∠D =180°,∵∠B =64°,∴∠D =116°,又∵点D 关于AC 的对称点是点E,∴∠D =∠AEC =116°,又∵∠AEC =∠B+∠BAE,∴∠BAE =52°.【知识点】圆接四边形,三角形外角定理,对称性5. (2019省,13,5分)如图,ABC ∆接于O ,30CAB ∠=︒,45CBA ∠=︒,CD AB ⊥于点D ,若O的半径为2,则CD 的长为 .【答案】2【解析】解:连接CO 并延长交O 于E ,连接BE ,则30E A ∠=∠=︒,90EBC ∠=︒,O 的半径为2,4CE ∴=,122BC CE ∴==, CD AB ⊥,45CBA ∠=︒,222CD BC ∴==. 故答案为2.【知识点】圆周角定理6. (2019,13,3分)如图,点A 、B 、C 在O 上,6BC =,30BAC ∠=︒,则O 的半径为 .【答案】6【解析】解:260BOC BAC ∠=∠=︒,又OB OC =,BOC ∴∆是等边三角形6OB BC ∴==,故答案为6.【知识点】圆周角定理7.(2019,16,3分)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.【答案】y x.【解析】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,∵P A⊥BC,∴∠PAC=90°,∴∠PAC=∠PBD,∴△PAC∽△PBD,∴,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴,∴y x,故答案为:y x.【知识点】圆周角定理;相似三角形的判定和性质8. (2019,14,3分)如图,点A 、B 、C 、D 、E 在O 上,且AB 为50︒,则E C ∠+∠= °.【答案】155【解析】解:连接EA ,AB 为50︒,25BEA ∴∠=︒,四边形DCAE 为O 的接四边形,180DEA C ∴∠+∠=︒,18025155DEB C ∴∠+∠=︒-︒=︒,故答案为:155.【知识点】圆周角定理;圆接四边形的性质9.(2019,17,4分)如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,AB BF =,1CE =,6AB =,则弦AF 的长度为 .【答案】485【解析】】解:连接OA 、OB ,OB 交AF 于G ,如图,AB CD ⊥,132AE BE AB ∴===, 设O 的半径为r ,则1OE r =-,OA r =,在Rt OAE ∆中,2223(1)r r +-=,解得5r =,AB BF =,OB AF ∴⊥,AG FG =,在Rt OAG ∆中,2225AG OG +=,①在Rt ABG ∆中,222(5)6AG OG +-=,②解由①②组成的方程组得到245AG =, 4825AF AG ∴==. 故答案为485. 【知识点】垂径定理;勾股定理 10. 15. (2019,15,3分)如图,O 的两条相交弦AC 、BD ,60ACB CDB ∠=∠=︒,23AC =,则O 的面积是 .【答案】16π【解析】】解:A BDC ∠=∠,而60ACB CDB ∠=∠=︒,60A ACB ∴∠=∠=︒,ACB ∴∆为等边三角形,23AC =,∴圆的半径为4,O ∴的面积是16π,故答案为:16π.【知识点】圆周角定理11. (2019,14,4分)如图,在O 中,弦1AB =,点C 在AB 上移动,连结OC ,过点C 作CD OC ⊥交O 于点D ,则CD 的最大值为 .【答案】12【解析】解:连接OD ,如图,CD OC ⊥,90COD ∴∠=︒,2222CD OD OC r OC ∴=--,当OC 的值最小时,CD 的值最大,而OC AB ⊥时,OC 最小,此时221()2OC r AB =- CD ∴2221111()14222r r AB AB --=⨯=, 故答案为:12. 【知识点】垂径定理;勾股定理三、解答题1. (2019,26,14分)如图1,O 经过等边三角形ABC 的顶点A,C(圆心O 在△ABC),分别与AB,CB 的延长线交于点D,E,连接DE,BF ⊥EC 交AE 于点F .(1)求证:BD =BE;(2)当AF:EF=3:2,AC=6时,求AE的长;(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连接OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.第26题图【思路分析】(1)利用等边三角形的性质和圆周角定理,得到∠BED=∠BDE,由等角对等边,得到结论;(2)由三线合一求出AG,BG长,利用平行线分线段成比例,求得EB,进而通过勾股定理得到AE的长;(3)①构造直角三角形,利用比例关系,写出EH,AH的代数式,进而求得y关于x的表达式;②构造相似,得到比例式,表示出两个三角形的面积,根据10倍关系,得到方程,即可解得y的值.【解题过程】(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,∠DEB=∠BAC=60°,∠D=∠C=60°,∠DEB=∠D,BD=BE.(2)如图,过点A作AG⊥EC于点G,∵△ABC为等边三角形,AC=6,∴BG=12BC=12AC=3,在Rt△ABG中,AG =3BG=33,∵BF⊥EC,∴BF∥AG,∴=AF BGEF EB,∵AF:EF=3:2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,∴在Rt△AEG中,AE=22213AG EG+=;第26题答图(1)(3)①如图,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60,在Rt△BEH中,EHEB=sin603,EH=3BE,BH=12BE,=BG AFEB EF=x,BG=xBE,AB=BC=2BG=2xBE,AH=AB+BH=2xBE+12BE=(2x+12)BE,Rt △AHE中,tanEAD=332=122EHAHx BE=⎛⎫+⎪⎝⎭∴y3;第26题答图(2)②如图,过点O 作OM ⊥EC 于点M,设BE =a,∵=BG AF EB EF=x,∴CG =BG =xBE =ax,∴EC =CG+BG+BE =a+2ax,∴EM =12EC =12a+ax,∴BM =EM -BE =ax -12a,∵BF ∥AG,∴△EBF ∽△EGA,∴1===1BF BE a AG EG a ax x ++,∵AG =3BG =3ax,∴BF =11x+AG =3ax ,△OFB 的面积=131222BF BM ax ax a ⋅⎛⎫=⨯- ⎪⎝⎭,△AEC 的面积=()13222EC AG ax a ax ⋅=⨯+,∵△OFB 的面积是△AEC 的面积的10倍,∴1311022ax ax a ⎛⎫⨯⨯- ⎪⎝⎭=()1322ax a ax ⨯+,∴2x 2-7x+6=0,解之,得x 1=2,x 2=32,y =3或3.第26题答图(3)【知识点】等边三角形的性质,圆周角定理,等角对等边,三线合一,平行线分线段成比例,勾股定理,三角函数,相似三角形,一元二次方程2. (2019省市,21,8分)如图,⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD 、BC ,求证:(1);(2)AE =CE .【思路分析】(1)连接AO,BO,CO,DO,由AB=CD得到∠AOB=∠COD,从而证明出∠AOD=∠BOC即可得到;(2)试判定△ADE≌△CBE即可得出结论.【解题过程】解:(1)连接AO,BO,CO,DO,∵AB=CD,∴∠AOB=∠COD,∴∠AOD=∠BOC,∴.(2)∵,∴AD=BC,∵,∴∠ADC=∠ABC,又∵∠AED=∠CEB,∴△ADE≌△CBE,∴AE=CE.【知识点】圆的性质,圆周角定理,全等三角形判定.3. (2019,24,12分)在平面直角坐标系xOy中,已知A(0,2),动点P在y3x的图象上运动(不与O重合),连接AP,过点P作PQ⊥AP,交x轴于点Q,连接AQ。