统计学一元线性回归课后习题答案分析

合集下载

《统计学》第9章课后习题参考答案

《统计学》第9章课后习题参考答案

第9章习题参考答案
9.1
解:(1)长度Y(厘米)与重量X(克)之间的散点图如下所示:
由Y与X的散点图可以大致推测长度Y关于重量X是线性相关,且二者呈正相关关系。

(2)首先,先分别求出平均重量和平均长度:
;;
其次,计算回归参数,其计算表如下:
表1:回归方程参数的计算表
(X-(Y-
最后,根据公式(9.6)计算相应的回归参数:

所以,Y关于X的一元线性回归方程为:
9.5
解:总变差,回归平方和,残差平方和的计算如下:
表2:总变差,回归平方和,残差平方和的计算表
∴残差平方和:;
回归平方和:
9.6
解:由表2得:
判定系数
又∵习题9.1的散点图显示Y与X是呈正相关关系
∴相关系数
显著性检验:
(1)回归方程的显著性检验:
原假设H0:该回归方程不显著;备择假设H1:该回归方程显著
计算F统计量:
∵在α=0.05的显著性水平下,有4454.79>F0.05(1,4)=7.71
∴拒绝原假设,认为该回归方程式显著的。

(2)回归参数的假设检验:
原假设H0:备择假设H1:
计算t统计量:;
[其中] ∵在α=0.05的显著性水平下,有15.98>t0.05(4)=2.776
∴拒绝原假设,即认为自变量X对因变量Y有显著性影响。

(3)相关关系的显著性检验:
原假设H0:ρ=0;备择假设H1:ρ
计算t统计量:;
∵在α=0.05的显著性水平下,有66.64> t0.05(4)=2.776
∴拒绝原假设,认为总体相关系数不为0。

计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。

Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

应用回归分析_第2章课后习题参考答案

应用回归分析_第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定?答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。

2. 等方差及不相关的假定条件为⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1,0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。

在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。

3. 正态分布的假定条件为⎩⎨⎧=相互独立n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。

4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。

在整个回归分析中,线性回归的统计模型最为重要。

一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。

因此,线性回归模型的理论和应用是本书研究的重点。

1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计;2. 对回归方程及回归系数的种种假设进行检验;3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。

2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。

求1β的最小二乘估计。

答:∑∑==-=-=ni ni i i i x y y E y Q 1121121)())(()(ββ∑∑∑===+-=--=∂∂n i n i ni i i i i i i x y x x x y Q111211122)(2βββ 令,01=∂∂βQ即∑∑===-n i ni i i i x y x 11210β 解得,ˆ1211∑∑===ni ini i i xyx β即1ˆβ的最小二乘估计为.ˆ1211∑∑===ni ini ii xyx β2.3 证明: Q (β,β1)= ∑(y i-β0-β1x i)2因为Q (∧β0,∧β1)=min Q (β0,β1 )而Q (β0,β1) 非负且在R 2上可导,当Q 取得最小值时,有即-2∑(y i -∧β0-∧β1x i )=0 -2∑(y i-∧β0-∧β1x i ) x i=0又∵e i =yi -( ∧β0+∧β1x i )= yi -∧β0-∧β1x i ∴∑e i =0,∑e i x i =0(即残差的期望为0,残差以变量x 的加权平均值为零)2.4 解:参数β0,β1的最小二乘估计与最大似然估计在εi~N(0, 2 ) i=1,2,……n 的条件下等价。

贾俊平第四版统计学-第十一章一元线性回归练习答案

贾俊平第四版统计学-第十一章一元线性回归练习答案

第十一章一元线性回归练习题答案二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验;t 检验;2.图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。

三.计算题1.(1) SSR 的自由度是1,SSE 的自由度是18。

(2)2418/6080220/1/==-=SSE SSR F(3)判定系数%14.57140802===SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。

(4)7559.05714.02-=-=-=R r相关系数为-0.7559。

(5)线性关系显著和:线性关系不显著和y x y x H 10H :因为414.424=>=αF F,所以拒绝原假设,x 与y 之间的线性关系显著。

2.(1)方差分析表df SS MS F Significance F回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计16500---(2)判定系数%8585.05004252====SST SSR R表明在维护费用的变差中,有85%的变差可由使用年限来解释。

(3)9220.085.02===R r二者相关系数为0.9220,属于高度相关(4)x y248.1388.6ˆ+= 分布;显著。

的自由度为t n r n r t 2);12||2---=回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。

(5)线性关系显著性检验:线性关系显著:生产费用和产量之间性关系不显著生产费用和产量之间线10:H H因为Significance F=0.017<05.0=α,所以线性关系显著。

(6)348.3120248.1388.6248.1388.6ˆ==⨯++=x y当产量为10时,生产费用为31.348万元。

线性回归习题答案

线性回归习题答案

线性回归习题答案线性回归是统计学中一种常见的数据分析方法,用于建立自变量与因变量之间的线性关系模型。

在实际应用中,线性回归模型常用于预测、趋势分析和关联度分析等领域。

下面将通过一些典型的线性回归习题来探讨其应用。

习题一:某公司根据过去几年的销售数据,建立了一个线性回归模型来预测未来的销售额。

已知公司的广告费用与销售额之间存在着一定的线性关系。

根据模型,当广告费用为1000元时,预测的销售额为15000元。

求该模型的回归方程。

解答:假设回归方程为y = a + bx,其中y表示销售额,x表示广告费用。

根据已知条件,可以得到一个方程:15000 = a + 1000b。

进一步,如果再给出另外一个广告费用与销售额的数据点,就可以求解出回归方程的具体参数a和b。

习题二:某城市的房价与房屋面积之间存在一定的线性关系。

已知一套房子的面积为120平方米,根据线性回归模型预测其价格为80万元。

求该模型的回归方程。

解答:假设回归方程为y = a + bx,其中y表示房价,x表示房屋面积。

根据已知条件,可以得到一个方程:80 = a + 120b。

同样地,如果再给出另外一个房屋面积与价格的数据点,就可以求解出回归方程的具体参数a和b。

习题三:某公司根据市场调研数据,建立了一个线性回归模型来分析产品销售量与价格之间的关系。

已知当产品价格为10元时,预测的销售量为1000个。

根据该模型,求当产品价格为15元时的预测销售量。

解答:假设回归方程为y = a + bx,其中y表示销售量,x表示产品价格。

根据已知条件,可以得到一个方程:1000 = a + 10b。

根据该方程,可以求解出参数a和b的具体值。

然后,将x取15,代入回归方程中,即可得到当产品价格为15元时的预测销售量。

通过以上习题的解答,我们可以看到线性回归模型在实际问题中的应用。

通过建立合适的回归方程,我们可以通过已知的自变量值来预测因变量的取值。

这对于企业决策、市场分析以及经济预测等方面都具有重要意义。

回归分析习题及答案

回归分析习题及答案

回归分析习题及答案回归分析习题及答案回归分析是统计学中一种常用的分析方法,用于研究变量之间的关系。

它可以帮助我们了解变量之间的相关性,并预测未来的趋势。

在本文中,我们将提供一些回归分析的习题及其详细解答,帮助读者更好地理解和应用这一方法。

习题一:某公司想要了解其销售额与广告投入之间的关系。

公司收集了过去12个月的数据,包括每个月的广告投入(单位:万元)和当月的销售额(单位:万元)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答一:首先,我们需要将数据导入统计软件,比如SPSS或Excel。

然后,我们可以使用线性回归模型来分析销售额与广告投入之间的关系。

在SPSS中,可以选择“回归”分析,将销售额作为因变量,广告投入作为自变量,进行线性回归分析。

回归分析的结果包括回归方程、相关系数、显著性检验等。

回归方程可以用来描述销售额与广告投入之间的关系。

相关系数可以告诉我们这两个变量之间的相关程度,取值范围为-1到1,越接近1表示相关性越强。

显著性检验可以告诉我们回归方程是否显著,即广告投入是否对销售额有显著影响。

习题二:某研究人员想要了解学生的考试成绩与他们的学习时间之间的关系。

研究人员随机选择了100名学生,记录了他们的学习时间(单位:小时)和考试成绩(百分制)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答二:同样地,我们需要将数据导入统计软件,然后进行回归分析。

这次,我们将考试成绩作为因变量,学习时间作为自变量。

除了之前提到的回归方程、相关系数和显著性检验之外,我们还可以通过回归分析的结果来进行预测。

例如,我们可以利用回归方程来预测一个学生在给定学习时间下的考试成绩。

习题三:某研究人员想要了解一个人的身高与体重之间的关系。

研究人员随机选择了200名成年人,记录了他们的身高(单位:厘米)和体重(单位:千克)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答三:同样地,我们将数据导入统计软件,然后进行回归分析。

贾俊平《统计学》配套题库 【课后习题】详解 第11章~第12章【圣才出品】

贾俊平《统计学》配套题库  【课后习题】详解  第11章~第12章【圣才出品】

第11章一元线性回归一、思考题1.解释相关关系的含义,说明相关关系的特点。

答:变量之间存在的不确定的数量关系,称为相关关系。

相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。

对这种关系不确定的变量是不能用函数关系进行描述的。

2.相关分析主要解决哪些问题?答:相关分析就是对两个变量之间线性关系的描述与度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本所反映的变量之间的关系能否代表总体变量之间的关系。

3.相关分析中有哪些基本假定?答:在进行相关分析时,对总体主要有以下两个假定:(1)两个变量之间是线性关系;(2)两个变量都是随机变量。

4.简述相关系数的性质。

答:相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。

若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ;若是根据样本数据计算的,则称为样本相关系数,记为r 。

相关系数的性质:(1)r 的取值范围在-1~+1之间,即-1≤r ≤1。

若0<r ≤1,表明x 与y 之间存在正线性相关关系;若-1≤r <0,表明x 与y 之间存在负线性相关关系;若r =+1,表明x 与y 之间为完全正线性相关关系;若r =-1,表明x 与y 之间为完全负线性相关关系。

可见当|r |=1时,y 的取值完全依赖于x ,二者之间即为函数关系;当r =0时,说明y 的取值与x 无关,即二者之间不存在线性相关关系。

(2)r 具有对称性。

x 与y 之间的相关系数xy r 和y 与x 之间的相关系数yx r 相等,即xy r =yx r 。

(3)r 数值大小与x 和y 的原点及尺度无关。

改变x 和y 的数据原点及计量尺度,并不改变r 数值大小。

(4)r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。

人教A版高中数学选择性必修第三册课后习题 第8章成对数据的统计分析 8.2 一元线性回归模型及其应用

人教A版高中数学选择性必修第三册课后习题 第8章成对数据的统计分析 8.2 一元线性回归模型及其应用

8.2 一元线性回归模型及其应用课后训练巩固提升1.对于经验回归方程y ^=b ^x+a ^(b ^>0),下列说法错误的是 ( )A.当x 增加一个单位时,y ^的值平均增加b ^个单位 B.点(x,y )一定在y ^=b ^x+a ^所表示的直线上 C.当x=t 时,一定有y=b ^t+a ^D.当x=t 时,y 的值近似为b ^t+a ^解析:经验回归方程是一个模拟函数,它表示的是一系列离散的点大致所在直线的位置及其大致变化规律,故有些散点不一定在经验回归直线上. 答案:C2.有一名同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一个热饮销售杯数与当天气温之间的线性关系,其经验回归方程为y ^=-2.35x+155.47.如果某天气温为4 ℃,那么该小卖部大约能卖出热饮的杯数是( )A.140B.146C.151D.164答案:B3.设两个变量x 和y 之间具有线性相关关系,它们的样本相关系数是r,y 关于x 的经验回归直线的斜率是b ^,纵轴上的截距是a ^,那么必有( ) A.b ^与r 的符号相同B.a ^与r 的符号相同C.b ^与r 的符号相反D.a ^与r 的符号相反解析:因为b ^>0时,两变量正相关,此时r>0; b ^<0时,两变量负相关,此时r<0, 所以b ^与r 的符号相同. 答案:A4.有一散点图如图所示,在5个点中去掉D(3,10)后,下列说法正确的是( )A.残差平方和变小B.相关系数r 变小C.决定系数R2变小D.解释变量x与响应变量y的线性相关程度变弱解析:由题中散点图可知,只有D点偏离经验回归直线,去掉D点后,解释变量x与响应变量y的线性相关程度变强,相关系数r变大,决定系数R2变大,残差平方和变小,故选A.答案:A5.(多选题)3月15日,某市物价部门对5家商场的某商品一天的销售量及其价格进行调查,5家商场的售价x(单位:元)和销售量y(单位:件)之间的一组数据如表所示:根据表中数据得到y关于x的回归直线方程是y^=-3.2x+a^,则下列说法正确的有( )A.a^=40B.回归直线过点(10,8)C.当x=8.5时,y的估计值为12.8D.点(10.5,6)处的随机误差为0.4解析:由题意可知x =15×(9+9.5+10+10.5+11)=10,y =15×(11+10+8+6+5)=8,故回归直线过点(10,8),且8=-3.2×10+a ^⇒a ^=40,故A,B 正确.当x=8.5时,y ^=-3.2×8.5+40=12.8,故C 正确.点(10.5,6)处的随机误差为6-(-3.2×10.5+40)=-0.4,故D 不正确,故选ABC. 答案:ABC6.某品牌服装专卖店为了解保暖衬衣的销售量y(单位:件)与平均气温x(单位:℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:由表中数据算出线性回归方程y ^=b ^x+a ^中的b ^=-2,样本中心点为(10,38). (1)表中数据m= ;(2)气象部门预测三月中旬的平均气温约为22 ℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量为 .解析:(1)由y =38,得m=40.(2)由a ^=y −b ^x ,得a ^=58,则y ^=-2x+58, 当x=22时,y ^=14,故估计三月中旬的销售量为14件. 答案:(1)40 (2)14件7.某工厂1~8月份某种产品的产量x(单位:t)与成本y(单位:万元)的统计数据如下表.(1)画出散点图;(2)判断y 与x 是否具有线性相关关系,若有,求出其经验回归方程. 解:(1)散点图如图.(2)由图可看出,这些点基本分布在一条直线附近,可以认为x 和y 线性相关.∵x =6.85,y =157.25,∑i=18x i y i =8764.5,∑i=18x i 2=382.02,∴b ^=∑i=18x i y i -8xy∑i=18x i 2-8x 2=8764.5-8×6.85×157.25382.02-8×6.852≈22.169,a ^=y −b ^x ≈157.25-22.169×6.85≈5.392. ∴经验回归方程为y ^=22.169x+5.392.1.由变量x 与y 相对应的一组数据(1,y 1),(5,y 2),(7,y 3),(13,y 4),(19,y 5)得到的经验回归方程为y ^=2x+45,则y =( ) A.135 B.90 C.67D.63解析:因为x =15×(1+5+7+13+19)=9,y =2x +45,所以y =2×9+45=63. 答案:D2.某鞋厂为了研究初二学生的脚长)的关系,从初二某班随机抽取10名学生,根据测量数据的散点图(图略)可以看出y 与x 之间有线性相关关系,设其经验回归方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4.该班某学生的脚长为24 cm,据此估计其身高为( ) A.160 cm B.163 cm C.166 cmD.170 cm解析:x =22.5,y =160,a ^=160-4×22.5=70,则经验回归方程为y ^=4). 答案:C3.(多选题)四名同学根据各自的样本数据研究变量x,y 之间的相关关系,并求得经验回归方程,分别得到以下四个结论,其中一定不正确的结论是( )A.y 与x 负相关,且y ^=2.347x-6.423 B.y 与x 负相关,且y ^=-3.476x+5.648 C.y 与x 正相关,且y ^=5.437x+8.493 D.y 与x 正相关,且y ^=-4.326x-4.578解析:A 结论错误,由经验回归方程知,此两变量的关系是正相关; B 结论正确,经验回归方程符合负相关的特征; C 结论正确,经验回归方程符合正相关的特征; D 结论不正确,经验回归方程符合负相关的特征. 故选AD.答案:AD4.对具有线性相关关系的变量x,y,测得一组数据如表:根据上表,利用最小二乘法得它们的经验回归方程为y^=10.5x+a^,据此模型预测,当x=10时,y^= .×(2+4+5+6+8)=5,解析:根据表中数据,计算x=15y=1×(20+40+60+70+80)=54,5代入经验回归方程y^=10.5x+a^中,求得a^=54-10.5×5=1.5,故经验回归方程为y^=10.5x+1.5,据此模型预测,当x=10时,y^=10.5×10+1.5=106.5.答案:106.55.某市春节期间7家超市的广告费支出x i(单位:万元)和销售额y i(单位:万元)的数据如下:销售额y i 19 32 40 44 52 53 54(1)若用线性回归模型拟合y 与x 的关系,求y 关于x 的经验回归方程. (2)若用对数回归模型拟合y 与x 的关系,可得经验回归方程y ^=12ln x+22,经计算得出线性回归模型和对数回归模型的决定系数R 2分别约为0.75和0.97,请用决定系数R 2说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出为8万元时的销售额.参考数据及公式:x =8,y =42,∑i=17x i y i =2 794,∑i=17x i 2=708,b^=∑i=1nx i y i -nxy ∑i=1nx i 2-nx 2,a ^=y −b ^x ,ln 2≈0.7. 解:(1)b ^=∑i=17x i y i -7xy∑i=17x i 2-7x 2=2794-7×8×42708-7×82=1.7,a ^=y −b ^x =28.4,故y 关于x 的经验回归方程是y ^=1.7x+28.4. (2)因为0.75<0.97, 所以对数回归模型更合适.把x=8代入回归方程y ^=12ln x+22,得y ^=12×ln 8+22=36ln 2+22≈47.2,所以当x=8万元时,预测A 超市销售额为47.2万元.6.假设关于某设备的使用年限x(单位:年)和支出的维修费用y(单位:万元),有如下表的统计资料:若由资料知y 对x 呈线性相关关系,试求: (1)经验回归方程y ^=b ^x+a ^.(2)估计使用年限为10年时,维修费用是多少? (3)计算残差平方和.(4)求决定系数R 2并说明模型的拟合效果. 解:(1)将已知条件制成下表.设经验回归方程为y ^=b ^x+a ^, 于是有b ^=∑i=15x i y i -5xy∑i=15x i 2-5x 2=112.3-5×4×590-5×42=1.23,a ^=y −b ^x =5-1.23×4=0.08,第11页 共11页 故经验回归方程为y ^=1.23x+0.08.(2)当x=10时,y ^=1.23×10+0.08=12.38,即估计使用10年时维修费用是12.38万元.(3)因为y ^1=2.54,y ^2=3.77,y ^3=5,y ^4=6.23,y ^5=7.46,所以残差平方和∑i=15(y i -y ^i )2=0.651. (4)决定系数R 2=1-∑i=15(y i -y ^i )2∑i=15(y i -y )2=1-0.65115.78≈0.958 7,模型的拟合效果较好,使用年限解释了95.87%的维修费用支出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运送时间y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形 态 (2)计算线性相关系数,说明两个变量之间的关系强度。 (3)利用最小二乘法求出估计的回归方程,并解释回归系数的实 际意义。
运送时间(天)
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态
(4)计算判定系数,并解释其意义。
= 81444968.68 =0.9963 81750763.71
人均GDP对人均消费的影响达到99.6%。
(5)检验回归方程线性关系的显著性(a=0.05)。
提出假设
H0:1=0 人均消费水平与人均GDP之间的
线性关系不显著 计算检验统计量F
F SSR 1 81444968.68 1 1331.6921 SSE (n 2) 305795.03 (7 2)

次数
1
81.1
21
2
76.6
58
3
76.6
85
4
75.7
68
5
73.8
74
6
72.2
93
7
71.2
72
8
70.8
122
9
91.4
18
10
68.5
125
1)绘制散点图,说明二者之间的股息形态
顾客投诉次数
140 120 100
80 60 40 20
0 0
20
40
60
航班正点率
二者之间为负的线性相关关系
1580.46315 E( y0 ) 2975.74999
人均GDP为5 000元时,人均消费水平95%的预 测区间为[1580.46315,2975.74999]。
11.7随机抽取10家航空 公司,对其近一年的航 班正点率和顾客投诉次 数进行调查,所得数据 如下
航空公司 航班正点 顾客投诉
编号
11.4 设SSR=36,SSE=4,n=18 要求:1)计算判定系数R^2并解释其意义
R2 SSR SSR 36 0.9 SST SST SSE 40
回归直线对观测值的拟合程度为0.9,说明变量Y的 变异性中有90%是由自变量x引起的。
2)计算估计标准误差se 并解释其意义
n
se
yi yˆi 2
要求: (1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并
说明二者之间的关系形态。
人均消费水平
14000 12000 10000
8000 6000 4000 2000
0 0
系列1
10000
20000 人均GDP
30000
40000
产量和生产费用之间存在着正的线性相关关系
(2)计算两个变量之间的线性相关系数,说明两个变量之 间的关系强度。
r
n xy x y
n x 2 x2 n y 2 y2
7 *651007421 2710124051
0.998123
7 *1904918867 857392 7 *1346900766 316092
说明两个变量之间高度相关
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际 意义。
确定显著性水平=0.05,并根据分子自由度1和分母自 由度7-2找出临界值F =6.61
作出决策:若F>F ,拒绝H0,线性关系显著
(6)如果某地区的人均GDP为5 000元,预测其人均消费水平。
y = 734.6928+ 0.308683 x
y = 734.6928+ 0.308683 *5000=2278.1078
yˆ80 =429.897-4.7*80=54.2
5)求航班正点率为80%,顾客投诉次数95%的置信区间和预测区间
解:已知n=10,t(10-2)=2.306
n
se
yi yˆi 2
i 1
n2
SSE n2
3035.965 19.449 8
置信区间为
yˆ80 t 2 (8)se
1
10
x0 x 2
计算得 7.572 E( y0 ) 100.707
地区编号 出租率(%) 每平方米月租金(元)
1
70.6
99
2
69.8
74
3
73.4
83
4
67.1
70
5
70.1
84
6
68.7
65
7
63.4
67
8
73.5
105
9
71.4
95
10
80.7
107
11
71.2
86
12
62
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
2278.1078 2.5706*61159.007 1 5000 4515.57142
7 13625127.29
1990.74915<E(y)2565.46399
人均GDP为5 000元时,人均消费水平95%的
置信区间为[1990.74915,2565.46399]
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义
最小二乘估计:y^= ^0+ ^1 x
{ 将表中数据代入公式得:
=0.003585
=0.118129
∴y=0.118129 + 0.003585x
y关于x的回归方程为y=0.118129 + 0.003585x表示运输距离每增加1公里, 运送时间平均增加 0.003585天。
相关关系
11.2 学生在期末考试之前用于复习的时间(单位:小时)和考 试分数(单位:分)之间是否有关系?为研究这一问题,一位 研究者抽取了由8名学生构成的一个随机样本,取得的数据如 下:
复习 时间X
考试 分数Y
20 16 34 23 27 32 18 22 64 61 84 70 88 92 72 77
• 11.6 下面是7个地区2000年的人均国内生产总值 (GDP)和人均消费水平的统计数据:
地区
北京 辽宁 上海 江西 河南 贵州 陕西
人均GDP(元)
22 460 11 226 34 547 4 851 5 444 2 662 4 549
人均消费水平(元)
7 326 4 490 11 546 2 396 2 208 1 608 2 035
6.0 5.0 4.0 3.0 2.0 1.0 0.0
0
200
400
600
800 1000 1200 1400 1600
运送距离(公里)
根据图表显示,二者可能存在正线性相关关系
(2)计算线性相关系数,说明两个变量之间的关系强度
运送距离x 运送时间y
运送距离x
1
运送时间y 0.94894
1
x与y的简单相关系数是0.9489,两 变量之间呈现高度正相关关系
i 1
SSE
4 0.5
n2
18 2 16
表示实际值与估计值之间的差异程度是0.5
11.5一家物流公司的管理人员想研究货物的运输距离和运输时 间的关系,为此,他抽出了公司最近10个卡车的运货记录的随 机样本,得到运送距离(单位:km)和运送时间(单位:天) 的数据如下表:
运送距离x 825 215 1070 550 480 920 1350 325 670 1215
系列
80
100
2)用航班正点率作自变量,建立估计的回归方程,并解释 回归系数的意义
Intercept 航班正点率
Coefficient s
429.8986352
-4.7011299
标准误差 t Stat P-value
74.97337331 5.734018 0.000437 0.985891202 -4.76841 0.001411
r
n xy x y
n x2 x2 n y2 y2
r
8(20*64 16*61 ... 22*77) (20 16 ... 22)*(64 61 ... 77)
8*(202 162 ... 222 ) 20 16 ... 222 8*(642 612 ... 772) (64 61 ... 77)2
某地区的人均GDP为5 000元,预测其人均消费 水平为2278.1078元。
(7)求人均GDP为5 000元时,人均消费水平95%的置信区 间和预测区间。
解:已知n=7,t(7-2)=2.5706
n
yi yˆi 2
se
i 1
n2
置信区间为
SSE n2
305795.0343 61159.007 5
r
n xy x y
n x2 x2 n y2 y2
r
12(40*130 42*150 ...140*185) (40 42 ...140)*(130 150 ...185)
12*(402 422 ...1402) 20 16 222 12*(1302 1502 ...185 ) (130 150 ...185)2
一元线性回归课后习题讲解
--------第九组
11.1 从某一行业中随机抽取12家企业,所得产量与生产费用的数据如下:
企业编号
产量(台) 1 2 3 4 5 6 7 8 9 10 11 12
生产费用
40
130
42
150
50
155
55
140
65
150
78
154
相关文档
最新文档