zigbee协议栈源码
zigbee 协议栈

zigbee 协议栈Zigbee 协议栈。
Zigbee 是一种无线通信协议,它被设计用于低数据速率、低功耗的应用场景,如智能家居、工业自动化、传感器网络等。
Zigbee 协议栈是指在 Zigbee 网络中的协议层,它定义了 Zigbee 网络中各个节点之间的通信规则和协议。
Zigbee 协议栈主要包括物理层、MAC 层、网络层和应用层。
物理层定义了无线通信的调制解调方式、频率和功率控制等;MAC 层负责数据的传输和接收,以及网络中节点的管理;网络层则负责路由和数据包转发;应用层则定义了具体的应用协议和数据格式。
在 Zigbee 协议栈中,物理层使用了 IEEE 802.15.4 标准,它定义了无线通信的物理层和 MAC 层规范,包括频率、调制方式、数据帧格式等。
MAC 层定义了数据的传输方式,包括信道访问方式、数据帧格式、数据重传机制等。
网络层则定义了路由协议和数据包转发规则,以实现多跳网络的数据传输。
应用层则定义了具体的应用协议,如 Zigbee Home Automation(ZHA)、Zigbee Light Link(ZLL)等。
Zigbee 协议栈的设计遵循了低功耗、低成本、可靠性和安全性的原则。
它采用了分层的设计,使得各个层之间的功能清晰明了,易于实现和维护。
同时,Zigbee 协议栈还支持多种网络拓扑结构,包括星型、网状和混合型网络,以满足不同应用场景的需求。
在实际的应用中,开发人员可以使用 Zigbee 协议栈来快速构建 Zigbee 网络应用。
通过使用 Zigbee 协议栈,开发人员可以方便地实现节点之间的数据通信、网络管理和安全保护,从而加速产品的开发周期和降低开发成本。
总的来说,Zigbee 协议栈是 Zigbee 网络中的核心部分,它定义了 Zigbee 网络中节点之间的通信规则和协议。
通过使用 Zigbee 协议栈,开发人员可以快速构建低功耗、低成本、可靠性和安全性的Zigbee 网络应用,满足不同应用场景的需求。
【无线通信篇Zstack协议栈】CC2530ZigbeeZstack协议栈组网项目及详细讲解篇

【⽆线通信篇Zstack协议栈】CC2530ZigbeeZstack协议栈组⽹项⽬及详细讲解篇物联⽹⽆线通信技术,ZigBee⽆线传感⽹络CC2530最⼤的特点就是⼀个拥有⽆线收发器(RF)的单⽚机,既能实现单⽚机功能,也能实现⽆线传输Zstack协议栈是ZigBee协议栈⾥的翘楚,是ZigBee组⽹的⾸选协议栈项⽬实现功能:l 总共有三个端点,⼀个协调器和两个终端节点l 终端节点1连接DHT11温湿度传感器,定时上传给协调器l 终端节点2连接LED,可以通过协调器按键控制,定时上报LED开关状态l 协调器连接12864 OLED 屏幕,实时显⽰温湿度和LED状态l 协调器可以通过按键控制终端2的LED开关,控制后将会显⽰控制结果扩展功能(当前未实现,可进⼀步开发实现):l 连接协调器串⼝,将终端节点采集的数据通过串⼝发送,PC写上位机实现数据展⽰l 连接WIFI或者4G模块,WIFI模块如ESP8266,实现数据局域⽹⽆线传输或者上传到OneNET、机智云、阿⾥云、⾃⼰开发云服务器等,实现WEB或⼿机APP显⽰和控制。
⼀、项⽬测试(可想⽽知,⼴州的天⽓有多热,39℃了都)实现功能汇总:l 总共有三个端点,⼀个协调器和两个终端节点l 终端节点1连接DHT11温湿度传感器,定时上传给协调器l 终端节点2连接LED,可以通过协调器按键控制,定时上报LED开关状态l 协调器连接12864 OLED 屏幕,实时显⽰温湿度和LED状态l 协调器可以通过按键控制终端2的LED开关,控制后将会显⽰控制结果(⼀) 环境汇总芯⽚:CC2530F256Zstack协议栈:ZStack-CC2530-2.5.1a编程环境:IAR(⼆) 引脚分配协调器:128*64 OLED 0.96⼨屏幕供电:3.3V通信协议:IIC引脚:SDA P0_6SCL P0_7按键:IO:P0_1下降沿触发中断终端1:DHT11:通信⽅式:单总线协议供电:3.3VIO:P0_6终端2:LEDIO:P1_0说明:⾼电平点亮,低电平熄灭⼆、基础认识(⼀) CC2530单⽚机CC2530最⼤的特点就是⼀个拥有⽆线收发器(RF)的单⽚机,既能实现单⽚机功能,也能实现⽆线传输。
zigbee协议,源代码

竭诚为您提供优质文档/双击可除zigbee协议,源代码篇一:揭开zigbee20xx协议栈z-stack的”开源“面纱揭开zigbee20xx协议栈z-stack的”开源“面纱(20xx-11-2216:06)分类:zigbee技术学习我们都在说zigbee20xx协议栈z-stack是开源的,但是这个协议栈到底是全部开源的,还是只是开源一部分,让我们来揭开它的“开源”面纱?z-stack是在20xx年4月,德州仪器推出业界领先的zigbee协议栈,z-stack符合zigbee20xx规范,支持多种平台,z-stack 包含了网状网络拓扑的几近于全功能的协议栈,在竞争激烈的zigbee领域占有很重要地位。
配合osal完成整个协议栈的运行。
z-stack只是zigbee协议的一种具体的实现,我们要澄清的是zigbee不仅仅有z-stack这一种,也不能把z-stack 等同于zigbee20xx协议,现在也有好几个真正开源的zigbee协议栈,例如:msstatepan协议栈,freakz协议栈,这些都是zigbee协议的具体实现,而且是全部真正的开源的,它们的所有源代码我们都可以看到,而z-stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。
那下面我们就以z-stack1.4.3-1.2.0看看它的组织架构,那些功能是开源的,那些是以库文件的形式提供给我们的。
我们利用z-stack开发应用,只能知道怎么做和做什么也就是“how”和“what”,而不能准确的知道“为什么”,“why”.我们也可以通过真正这些开源的zigbee协议栈了解为什么。
我们可以从ti的官方网站下载最新的协议栈,/zigbee 我这里的是zigbee20xx版本为版本的。
下载完以后我们可以点击exe文件进行安装,默认会在c盘的根目录下建立texasinstruments目录,该目录下面的子目录就是安装z-stack的文件。
zigbee 协议栈

zigbee 协议栈Zigbee是一种基于IEEE 802.15.4标准的无线通信协议,它是一种低功耗、短距离的无线网络协议,可以用于物联网中各种设备的通信。
Zigbee协议栈是指一套软件的层次结构,用于实现Zigbee协议的功能和特性。
Zigbee协议栈由四个层次组成:应用层,网络层,MAC层和物理层。
应用层是Zigbee协议栈的最高层,它提供了应用程序与其他网络层之间的接口。
应用层负责处理数据的收发,以及定义数据的格式和协议。
应用层也负责处理设备与设备之间的通信,例如传感器与控制器之间的通信。
网络层是Zigbee协议栈的中间层,它负责网络的发现和路由选择。
网络层的主要功能是将数据传输到目标设备,以及维护网络拓扑结构。
网络层使用一种叫做AODV(Ad-hoc On-Demand Distance Vector)的路由选择算法来决定数据的传输路径。
MAC层是Zigbee协议栈的第二层,它负责实现对数据的传输和控制。
MAC层的主要功能包括数据的处理、帧的编码和解码、对信道的管理等。
MAC层使用CSMA-CA(Carrier Sense Multiple Access with Collision Avoidance)协议来控制数据的传输,并通过BEACON帧来管理设备之间的通信。
物理层是Zigbee协议栈的最底层,它负责将数据从电子信号转换为无线信号,并传输到接收设备。
物理层的主要功能包括信号的调制和解调、信道编码和解码、信号的传输和接收等。
Zigbee协议栈还支持一种叫做ZDO(Zigbee Device Object)的设备对象。
ZDO是一个与设备相关的软件模块,提供了设备的管理和控制功能。
ZDO负责设备的发现、加入网络、离开网络、重置等操作,并通过指定的应用程序接口来与设备进行通信。
总的来说,Zigbee协议栈是一个非常复杂的系统,包含了多个层次和各种功能。
它通过不同的层次和模块来实现Zigbee协议的各种特性和功能,从而使得物联网设备之间可以方便地进行通信和控制。
zigbee协议栈代码主要名词解释

zigbee协议重要名词解释及英文缩写(转载)网络层功能:1. 加入和退出网络2. 申请安全结构3. 路由管理4. 在设备之间发现和维护路由5. 发现邻设备6. 储存邻设备信息当适当的重新分配地址联合其他设备,ZIGBEE2006可以依赖于网络协调者建立一个新网络.ZIGBEE应用层由APS(应用支持)、AF(应用结构)、ZDO(ZIGBEE设备对象)和厂商自定义应用对象组成。
APS功能1. 绑定维持工作台,定义一个两个合拢的设备进行比较建立他们的需要和服务。
2. 促进信息在设备之间的限制3. 组地址定义,移除和过滤组地址消息4. 地址映射来自于64位IEEE地址和16位网络地址5. 分裂、重新组装和可靠数据传输ZDO功能1. 定义设备内部网络(ZigBee协调者和终端接点)2. 开始和/或回答绑定请求3. 在网络设备中建立一个网络安全关系4. 在网络中发现设备和决定供给哪个应用服务ZDO同样有责任在网络中发现设备和为他们提供应用服务。
1.1.4 网络拓扑ZIGBEE网络层支持星状、树状和网状拓扑。
在星状拓扑中网络受约束与单个设备,呼叫COORD。
COORD有责任建立和维持在网络中发现的设备和其他所有设备,都知道的终端接点直接和COORD 通信。
在网状和树状拓扑中,COORD有责任建立一个网络和选择几个关键网络参数,但是网络有有可能直接应用于ZigBee路由器。
在树状网络中,利用分等级路由策略完成路由传输数据和控制消息直通网络。
树状网络在802.15.4-2003中可以采用信标引导通信。
网状网络将允许所有对等网络通信。
ZIGBEE 路又将不能在网状网络中发射规则的IEEE802.15.4-2003信标。
缩写含义AIB:应用支持层消息AF:应用结构APDU:应用支持层以下数据单位APL:应用层APS:应用支持层APSDE:应用支持层以下数据实体APSDE-SAP:应用支持层数据实体—服务通道APSME:应用支持层管理实体APSME-SAP:应用支持层管理实体—服务通道ASDU:APS服务数据单位BRT:广播重试计时器BTR:广播处理记录BTT:广播处理工作台CCM*:CSMA-CA:载波多重监听通道——避免碰撞FFD:全部功能设备GTS:担保时间跟踪IB:消息数据LQI:连接质量指示LR-WPAN:低速率无线局域网MAC:控制层MCPS-SAP:控制层公共部分—服务通道MIC:消息完整代码MLME-SAP:控制层管理实体—服务通道MSC:消息序列图表MSDU:控制层服务数据单位MSG:消息服务类型NBDT:网络广播发送时间NHLE:下一个更高层实体NIB:网络层信息数据NLDE:网络层数据实体NLDE-SAP:网络层数据实体——服务通道NLME:网络层管理实体NLME-SAP:网络层管理实体——服务通道NPDU:网络层数据单位NSDU:网络服务数据单位NWK:网络OSL:打开系统联络PAN:局域网PD-SAP:物理层数据—指向服务通道PDU:协议数据单位PHY:物理层PIB:局域网消息PLME-SAP:物理层管理实体——指向服务通道POS:私人运作空间QOS:服务质量RREP:路由回答RN:路由接点SKG:SKKE:SSP:安全服务提供SSS:安全服务说明WPAN:无线局域网XML:可扩展语言ZB:ZIGBEEZDO:ZIGBEE设备对象2.1.1APSAPS提供一个工作台在网络层和应用层之间直接服务于ZDO和厂商自定义设备。
zigbee协议规范及时间

zigbee协议规范及时间Zigbee协议规范及应用前景概述:Zigbee是一种无线通信协议,旨在实现低功耗、低带宽、低成本的无线传感器和控制网络。
其特点是简单、灵活、可靠,适用于各种物联网场景。
本文将介绍Zigbee协议的规范以及其在不同领域的应用前景。
一、Zigbee协议规范1. Zigbee协议栈Zigbee协议栈包括物理层、MAC层、网络层、应用层等。
物理层负责无线信号的传输和接收,MAC层提供无线电资源的管理,网络层处理路由和网络拓扑,应用层用于支持各种应用。
Zigbee协议栈灵活可配置,使其适用于各种不同的应用场景。
2. Zigbee网络拓扑Zigbee支持多种网络拓扑结构,包括星型、网状和混合型。
星型拓扑适用于点对点通信,网状拓扑适用于多节点之间的通信,混合型拓扑则是两者的结合。
Zigbee的网络拓扑结构灵活,可以根据实际需求来选择。
3. Zigbee安全性Zigbee协议提供了多层次的安全措施,包括加密通信、身份验证和密钥管理。
通过这些安全措施,Zigbee网络可以有效地防止未经授权的访问和信息泄露,提供了可靠的数据保护。
二、Zigbee在家居自动化中的应用1. 智能家居Zigbee作为智能家居的重要组成部分,在家庭中的应用前景广阔。
通过Zigbee协议,各种智能设备(如智能灯泡、智能门锁、温度传感器等)可以互联互通,并通过无线网络进行远程控制和监控。
智能家居带来了更加智能、便捷和舒适的生活体验。
2. 能源管理Zigbee协议在能源管理领域也有广泛的应用。
通过Zigbee无线传感器,可以实现对能源的实时监测和控制,提高能源利用效率。
同时,Zigbee还可以实现对能源设备的自动化控制,如智能电表的远程抄表和调控。
三、Zigbee在工业自动化中的应用1. 物联网工业控制Zigbee协议在工业自动化中发挥着重要的作用。
通过Zigbee无线传感器网络,可以实现对工业生产过程的实时监测和控制。
zigbee组网小实验2—相关源代码1

·风格控,你今天“艰难决定”了吗? ·手机写博 Word写博 LiveWriter写博
2010-12-17
zigbee组网小实验2—相关源代码1 - 小峰的日志 - 网易博客
/*SPI Data command*/ if ( events & UART_RX_DAT_CB_EVT ) {
SampleApp_SPI_SendData( databuf, rxlen+1+2 ); return (events ^ UART_RX_DAT_CB_EVT); } //********************** /*SPI Control command*/ if ( events & UART_RX_CMD_CB_EVT ) { // HalLedBlink( HAL_LED_4, 4, 50, (1000 / 4) ); //test SampleApp_SPI_SendCommand( databuf, rxlen+1+2 ); return (events ^ UART_RX_CMD_CB_EVT); } //********************** /*inform the coordinator when join the network*/ #ifndef ZDO_COORDINATOR if ( events & SAMPLEAPP_SEND_NWKADDR_EVT ) { SampleApp_SendNwkaddrMessage(); return ( events ^ SAMPLEAPP_SEND_NWKADDR_EVT); } #endif //********************** /*transmit the data periodically*/ if ( events & SAMPLEAPP_COMMAND_PERIODIC_MSG_EVT ) { SampleApp_PrcoessCommandPeriodicMessage(); return ( events ^ SAMPLEAPP_COMMAND_PERIODIC_MSG_EVT); } //********************** // Discard unknown events return 0; }
zigbee协议栈flash操作

z-stack的flash驱动。
在分析flash驱动之前,需要熟读cc2530的datasheet关于flash controller那一章节!我们先从hal_flash.c文件中的HalFlashRead函数开始:void HalFlashRead(uint8 pg, uint16 offset, uint8 *buf, uint16 cnt) {// Calculate the offset into the containing flash bank as it gets mapped into XDATA.uint8 *ptr = (uint8 *)(offset + HAL_FLASH_PAGE_MAP) +((pg % HAL_FLASH_PAGE_PER_BANK) *HAL_FLASH_PAGE_SIZE);uint8 memctr = MEMCTR; // Save to restore.#if !defined HAL_OAD_BOOT_CODEhalIntState_t is;#endifpg /= HAL_FLASH_PAGE_PER_BANK; // Calculate the flash bank from the flash page.#if !defined HAL_OAD_BOOT_CODEHAL_ENTER_CRITICAL_SECTION(is);#endif// Calculate and map the containing flash bank into XDATA. MEMCTR = (MEMCTR & 0xF8) | pg;while (cnt--){*buf++ = *ptr++;}MEMCTR = memctr;#if !defined HAL_OAD_BOOT_CODEHAL_EXIT_CRITICAL_SECTION(is);#endif}在讲解这个函数之前,先说一下z-stack中对flash的布局。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除
zigbee协议栈源码
篇一:zigbeez-stack协议栈构架
zstack基础
1、zstack协议栈构架
zigbee协议栈就是将各个层定义的协议都集合在一起,以函数的形式实现,并给用户提供一些应用层api,供用户调用。
协议栈体系分层架构与协议栈代码文件夹对应表如下:整个协议栈的构架,如图所示
app:应用层目录,这是用户创建各种不同工程的区域,在这个目录中包含了应用层的内容和这个项目的主要内容,在协议栈里面一般是以操作系统的任务实现的。
hal:硬件层目录,包含有与硬件相关的配置和驱动及操作函数。
mac:mac层目录,包含了mac层的参数配置文件及其mac的lib库的函数接口文件。
mt:监控调试层,主要用于调试目的,即实现通过串口
调试各层,与各层进行直接交互。
nwk:网络层目录,含网络层配置参数文件及网络层库的函数接口文件,aps层库的函数接口。
osal:协议栈的操作系统。
profile:aF层目录,包含aF层处理函数文件。
security:安全层目录,安全层处理函数接口文件,比如加密函数等。
services:地址处理函数目录,包括着地址模式的定义及地址处理函数。
tools:工程配置目录,包括空间划分及zstack相关配置信息。
zdo:zdo目录。
zmac:mac层目录,包括mac层参数配置及mac层lib 库函数回调处理函数。
zmain:主函数目录,包括入口函数main()及硬件配置文件。
output:输出文件目录,这个ew8051ide自动生成的。
2、zigbee20xx协议栈源码库结构分析
了解了zigbee20xx协议栈整个构架后,再来看看协议栈源码库结构是什么样的,各层的具体文件是什么,建立不同的项目、添加自己的应用层任务及处理函数需要修改什么文件。
zigbee20xx协议栈zstack-1.4.2文件目录及说明如下:
打开smapleapp项目工程
先看app层:
从上图可以看出,对于不同的项目,大部分代码都是相同的,只是在用户应用层,添加了不同的任务及事件处理函数。
因此一般情况下,用户只需额外添加上图中的三个文件(主文件、头文件、操作系统接口文件)就可以完成一个项目,然后编写自己的任务处理函数就可以了。
层目录:common目录下的文件是公用文件,基本上与硬件无关,hal_assert.c文件是断言文件,用于调试,hal_drivers.c 是驱动文件,抽象出与硬件无关的驱动函数,包含有与硬件相关的配置和驱动及操作函数。
include目录下主要包含各个硬件模块的头文件,target目录下的文件是跟硬件平台相关的,可以看到有两个平台,其中我们正在用的是cc2430eb 平台。
mac层目录:
mac分为高层和低层两层,include目录下包含了mac
层的参数配置文件及lib库的函数接口文件。
其中
zmac.c是zstackmac层接口文件,zmac_cb.c是zmac
需要调用的网络层函数。
zmain目录:
z-stack由main()函数开始执行,main()在zmain.c 中,该函数共做了2件事:一是系统初始化,另外一件是开始执行轮转查询式操作系统,onboard.c中包含了对硬件开
发平台各类外设进行控制的接口函数。
篇二:zigbee协议栈各层分析
一phy:物理层通过射频固件和硬件提供mac层与物理无线信道之间的接口。
两个物理层:一868/915mhz频带:20kb/s40kb/s
二2.4ghz频带:250kb/s
三个频带被分为27个频率信道,868mhz支持0信道。
915mzh支持10个信道2.4ghz支持16个信道。
二,mac:mac模块实现ieee802.15.4标准的mac层服务,包括信标帧的产生与同步、设备的关联与解除关联、实现csma/cd的介质访问方法等,使得在两个mac实体间建立一个可靠的通信链路。
它的核心是信道接入技术,mac层采用了csma/ca(带有冲突避免的载波侦听多路访问)的技术,简单来说,就是节点在发送数据之前先监听信道,如果信道空闲则可以发送数据,否则就要进行随机的退避,即延迟一段随机时间,然后再进行监听,通过这种信道接入技术,所有节点竞争共享同一个信道。
三,nwk:zigbee网络层提供安全管理,信息代理,路由管理,网络管理。
其主要功能是路由,路由算法是它的核心。
四,应用层包括包括了aps、aF和zdo几部分,主要规
定了一些和应用相关的功能,包括端点(endpoint)的规定,还有绑定(binding)、服务发现和设备发现
aps:1.维护绑定表,即根据服务和需求同时匹配两个设备的功能。
2.绑定设备之间转发信息。
3.组地址定义,删除和过滤组地址信息
4.从64位ieee地址到16位网络地址的地址映射
5分割,重组和可靠的数据传输
zdo:1.定义网络中的设备的角色(协调器或终端设备)
2.发现网络上的设备,决定他们提供哪种应用服务
3.初始化、响应绑定请求
4.建立网络设备之间的一个安全关系。
五,zigbee设备
(1)协调器:负责启动整个网络。
它也是网络的第一个设备。
协调器选择一个信道和一个网络id,随后启动整个网络。
协调器的角色主要涉及网络的启动和配置。
一旦这些都完成后,协调器的工作就像一个路由器。
具有建立网络,串口通信能力,只能全速运行,不能工作在休眠方式。
(2)路由器:允许其他设备加入网络,多跳路由和协助它自己的终端设备的通讯。
一般路由器希望是一直处于活动状态,因此它必须使用主电源供电。
在协调器建立网络后,Router能维持这个网络。