最新【最新+】数学必修一浙江省高中新课程作业本答案优秀名师资料

合集下载

数学必修一浙江高中新课程作业本答案及解析

数学必修一浙江高中新课程作业本答案及解析

数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n ∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂 UB,与条件A∩綂 UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b <0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×1 3=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有最大值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a <1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人). 10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4) 2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=log328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0<x+a<a,得-a<x<0;②当0<a<1时,x+a>a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x 对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga <1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1, 2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 125<0,f(-0 75)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298<0,∴x2∈(-0 625,-0 5625),由|-0.625+0.5625|<0.1,故x2=-0.5625是原方程的近似解,同理可得x3=1 5625.3 1 2用二分法求方程的近似解(二)1.D.2.B.3.C.4.1.5.1.6.2 6.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a >134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个).(2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1 .012≈15(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1.(第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)1 5m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.[f(n)·g(n)](2)由f(n)·g(n)=-45n-942+1254,得当n=2时,max=31.2.故第二年的养鸡规模最大,共养鸡31.2万只. 单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0<m≤1时有公共解,∴0<m ≤1.17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg). 综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125.17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0).16.2.17.(1,1)和(5,5).18.-2.19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞).(2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a <x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)( x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,..WORD完美格式..∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有最大值10 75万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)= -(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3...专业知识编辑整理..。

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()AB C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B中的元素是2; 因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(A )(B )(C )(D )(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x = 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x =.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.3y x =; (2)8y x=; (3)45y x =-+; (4) (1)267y x x =-+.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)域是(,)-∞+∞,值域是(,)-∞+∞; 定义(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得125x t -=+,(012)x ≤≤,即1235x t -=+,(012)x ≤≤.(2)当4x =时,12483()3535t h -=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,A C ,()()AB BC .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域:(1)y =(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.设221()1x f x x +=-,求证:50(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数? 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =ð,(){2,4}U A B =ð,求集合B .3.解:由(){1,3}U A B =ð,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =. 4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. (1)已知奇函数()f x 在[,]a b 上是减函数,试问:6.[,]b a --上是增函数还是减函数?它在(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.第三章 函数的应用 3.1函数与方程练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.因为f(0.875)·f(0.75)<0,所以x0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x =2b a -±得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x 3-6x 2-3x +5=0,令f (x )=x 3-6x 2-3x +5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x 1=-1,用计算器可算得f (-1)=1.因为f (-2)·f (-1)<0,所以x 0∈(-2,-1).再取(-2,-1)的中点x 2=-1.5,用计算器可算得f (-1.5)=-7.375.因为f (-1.5)·f (-1)<0,所以x 0∈(-1.5,-1).同理,可得x 0∈(-1.25,-1),x 0∈(-1.125,-1),x 0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x3-4x2-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x 3-4x 2-3x +1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)=-0.25.因为f (2.5)·f (3)<0,所以x 0∈(2.5,3). 再取(2.5,3)的中点x 2=2.75,用计算器可算得f (2.75)≈4.09.因为f (2.5)·f (2.75)<0,所以x 0∈(2.5,2.75).同理,可得x 0∈(2.5,2.625),x 0∈(2.5,2.5625),x 0∈(2.5,2.53125),x 0∈(2.515625,2.53125),x 0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -.于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8.由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe 1<1.又N 0是正常数,所以N=N 0(λe 1)t 是在于t 的减函数.(2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N .(3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y =f (t)=22,01,2)12,2.t t t t <≤⎪⎪⎪-+<≤⎨>⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f (x )=ax 2+(b +1)x +b -2(a ≠0),若存在实数x 0,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.(1)当a =2,b =-2时,求f (x )的不动点;(2)若对于任何实数b ,函数f (x )恒有两个相异的不动点,求实数a 的取值范围. 解:(1)f (x )=ax 2+(b +1)x +b -2(a ≠0),当a =2,b =-2时,f (x )=2x 2-x -4,设x 为其不动点,即2x 2-x -4=x ,则2x 2-2x -4=0,解得x 1=-1,x 2=2,即f (x )的不动点为-1,2.(2)由f (x )=x ,得ax 2+bx +b -2=0.关于x 的方程有相异实根,则b 2-4a (b -2)>0,即b 2-4ab +8a >0. 又对所有的b ∈R,b 2-4ab +8a >0恒成立,故有(4a )2-4·8a <0,得0<a <2.。

高中数学(必修1)全套教材含答案(超好)

高中数学(必修1)全套教材含答案(超好)

特别说明:《高中数学教材》是根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。

欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。

本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章或节分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合 [训练A、B、C]数学1(必修)第一章:(中)函数及其表 [训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C] 数学1(必修)第二章:基本初等函数(I) [基础训练A组] 数学1(必修)第二章:基本初等函数(I) [综合训练B组]数学1(必修)第二章:基本初等函数(I) [提高训练C组]数学1(必修)第三章:函数的应用 [基础训练A组]数学1(必修)第三章:函数的应用 [综合训练B组]数学1(必修)第三章:函数的应用 [提高训练C组](数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CB CB .()()AB A CC .()()A B B CD .()A B C4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空(1)0______N , 5______N , 16______N (2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈A BC2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C AB =,则C 的非空子集的个数为 。

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A . 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)AB ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð,得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;(A )(B )(C )(D )图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设与A 中元素60相对应的B 中的元素是什么?与B 中的元素2相对应的A 中元素是什么?4.解:因为3sin 60=,所以与A 中元素60相对应的B ;因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()1f x x =-.1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=,显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235x t -=+,(012)x ≤≤,即1235x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55A B B C =-. 6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x-=+,求:(1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x+=-,求证:50 (1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U AB =ð,(){2,4}U A B =ð,求集合B . 3.解:由(){1,3}U AB =ð,得{2,4,5,6,7,8,9}A B =, 集合A B 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数. 7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f (0.75)·f (1)<0,所以x 0∈(0.75,1).再取(0.75,1)的中点x 2=0.875,用计算器可算得f (0.875)≈-0.04.因为f (0.875)·f (0.75)<0,所以x 0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x 得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x3-4x2-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3). 再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -. 于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8. 由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe1<1. 又N 0是正常数,所以N=N 0(λe1)t 是在于t 的减函数. (2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N . (3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y=f(t)=22,01, 2(2)12,22.tt tt<≤⎪⎪⎪⎪--+<≤⎨>⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围.解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0.又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。

人教A版新课程标准数学必修1课后习题答案【上】

人教A版新课程标准数学必修1课后习题答案【上】

A (ðU B) {2, 4} , (ðU A) (ðU B) {6}.1.1 集合习题 1.1
(第 11 页)
A 组 1.(1) 3 2 Q 7
2 3是
7
有理数; (2) 32 N
32 9 是个自然数;(3) Q
是个无理数,不是有理数; (4) 2 R
2 是实数;(5) 9 Z
9 3 是个整数;
(6) ( 5)2 N ( 5)2 5 是个自然数. 2.(1)
5 A ; (2) 7 A ; (3) 10 A .当 k 2 时, 3k 1 5 ;当 k 3 时, 3k 1 10 ;3.解:
(1)大于1且小于 6 的整数为 2, 3, 4, 5 ,即{2, 3, 4, 5} 为所求;(2)方程 (x 1)(x 2) 0 的两个实根为
x1 2, x2 1,即{2,1} 为所求;(3)由不等式 3 2x 1 3 ,得 1 x 2 ,且 x Z ,即{0,1, 2} 为所
求.4.解:(1)显然有 x2 0 ,得 x2 4 4 ,即 y 4 ,得二次函数 y x2 4 的函数值组成的集合为
得 ðR ( A B) {x | x 2,或x 10},
即 B C {x | x是正方形} ,
形,
即 ðAB {x | x是邻边不相等的平行四边形} ,
10.解: A B {x | 2 x 10}, A B {x | 3 x 7} ,
ðR A {x | x 3,或x 7} , ðR B {x | x 2,或x 10},
{1} A ; A ; {1, 1} = A ;
A {x | x2 1 0} {1,1} ;(3){x | x是菱形} {x | x是平行四边形} ;

最新新高一必修1数学创新作业本优秀名师资料

最新新高一必修1数学创新作业本优秀名师资料

数学必修一创新作业本目录1-1-1集合的含义及其表示 11-1-2集合间的基本关系 31-1-3-1集合间的基本运算1 51-1-3-2集合间的基本运算(2)补集 71-1-3-3集合间的基本运算(3)集合的运算综合 9 1-2-1函数的概念(1) 111-2-2-1函数的概念(2) 131-2-2-2函数的概念(3)映射 151-2-2-3函数的表示法 171-3-1-1单调性与最大(小)值(1) 191-3-1-2单调性与最大(小)值(2) 211-3-2-1奇偶性1 231-3-2-2奇偶性2 252-1-1-1指数与指数幂的运算(1) 272-1-1-2指数与指数幂的运算(2) 292-1-2-1指数函数及其性质(1 312-1-2-2指数函数及其性质(2) 332-1-2-3指数函数及其性质(3) 352-2-1-1对数与对数运算(1) 372-2-1-2对数与对数运算(2) 392-2-1-3对数与对数运算3 412-2-2-1对数函数及其性质(1) 432-2-2-2对数函数及其性质(2) 452-2-2-3对数函数及其性质复习 472-3幂函数 493-1-1方程的根与函数的零点 513-1-2用二分法求方程的近似解 533-2-1几种不同增长的函数模型 553-2-22函数模型的实际应用 571-1-1集合的含义及其表示一、选择题1. 下列关系中,表述正确的是( )A.0∈{x2=0} B.0∈{(0,0)} C.0∈N* D.0∈N2. 下列各组中的两个集合M和N,表示同一集合的是( )A.M={π},N={3.14159} B.M={2,3},N={(2,3)}C.M={x|-1<x≤1,x∈N},N={1}D.M={1,,π},N={π,1,|-|}3. 集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为( )A.2 B.3 C.4 D.无数个4. 方程组的解集是( ) A.B.{x,y|x=3且y=-7} C.{3,-7} D.{(x,y)|x=3且y=-7}5. 集合A={x∈Z|y=,y∈Z}的元素个数为( )A.4 B.5 C.10 D.12二、填空题6. 已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},用列举法表示集合C=________.7. 式子+++的所有可能取值组成的集合为________.三、解答题8. 用列举法表示集合.(1)平方等于16的实数全体;(2)比2大3的实数全体;(3)方程x2=4的解集;(4)大于0小于5的整数的全体.9. 已知集合A={x|ax2-3x-4=0,x∈R}:(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.10. 集合M的元素为自然数,且满足:如果x∈M,则8-x∈M,试回答下列问题:(1)写出只有一个元素的集合M;(2)写出元素个数为2的所有集合M;(3)满足题设条件的集合M共有多少个?1-1-2集合间的基本关系一、选择题11. 已知集合M={x|-<x<,x∈Z},则下列集合是集合M的子集的为( )A.P={-3,0,1} B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z} D.S={x||x|≤,x∈N}12. 设集合A={x|x2=1},B={x|x是不大于3的自然数},A?C,B?C,则集合C中元素最少有( )A.2个 B.4个 C.5个 D.6个13. 若集合A={1,3,x},B={x2, ,1}且B?A,则满足条件的实数x的个数是( )A.1 B.2 C.3 D.414. 设集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则( )A.M=N B.MN C.MN D.M与N的关系不确定15. (09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是( )16. 已知集合A?{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( )A.6 B.5 C.4 D.3二、填空题17. 设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.18. 已知A={1,2,3},B={1,2},定义集合A、B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则集合A*B中最大的元素是________,集合A*B所有子集的个数是________.三、解答题19. 已知A={x|x<-1或x>2},B={x|4x+a<0},当B?A时,求实数a的取值范围.20. 设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B?A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x使x∈A与x∈B同时成立,求实数m的取值范围.1-1-3-1集合间的基本运算1一、选择题21. 下面四个结论:①若a∈(A∪B),则a∈A;②若a∈(A∩B),则a∈(A∪B);③若a∈A,且a∈B,则a∈(A∩B);④若A∪B=A,则A∩B=B.其中正确的个数为( )A.1 B.2 C.3 D.422. 集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4} C.{2,3,4} D.{1,2,3,4}23. 已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=( )A.{x|x<-5或x>-3}B.{x|-5<x<5} C.{x|-3<x<5} D.{x|x<-3或x>5}24. 设集合A={x|-1≤x<2},B={x|x>a},若A∩B≠?,则a的取值范围是( )A.a<2 B.a>-2 C.a>-1 D.-1<a≤225. 满足M?{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( ) A.1 B.2 C.3 D.4二、填空题26. 若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.27. 设A={x|1≤x≤3},B={x|x<0或x≥2},则A∩B=________,A∪B=________.三、解答题28. 已知A={1,x,-1},B={-1,1-x}.(1)若A∩B={1,-1},求x. (2)若A∪B={1,-1,},求A∩B.(3)若B?A,求A∪B.29. 已知A={x|a≤x≤a+3},B={x|x<-1或x>5}(1)若A∩B=?,求a的取值范围. (2)若A∪B=B,a的取值范围又如何?30. 已知集合A={x|3x-7>0},B={x|x是不大于8的自然数},C={x|x≤a,a为常数},D={x|x≥a,a为常数}.(1)求A∩B;(2)若A∩C≠?,求a的取值集合;(3)若A∩C={x|<x≤3},求a的取值集合;(4)若A∪D={x|x≥-2},求a的取值集合;(5)若B∩C=?,求a的取值集合;(6)若B∩D中含有元素2,求a的取值集合.1-1-3-2集合间的基本运算(2)补集一、选择题31. 设集合U={1,2,3,4,5},A={1,3},B={5,3,4},则?U(A∩B)=( )A.{1} B.{4,5} C.{2,4} D.{1,2,4,5}32. (2011·浙江理)设U=R,A={x|x>0},B={x|x>1},则A∩?UB=( )A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}33. 已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(?UA)∩(?UB)等于( )A.{1,6} B.{4,5} C.{2,3,4,5,7} D.{1,2,3,6,7}34. 设全集为R,A={x|-5<x<5},B={x|0≤x<7},那么(?RA)∪(?RB)等于( )A.{x|0≤x<5} B.{x|x≤-5或x≥5}C.{x|x≤-5或x≥7} D.{x|x<0或x≥5}35. (2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(?UB)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4} C.{x|-2≤x<-1} D.{x|-1≤x≤3}二、填空题36. 设全集U=R,集合X={x|x≥0},Y={y|y≥1},则?UX与?UY的包含关系是?UX________?UY.37. 用A、B、U表示图中阴影部分._______________________________________________________三、解答题38. 已知全集U={2,3,a2-2a-3},A={2,|a-7|},?UA={5},求a的值.39. 已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(?UA)∪B,A∩(?UB).40. 已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},且B??RA,求a的取值范围.1-1-3-3集合间的基本运算(3)集合的运算综合一、选择题41. 设A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A?C B.C?A C.A≠C D.A=?42. 设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(?UM)( )A.{1,3} B.{1,5} C.{3,5} D.{4,5}43. 已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则?U(M∪N)=( )A.{5,7} B.{2,4} C.{2,4,8} D.{1,3,5,6,7}44. 集合M={x|x<-2或x≥3},N={x|x-a≤0},若N∩?RM≠?(R为实数集),则a的取值范围是( )A.{a|a≤3} B.{a|a>-2} C.{a|a≥-2} D.{a|-2≤a≤2}45. 已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合?U(A∪B)中元素的个数为( )A.1 B.2 C.3 D.4二、填空题46. U={1,2},A={x|x2+px+q=0},?UA={1},则p+q=________.47. 已知集合A={(x,y)|y=2x-1},B={(x,y)|y=x+3},若m∈A,m∈B,则m为________.三、解答题48. 已知全集U=R,A={x|2≤x<5},B={x|3≤x<7},求:(1)(?RA)∩(?RB)(2)?R(A∪B)(3)(?RA)∪(?RB)(4)?R(A∩B)49. 设全集U=R,集合A={x∈R|-1<x≤5,或x=6},B={x∈R|2≤x<5};求?UA、?UB及A∩(?UB).50. 设全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},C={x|x-m<0},求实数m的取值范围,使其分别满足下列两个条件:①C?(A∩B);②C?(?UA)∩(?UB).1-2-1函数的概念(1)一、选择题51. 集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数是( )A.f x→y=x B.f x→y=x C.f x→y=x D.f x→y=52. 下列各组函数相等的是( )A.f(x)=与g(x)=x+1 B.f(x)=与g(x)=x·C.f(x)=2x+1与g(x)=D.f(x)=|x2-1|与g(t)=53. 函数y=的定义域是( )A.{x|x>0} B.{x|x>0,或x≤-1} C.{x|x>0,或x<-1} D.{x|0<x<1}54. 函数f(x)=的定义域是( )A.[1,2)∪(2,+∞) B.(1,+∞) C.[1,2) D.[1,+∞)55. 已知f(x)=,则f(2)-f()=( )A.1 B.C.D.-二、填空题56. 某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.57. (2012·全国高考数学广东卷)函数y=的定义域为________.三、解答题58. 已知函数f(x)=+.(1)求函数的定义域; (2)求f(-3),f()的值;(3)当a>0时,求f(a),f(a-1)的值.59. 已知f(x)=, (1)求f(x)+f()的值;(2)求f(1)+f(2)+…+f(7)+f(1)+f()+…+f()的值.60. (1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.1-2-2-1函数的概念(2)61. 下列图形中,不能表示以x为自变量的函数图象的是( )62. 下列图形是函数y=-|x|(x∈[-2,2])的图象的是( )63. 设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的解析式是( )A.g(x)=2x+1 B.g(x)=2x-1 C.g(x)=2x-3 D.g(x)=2x+764. 若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为( )A.1 B.-1 C.-D.65. 某同学离家去学校,为了锻炼身体,开始跑步前进,跑累了再走余下的路程,图中d轴表示该学生离学校的距离,t轴表示所用的时间,则符合学生走法的只可能是( )66. 已知集合M={-1,1,2,3},N={0,1,2,3,4},下面给出四个对应法则,①y=x2;②y=x+1;③y=;④y=(x-1)2,其中能构成从M到N的函数的序号是________.67. 已知函数F(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,且F()=16,F(1)=8,则F(x)的解析式为________.68. 作出下列函数的图象并求出其值域.(1)y=;(2)y=-x2+2x,x∈[-2,2];(3)y=|x+1|.69. 若函数y=f(x)的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下面图中画出此函数的图象.1-2-2-2函数的概念(3)映射70. 给出下列四个命题:(1)若A={整数},B={正奇数},则一定不能建立从集合A到集合B的映射;(2)若A是无限集,B是有限集,则一定不能建立从集合A到集合B的映射;(3)若A={a},B={1,2},则从集合A到集合B只能建立一个映射;(4)若A={1,2},B={a},则从集合A到集合B只能建立一个映射.其中正确命题的个数是( )A.0个B.1个 C.2个 D.3个71. 下列从P到Q的各对应关系f中,不是映射的是( )A.P=N,Q=N*,f:x→|x-8|B.P={1,2,3,4,5,6},Q={-4,-3,0,5,12},f:x→x(x-4)C.P=N*,Q={-1,1},f:x→(-1)xD.P=Z,Q={有理数},f:x→x272. 已知集合M={x|0≤x≤6},P={y|0≤y≤3},则下列对应关系中,不能看做从M到P的映射的是( )A.f:x→y=x B.f:x→y=x C.f:x→y=x D.f:x→y=x73. 集合A={a,b,c},B={d,e}则从A到B可以建立不同的映射个数为( )A.5 B.6 C.8 D.974. 已知f(x)=则f(f(f(-4)))=( )A.-4 B.4 C.3 D.-375. 某市出租车起步价为5元(起步价内行驶里程为3 km),以后每1 km价为1.8元(不足1 km按1 km计价),则乘坐出租车的费用y(元)与行驶的里程x(km)之间的函数图象大致为下列图中的( )二、填空题76. 函数f(x)=,若f(x)=3,则x的值是________.77. 如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f()的值等于________.三、解答题78. 作出函数f(x)=|x-2|-|x+1|的图象,并由图象求函数f(x)的值域.79. 已知函数f(x)=(1)试比较f[f(-3)]与f[f(3)]的大小; (2)求使f(x)=3的x的值.1-2-2-3函数的表示法80. 下列所给的四个图象中,可以作为函数y=f(x)的图象的有( )A.(1)(2)(3) B.(1)(2)(4) C.(1)(3)(4) D.(3)(4)81. 设集合M={(x,y)|x,y∈R},建立集合M到R的映射f:M→R,且f(x,y)=|x2-y2|,则实数1在平面直角坐标系下所对应的点满足的关系是( ) A.x2-y2=1 B.x2-y2=-1 C.|x2-y2|=1 D.无法确定82. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )83. 右上图中的图象所表示的函数的解析式为( )A.y=|x-1| (0≤x≤2) B.y=-|x-1| (0≤x≤2)C.y=-|x-1| (0≤x≤2) D.y=1-|x-1| (0≤x≤2)84. 若函数y=f(x)和y=g(x)的图象如图,则不等式≥0的解集是( )A.(-1,1]∪(2,3] B.(-1,1)∪(2,3) C.(2,3]∪(4,+∞) D.(-1,1]∪(2,3]∪(4,+∞)二、填空题85. 已知函数f(x)=若f(x)=2,则x=________.86. 已知函数f(x)满足2f(x)-f()=,则f(x)的解析式为________.三、解答题87. A、B两地相距150 km,某汽车以50 km/h的速度从A地到B地,在B地停留2 h之后,又以60 km/h的速度返回A地,写出该汽车离开A地的距离s(km)关于时间t(h)的函数关系式,并画出图象.88. 某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系.(1)在所给的坐标系中,如图,根据表中提供的数据描出实数对(x,y)的对应点,并确定y与x的一个函数关系式y=f(x);(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?1-3-1-1单调性与最大(小)值(1)一、选择题89. 给出下列命题:①y=在定义域内是减函数;②y=(x-1)在(0,+∞)上是增函数;③y=-在(-∞,0)上是增函数;④y=kx不是增函数就是减函数.其中错误的命题有( )A.0个 B.1个 C.2个 D.3个90. 若y=f(x)是R上的减函数,对于x1<0,x2>0,则( )A.f(-x1)>f(-x2) B.f(-x1)<f(-x2) C.f(-x1)=f(-x2) D.无法确定91. 函数y=x2+bx+c(x∈(-∞,1))是单调函数时,b的取值范围( )A.b≥-2 B.b≤-2 C.b>-2 D.b<-292. 函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),则实数m的取值范围是( )A.(-∞,-3) B.(0,+∞) C.(3,+∞) D.(-∞,-3)∪(3,+∞)93. 已知函数f(x)=x2+bx+c的图象的对称轴为直线x=1,则( )A.f(-1)<f(1)<f(2) B.f(1)<f(2)<f(-1) C.f(2)<f(-1)<f(1) D.f(1)<f(-1)<f(2)二、填空题94. 已知函数f(x)=4x2-mx+1,在(-∞,-2)上递减,在[-2,+∞)上递增,则f(1)=________.95. 已知函数f(x)是区间(0,+∞)上的减函数,那么f(a2-a+1)与f()的大小关系为________.三、解答题96. 求证:函数f(x)=--1在区间(-∞,0)上是增函数.97. 设f(x)在定义域内是减函数,且f(x)>0,在其定义域内判断下列函数的单调性(1)y=f(x)+a;(2)y=a-f(x);(3)y=[f(x)]2.98. 求下列函数的单调区间.(1)y=|x2-x-6|;(2)y=-x2+3|x|+1.1-3-1-2单调性与最大(小)值(2)一、选择题99. 若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )A.2 B.-2 C.2或-2 D.0100. 函数f(x)=x2-4x+3,x∈[1,4],则f(x)的最大值为( )A.-1 B.0 C.3 D.-2101. 函数f(x)=+x的值域是( )A.[,+∞) B.(-∞,] C.(0,+∞) D.[1,+∞)102. 若0<t≤,则-t的最小值是( ) A.-2 B.C.2 D.0103. 函数y=f(x)的图象关于原点对称且函数y=f(x)在区间[3,7]上是增函数,最小值为5,那么函数y=f(x)在区间[-7,-3]上( )A.为增函数,且最小值为-5 B.为增函数,且最大值为-5C.为减函数,且最小值为-5 D.为减函数,且最大值为-5二、填空题104. 函数f(x)=,则f(x)的最大值及最小值分别是_______.105. 函数y=的最大值为________.三、解答题106. 已知函数f(x)=(x∈[2,+∞)),(1)证明函数f(x)为增函数.(2)求f(x)的最小值.107. 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)1-3-2-1奇偶性1一、选择题108. 如果奇函数f(x)在(0,+∞)上是增函数,则f(x)在(-∞,0)上( )A.减函数 B.增函数C.既可能是减函数也可能是增函数 D.不一定具有单调性109. 函数f(x)是R上的偶函数,且在[0,+∞)上是增函数,则下列各式成立的是( )A.f(-2)>f(0)>f(1) B.f(-2)>f(1)>f(0) C.f(1)>f(0)>f(-2) D.f(1)>f(-2)>f(0)110. 设f(x)在[-2,-1]上为减函数,最小值为3,且f(x)为偶函数,则f(x)在[1,2]上( )A.为减函数,最大值为3 B.为减函数,最小值为-3C.为增函数,最大值为-3 D.为增函数,最小值为3111. 若函数f(x)=(x+1)(x+a)为偶函数,则a=( )A.1 B.-1 C.0 D.不存在112. (09·辽宁文)已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x -1)<f的x取值范围是( )A.B.C.D.二、填空题113. 函数f(x)=的奇偶性是________.114. 偶函数y=f(x)的图象与x轴有三个交点,则方程f(x)=0的所有根之和为________.三、解答题115. 判断下列函数的奇偶性.(1)f(x)=x2+.(2)f(x)=.(3)f(x)=|2x+1|-|2x-1|.(4)f(x)=.116. 已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x),g(x)的表达式.117. 函数f(x)=是定义在(-1,1)上的奇函数,且f=,求函数f(x)的解析式.1-3-2-2奇偶性2一、选择题118. f(x)是定义在[-6,6]上的偶函数,且f(3)>f(1),则下列各式一定成立的是( )A.f(0)<f(6) B.f(3)>f(2) C.f(-1)<f(3) D.f(2)>f(0)119. 已知奇函数f(x)在区间[0,+∞)上是单调递增的,则满足f(2x-1)<f()的x的取值范围是( )A.(-∞,) B.[,) C.(,) D.[,+∞)120. 已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值为( )A.-5 B.-1 C.-3 D.5121. 若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(3)=0,则使得f(x)<0的x的取值范围是( )A.(-∞,3)∪(3,+∞) B.(-∞,3) C.(3,+∞) D.(-3,3)122. 设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( ) A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1) C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)二、填空题123. 函数y=f(x)的图象如右上图所示,则函数f(x)的单调递增区间是________.124. (2012·大连高一检测)函数f(x)=2x2-mx+3在[-2,+∞)上是增函数,在(-∞,-2]上是减函数,则m=________.125. 偶函数f(x)在(0,+∞)上为增函数,若x1<0,x2>0,且|x1|>|x2|,则f(x1)与f(x2)的大小关系是______.三、解答题126. 已知函数f(x)=x2+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.127. 已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y).(1)求f(1); (2)证明f(x)在定义域上是增函数;(3)如果f()=-1,求满足不等式f(x)-f()≥2的x的取值范围.2-1-1-1指数与指数幂的运算(1)一、选择题128. 下列各式正确的是( )A.=-3 B.=a C.=2 D.a0=1129. 有下列说法:①81的4次方根是3;②的运算结果是±2;③当n为大于1的奇数时,对任意a∈R都有意义;④当n为大于1的偶数时,只有当a≥0时才有意义.其中,正确的是( )A.①③④ B.②③④ C.②③ D.③④130. 已知xy≠0且=-2xy,则有( )A.xy<0 B.xy>0 C.x>0,y>0 D.x<0,y>0 131. 当n<m<0时,(m+n)-=( )A.2m B.2n C.-2m D.-2n132. 当有意义时,化简-的结果是( )A.2x-5 B.-2x-1 C.-1 D.5-2x133.+=( )A.+-2B.-C.-D.2--二、填空题134. 化简+的结果为________.135. 已知a∈R,n∈N*,给出四个式子:①;②;③;④.其中没有意义的是________(只填式子的序号即可).136. 有下列说法:①=3;②16的4次方根是±2;③=±3;④=|x+y|.其中,正确的有________(填上正确说法的序号).三、解答题137. 化简:(1)(x<π,n∈N*);(2)(a≤).138. 写出使下列各式成立的x的取值范围.(1)=; (2)=(5-x).2-1-1-2指数与指数幂的运算(2)一、选择题139. 下列各式运算错误的是( )A.(-a2b)2(-ab2)3=-a7b8 B.(-a2b3)3÷(-ab2)3=a3b3 C.(-a3)2(-b2)3=a6b6 D.[(a3)2(-b2)3]3=-a18b18140. 计算()2()2的结果是( )A.a B.a2 C.a4 D.a8141. ()的值是( ) A.B.C.D.142.(a>0)的值是( ) A.1 B.a C.aD.a143. 化简的结果是( )A.-B.C.-D.144. (5)0.5+(-1)-1÷0.75-2+(2)-=( )A.B.C.-D.-二、填空题145. 已知3a=2,3b=5,则32a-b=________.146. (a+b)(a-b)(a+b)=________.147. 化简:=________.(结果化成分数指数幂的形式)三、解答题148. 化简下列各式:(1)·; (2)(1-a)?[(a-1)-2(-a)].149. 已知a+a=,求下列各式的值:(1)a+a-1; (2)a2+a-2; (3)a2-a-2.2-1-2-1指数函数及其性质(1一、选择题150. 已知函数y=(a2-3a+3)ax是指数函数,则a的值为( )A.1 B.2 C.1或2 D.任意值151. 已知a=0.80.7,b=0.80.9,c=1.20.8,则a、b、c的大小关系是( )A.a>b>c B.b>a>c C.c>b>a D.c>a>b152. 函数y=a|x|(0<a<1)的图象是( )153. 函数①y=3x;②y=2x;③y=()x;④y=()x.的图象对应正确的为( )A.①-a ②-b ③-c ④-d B.①-c ②-d ③-a ④-bC.①-c ②-d ③-b ④-a D.①-d ②-c ③-a ④-b 154. 函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于( )A.B.2 C.4 D.二、填空题155. 指数函数y=f(x)的图象经过点(2,4),那么f(2)·f(4)=________156. 无论a取何值(a>0且a≠1),函数y=2+ax+3的图象恒过定点________.三、解答题157. 已知f(x)=(ax-a-x),g(x)=(ax+a-x),求证:[f(x)]2+[g(x)]2=g(2x).158. 分别把下列各题中的三个数按从小到大的顺序用不等号连接起来.(1),34,-2; (2)22.5,2.50,2.5; (3),3,.159. 函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大,求a的值.2-1-2-2指数函数及其性质(2)一、选择题160. 函数y=3x与y=()x的图象( )A.关于x轴对称B.关于y轴对称 C.关于原点对称 D.关于直线y=x 对称161. 已知f(x)=(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( )A.a>0 B.a>1 C.a<1 D.0<a<1162. 函数y=()x2-3x+2在下列哪个区间上是增函数( )A.(-∞,] B.[,+∞) C.[1,2] D.(-∞,-1]∪[2,+∞)163. 函数y=a|x|(a>1)的图象是( )164. 如右上图,设a、b满足0<a<b<1,下列不等式中正确的是( )A.aa<ab B.ba<bb C.aa<ba D.bb<ab二、填空题165. 不等式3x2<()x-2的解集为________.166. 当x>0时,指数函数y=(a2-3)x的图象在指数函数y=(2a)x的图象的上方,则a的取值范围是________.三、解答题167. 讨论函数f(x)=()x2+2x的单调性,并求其值域.168. 已知f(x)=+a是奇函数,求a的值及函数值域.169. 设f(x)=1+,g(x)=f(2|x|).(1)写出f(x),g(x)的定义域;(2)函数f(x),g(x)是否具有奇偶性,并说明理由;(3)求函数g(x)的单调递增区间.2-1-2-3指数函数及其性质(3)一、选择题170. 已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x,那么f()的值是( ) A.B.C.-D.9171. 函数f(x)=ax(a>0且a≠1)满足f(4)=81,则f(-)的值为( )A.B.3 C.D.172. 2,-1, , 3的大小顺序为( )A.3<2<-1B.2<3。

数学必修一浙江省高中新课程作业本标准答案

数学必修一浙江省高中新课程作业本标准答案

数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念.集合集合地含义与表示.{}.{∈}.{,-}.{(),(),(),(),()}..列举法表示为{(),()},描述法地表示方法不唯一,如可表示为(),..集合间地基本关系. ,{},{},{}. .①③⑤.≥{ ,{},{},{}}∈..集合地基本运算(一).{≤≤}.{}.∪{<,或≥}∪{}..{,或<<}.提示:∵∪,∴.而{,},对进行讨论:①当时,无实数解,此时Δ<,∴<<.②当≠时,{}或{}或{};当{}时,;当{}或{}时,Δ,±,但当±时,方程地解为±,不合题意.b5E2R。

集合地基本运算(二).{≥,或≤}或∈..{}.{>,或≤}{}{}.地可能情形有{}{}{}{}{}{}..提示:∵∩綂{},∴∈,∴,∴{}{},∵∩綂{},∴-綂,∴-∈,将代入,得,或.①当时{}{},∴綂,而∈綂,满足条件∩綂{}.②当时{}{},p1Ean。

∴綂,与条件∩綂{}矛盾..函数及其表示函数地概念(一)∪∞.[∞)..().(){≠,且≠}...()略.().函数地概念(二).{∈≠,且≠}.[,∞)..()≠.()[∞)..(].∩∪[∞).[).函数地表示法(一).略...略.函数地表示法(二).略.()=(≤<),(≤≤).().提示:设(),由(),得,又()(),即()()(),展开得(),所以,,解得,.(<≤),(<≤),(<≤),(<≤).略..函数地基本性质单调性与最大(小)值(一).[),[),[]∞<..略.单调递减区间为(∞),单调递增区间为[∞).略≥..设-<<<,则()-()=-=()()()(),∵-<-<+<->,∴()()()()>,∴函数=()在(-,)上为减函数.DXDiT。

单调性与最大(小)值(二).()()(<<).(]..日均利润最大,则总利润就最大.设定价为元,日均利润为元.要获利每桶定价必须在元以上,即>.且日均销售量应为()·>,即<,总利润()[()·](<<),配方得(),所以当∈()时,取得最大值元,即定价为元时,日均利润最大.RTCrp。

完整word版,高中数学(必修1)全套教材含答案(超好),推荐文档

完整word版,高中数学(必修1)全套教材含答案(超好),推荐文档

特别说明:《高中数学教材》是根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。

欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。

本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章或节分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合 [训练A、B、C]数学1(必修)第一章:(中)函数及其表 [训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C] 数学1(必修)第二章:基本初等函数(I) [基础训练A组] 数学1(必修)第二章:基本初等函数(I) [综合训练B组]数学1(必修)第二章:基本初等函数(I) [提高训练C组]数学1(必修)第三章:函数的应用 [基础训练A组]数学1(必修)第三章:函数的应用 [综合训练B组]数学1(必修)第三章:函数的应用 [提高训练C组](数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =+∈∈A B C2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =I ,则C 的非空子集的个数为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新+免费】数学必修一浙江省高中新课程作业本答案【最新编排】----------------------------------------------------------------------------------------------------------------------数学必修,浙江省高中新课程作业本答案.txt女人谨记:,定要吃好玩好睡好喝好.,旦累死了,就别地女人花咱地钱,住咱地房,睡咱地老公,泡咱地男朋友,还打咱地娃.高中新课程作业本数学必修,答案与提示仅供参考第,章集合与函数概念,(,集合, , ,集合地含义与表示,.D.,.A.3.C.4.{,,-,}.5.{x|x=3n+,,n?N}.6.{,,0,,,}.7.A={(,,5),(,,4),(3,3),(4,,),(5,,)}.8.,.9.,,,,3,6. ,0.列举法表示为{(-,,,),(,,4)},描述法地表示方法不唯,,如可表示为(x,y)|y=x+,, y=x,.,,.-,,,,,,., , ,集合间地基本关系,.D.,.A.3.D.4. ,{-,},{,},{-,,,}.5. .6.???.7.A=B.8.,5,,3.9.a?4.,0.A={ ,{,},{,},{,,,}},B?A.,,.a=b=,(, , 3集合地基本运算(,),.C.,.A.3.C.4.4.5.{x|-,?x?,}.6.4.7.{-3}.8.A?B={x|x,3,或x?5}.9.A?B={-8,-7,-4,4,9}.,0.,.,,.{a|a=3,或-,,,a,,,}(提示:?A?B=A,?B A(而A={,,,},对B进行讨论:?当B= 时,x,-ax+,=0无实数解,此时Δ=a,-8,0,?-,,,a,,,.?当B? 时,B={,,,}或B={,}或B={,};当B={,,,}时,a=3;当B={,}或B={,}时,Δ=a,-8=0,a=?,,,但当a=?,,时,方程x,-ax+,=0地解为x=?,,不合题意( , , 3集合地基本运算(二) ,.A.,.C.3.B.4.{x|x?,,或x?,}.5.,或8.6.x|x=n+,,,n?Z. 7.{-,}.8.{x|x,6,或x?,}.9.A={,,3,5,7},B={,,4,6,8}(,0.A,B地可能情形有:A={,,,,3},B={3,4};A={,,,,4},B={3,4};A={,,,,3,4},B={3,4}.,,.a=4,b=,.提示:?A? 綂 UB={,},?,?A,?4+,a-,,=0 a=4,?A={x|x,+4x-,,=0}={,,-6},?A? 綂 UB={,},?,6 綂 UB,?,6?B,将x=-6代入B,得b,-6b+8=0 b=,,或b=4.?当b=,时,B={x|x,+,x-,4=0}={-6,4},?-6 綂 UB,而,? 綂 UB,满足条件A? 綂 UB={,}.?当b=4时,B={x|x,+4x-,,=0}={-6,,},?, 綂 UB,与条件A? 綂 UB={,}矛盾(,(,函数及其表示, , ,函数地概念(,),.C.,.C.3.D.4.,,.5.-,,3,?3,,+?.6.,,,+?).7.(,),,,34.(,){x|x?-,,且x?-3}(8.-34.9.,.,0.(,)略.(,)7,.,,.-,,,,34., , ,函数地概念(二),.C.,.A.3.D.4.{x?R|x?0,且x?-,}.5.,0,+?).6.0.7.-,5,-,3,-,,,,3.8.(,)y|y?,5.(,),-,,+?).9.(0,,,(,0.A?B=-,,,,;A?B=,-,,+?).,,.,-,,0). , , ,函数地表示法(,),.A.,.B.3.A.4.y=x,00.5.y=x,-,x+,.6.,x.7.略.8.x,,34y8,8589889.略.,0.,.,,.c=-3., , ,函数地表示法(二),.C.,.D.3.B.4.,.5.3.6.6.7.略.8.f(x),,x(-,?x,0),-,x+,(0?x?,).9.f(x)=x,-x+,.提示:设f(x)=ax,+bx+c,由f(0)=,,得c=,,又f(x+,)-f(x)=,x,即a(x+,),+b(x+,)+c-(ax,+bx+c)=,x,展开得,ax+(a+b)=,x,所以,a=,, a+b=0,解得a=,,b=-,.,0.y=,.,(0,x?,0),,.4(,0,x?40),3.6(40,x?60),4.8(60,x?80).,,.略(,(3函数地基本性质, 3 ,单调性与最大(小)值(,),.C.,.D.3.C.4.,-,,0),,0,,),,,,,,.5.-?,3,.6.k,,,( 7.略.8.单调递减区间为(-?,,),单调递增区间为,,,+?).9.略.,0.a?-,( ,,.设,,,x,,x,,,,则f(x,),f(x,),x,x,,-,,x,x,,-,,(x,x,+,)(x,-x,)(x,,-,)(x,,-,),?x,,,,,0,x,,,,,0,x,x,,,,0,x,,x,,0,?(x,x,+,)(x,-x,)(x,,-,)(x,,-,),0,?函数y,f(x)在(,,,,)上为减函数(, 3 ,单调性与最大(小)值(二),.D.,.B.3.B.4.-5,5.5.,5.6.y=3,6(a+3x)(a-x)(0,x,a),3,,a,,5364a,.7.,,.8.8a,+,5.9.(0,,,.,0.,500m,.,,.日均利润最大,则总利润就最大(设定价为x元,日均利润为y元(要获利每桶定价必须在,,元以上,即x,,,(且日均销售量应为440-(x-,3)?40,0,即x,,3,总利润y=(x-,,),440-(x-,3)?40,-600(,,,x,,3),配方得y=-40(x-,8),+840,所以当x=,8?(,,,,3)时,y取得最大值840元,即定价为,8元时,日均利润最大. ,3 ,奇偶性,.D.,.D.3.C.4.0.5.0.6.答案不唯,,如y=x,.7.(,)奇函数.(,)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数. 8.f(x)=x(,+3x)(x?0),x(,-3x)(x,0).9.略.,0.当a=0时,f(x)是偶函数;当a?0时,既不是奇函数,又不是偶函数. ,,.a=,,b=,,c=0.提示:由f(,x)=,f(x),得c=0,?f(x)=ax,+,bx,?f(,)=a+,b=, a=,b-,.?f(x)=(,b-,)x,+,bx.?f(,),3,?4(,b-,)+,,b,3 ,b-3,b,0 0,b,3,.?a,b,c?Z,?b=,,?a=,.单元练习,.C.,.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A. ,0.D.,,.{0,,,,}.,,.-3,.,3.a=-,,b=3.,4.,,,3)?(3,5,. ,5.f,,,f(-,),f-7,.,6.f(x)=-x,-,x-3.,7.T(h)=,9-6h(0?h?,,),-47(h,,,).,8.{x|0?x?,}(,9.f(x)=x只有唯,地实数解,即xax+b=x(*)只有唯,实数解,当ax,+(b-,)x=0有相等地实数根x0,且ax0+b?0时,解得f(x)=,xx+,,当ax,+(b-,)x=0有不相等地实数根,且其中之,为方程(*)地增根时,解得f(x)=,(,0.(,)x?R,又f(-x)=(-x),-,|-x|-3=x,-,|x|-3=f(x),所以该函数是偶函数.(,)略.(3)单调递增区间是,-,,0,,,,,+?),单调递减区间是(-?,-,,,,0,,,. ,,.(,)f(4)=4×,3=5.,,f(5.5)=5×,.3+0.5×3.9=8.45,f(6.5)=5×,.3+,×3.9+0.5×6 5=,3.65.(,)f(x)=,.3x(0?x?5),3.9x-,3(5,x?6),6.5x-,8.6(6,x?7).,,.(,)值域为,,,,+?).(,)若函数y=f(x)在定义域上是减函数,则任取x,,x,?(0,,,且x,,x,,都有f(x,),f(x,)成立,即(x,-x,),+ax,x,,0,只要a,-,x,x,即可,由于x,,x,?(0,,,,故-,x,x,?(-,,0),a,-,,即a地取值范围是(-?,-,)(第二章基本初等函数(?),(,指数函数, , ,指数与指数幂地运算(,),.B.,.A.3.B.4.y=,x(x?N).5.(,),.(,)5.6.8a7.7.原式=|x-,|-|x-3|=-,(x,,),,x-5(,?x?3),,(x,3).8.0.9.,0,,.,0.原式=,yx-y=,.,,.当n为偶数,且a?0时,等式成立;当n为奇数时,对任意实数a,等式成立. , , ,指数与指数幂地运算(二),.B.,.B.3.A.4.94.5.,64.6.55.7.(,)-?,3,.(,)x?R|x?0,且x?-5,.8.原式=5,-,+,,6+,8+,,0=,4380. 9.-9a.,0.原式=(a-,+b-,)?a-,b-,a-,+b-,=,ab.,,.原式=,-,-,8,+,-,8,+,-,4,+,-,,,-,-,8=,,-8,7. , , ,指数与指数幂地运算(三),.D.,.C.3.C.4.36.55.5.,-,a.6.,,5.7.,.8.由8a=,3a=,4=,-,,得a=-,3,所以f(,7)=,7-,3=,9.9.4 7,88,0 0885. ,0.提示:先由已知求出x-y=-(x-y),=-(x+y),-4xy=-63,所以原式=x-,xy+yx-y=-33. ,,.,3., , ,指数函数及其性质(,),.D.,.C.3.B.4.A B.5.(,,0).6.a,0.7.,,5.8.(,)图略.(,)图象关于y轴对称.9.(,)a=3,b=-3.(,)当x=,时,y有最小值0;当x=4时,y有最大值6.,0.a=,. ,,.当a,,时,x,-,x+,,x,-3x+5,解得{x|x,4};当0,a,,时,x,-,x+,,x,-3x+5,解得{x|x,4}., , ,指数函数及其性质(二),.A.,.A.3.D.4.(,),.(,),.(3),.(4),.5.{x|x?0},{y|y,0,或y,-,}.6.x,0.7.56-0.,,,,=π0,0.90.98.8.(,)a=0.5.(,)-4,x?0.9.x,,x4,x3,x,.,0.(,)f(x)=,(x?0),,x(x,0).(,)略.,,.am+a-m,an+a-n., , ,指数函数及其性质(三),.B.,.D.3.C.4.-,.5.向右平移,,个单位.6.(-?,0).7.由已知得0.3(,-0.5)x?0.08,由于0.5,.9,=0.,667,所以x?,.9,,所以,h后才可驾驶.8.(,-a)a,(,-a)b,(,-b)b.9.8,5×(,+,%)3?865(人).,0.指数函数y=ax满足f(x)?f(y)=f(x+y);正比例函数y=kx(k?0)满足f(x)+f(y)=f(x+y).,,.34,57.,(,对数函数, , ,对数与对数运算(,),.C.,.D.3.C.4.0;0;0;0.5.(,),.(,)-5,.6.,.7.(,)-3.(,)-6.(3)64.(4)-,.8.(,)343.(,)-,,.(3),6.(4),. 9.(,)x=z,y,所以x=(z,y),=z4y(z,0,且z?,).(,)由x+3,0,,-x,0,且,-x?,,得-3,x,,,且x?,.,0.由条件得lga=0,lgb=-,,所以a=,,b=,,0,则a-b=9,0.,,.左边分子、分母同乘以ex,去分母解得e,x=3,则x=,,ln3. , , ,对数与对数运算(二),.C.,.A.3.A.4.0 3980.5.,logay-logax-3logaz.6.4. 7.原式=log,748×,,?,4,=log,,,=-,,.8.由已知得(x-,y),=xy,再由x,0,y,0,x,,y,可求得xy=4.9.略.,0.4. ,,.由已知得(log,m),-8log,m=0,解得m=,或,6., , ,对数与对数运算(三),.A.,.D.3.D.4.43.5.,4.6.a+,b,a.7.提示:注意到,-log63=log6,以及log6,8=,+log63,可得答案为,. 8.由条件得3lg3lg3+,lg,=a,则去分母移项,可得(3-a)lg3=,alg,,所以lg,lg3=3-a,a.9., 5.,0.a=log34+log37=log3,8?(3,4).,,.,., , ,对数函数及其性质(,),.D.,.C.3.C.4.,44分钟.5.???.6.-,.7.-,?x?,.8.提示:注意对称关系.9.对loga(x+a)<,进行讨论:?当a>,时,0<x+a<a,得-a<x<0;?当0<a<,时,x+a>a,得x>0. ,0.C,:a=3,,C,:a=3,C3:a=,,0,C4:a=,5.,,.由f(-,)=-,,得lgb=lga-,?,方程f(x)=,x即x,+lga?x+lgb=0有两个相等地实数根,可得lg,a-4lgb=0,将?式代入,得a=,00,继而b=,0., , ,对数函数及其性质(二),.A.,.D.3.C.4.,,,,.5.(-?,,).6.log,0 4,log30.4,log40.4.7.logbab,logba,logab.8.(,)由,x-,,0得x,0.(,)x,lg3lg,. 9.图略,y=log,,(x+,)地图象可以由y=log,,x地图象向左平移,个单位得到. ,0.根据图象,可得0,p,q,,.,,.(,)定义域为{x|x?,},值域为R.(,)a=,., , ,对数函数及其性质(三),.C.,.D.3.B.4.0,,,.5.,,.6.,,53.7.(,)f35=,,f-35=-,.(,)奇函数,理由略.8.{-,,0,,,,,3,4,5,6}. 9.(,)0.(,)如log,x.,0.可以用求反函数地方法得到,与函数y=loga(x+,)关于直线y=x对称地函数应该是y=ax-,,和y=logax+,关于直线y=x对称地函数应该是y=ax-,.,,.(,)f(-,)+f(,)=0.(,)f(-,)+f-3,+f,,+f(,)=0.猜想:f(-x)+f(-,+x)=0,证明略., 3幂函数,.D.,.C.3.C.4.??.5.6.,5,8,0.5-,,,0.,6-,4.6.(-?,-,)?,3,3,.7.p=,,f(x)=x,.8.图象略,由图象可得f(x)?,地解集x?,-,,,,.9.图象略,关于y=x对称. ,0.x?0,3+5,.,,.定义域为(-?,0)?(0,?),值域为(0,?),是偶函数,图象略. 单元练习,.D.,.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D. ,0.B.,,.,.,,.x,,.,3.?.,4.,5 8.提示:先求出h=,0.,5.(,)-,.(,),.,6.x?R,y=,,x=,+lga,-lga,0,讨论分子、分母得-,,lga,,,所以a?,,0,,0.,7.(,)a=,.(,)设g(x),log,,(,0-,x),,,x,则g(x)在,3,4,上为增函数,g(x),m 对x?,3,4,恒成立,m,g(3)=,,78(,8.(,)函数y=x+ax(a,0),在(0,a,上是减函数,,a,+?)上是增函数,证明略. (,)由(,)知函数y=x+cx(c,0)在,,,,,上是减函数,所以当x=,时,y有最大值,+c;当x=,时,y有最小值,+c,.,9.y=(ax+,),-,?,4,当a,,时,函数在,-,,,,上为增函数,ymax=(a+,),-,=,4,此时a=3;当0,a,,时,函数,-,,,,上为减函数,ymax=(a-,+,),-,=,4,此时a=,3.?a=3,或a=,3.,0.(,)F(x)=lg,-xx+,+,x+,,定义域为(-,,,).(,)提示:假设在函数F(x)地图象上存在两个不同地点A,B,使直线AB恰好与y轴垂直,则设A(x,,y),B(x,,y)(x,?x,),则f(x,)-f(x,)=0,而f(x,)-f(x,)=lg,-x,x,+,+,x,+,-lg,-x,x,+,-,x,+,=lg(,-x,)(x,+,)(x,+,)(,-x,)+x,-x,(x,+,)(x,+,)=?+?,可证?,?同正或同负或同为零,因此只有当x,=x,时,f(x,)-f(x,)=0,这与假设矛盾,所以这样地两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数地应用3 ,函数与方程3 , ,方程地根与函数地零点,.A.,.A.3.C.4.如:f(a)f(b)?0.5.4,,54.6.3.7.函数地零点为-,,,,,.提示:f(x)=x,(x-,)-(x-,)=(x-,)(x-,)(x+,).8.(,)(-?,-,)?(-,,,).(,)m=,,(9.(,)设函数f(x)=,ax,-x-,,当Δ=0时,可得a=-,8,代入不满足条件,则函数f(x)在(0,,)内恰有,个零点.?f(0)?f(,),-,×(,a-,-,),0,解得a,,. (,)?在,-,,0,上存在x0,使f(x0)=0,则f(-,)?f(0)?0,?(-6m-4)×(-4)?0,解得m?-,3.,0.在(-,,-, 5),(-0 5,0),(0,0 5)内有零点(,,.设函数f(x),3x-,-xx+,.由函数地单调性定义,可以证明函数f(x)在(-,,+?)上是增函数.而f(0)=30-,=-,,0,f(,)=3,-,,=5,,0,即f(0)?f(,),0,说明函数f(x)在区间(0,,)内有零点,且只有,个.所以方程3x=,-xx+,在(0,,)内必有,个实数根.3 , ,用二分法求方程地近似解(,),.B.,.B.3.C.4.,,,, 5,.5.7.6.x3-3.7.,.8.提示:先画,个草图,可估计出零点有,个在区间(,,3)内,取,与3地平均数, 5,因f(, 5)=0 ,5,0,且f(,),0,则零点在(,,, 5)内,再取出, ,5,计算f(, ,5)=-0 4375,则零点在(, ,5,, 5)内.以此类推,最后零点在(, 375,, 4375)内,故其近似值为, 4375.9., 4375.,0., 4,96875.,,.设f(x)=x3-,x-,,?f(-,)=0,?x,=-,是方程地解.又f(-0 5)=-0 ,,5<0,f(-0 75)=0 078,,5>0,x,?(-0 75,-0 5),又?f(-0 6,5)=0 005859,0,?x,?(-0 6,5,-0 5).又?f(-0 56,5)=-0 05,98<0,?x,?(-0 6,5,-0 56,5),由|-0.6,5+0.56,5|,0.,,故x,=-0.56,5是原方程地近似解,同理可得x3=, 56,5.3 , ,用二分法求方程地近似解(二),.D.,.B.3.C.4.,.5.,.6., 6.7.a,,.8.画出图象,经验证可得x,=,,x,=4适合,而当x,0时,两图象有,个交点,?根地个数为3.9.对于f(x)=x4-4x-,,其图象是连续不断地曲线,?f(-,)=3,0,f(,)=6,0,f(0),0, ?它在(-,,0),(0,,)内都有实数解,则方程x4-4x-,=0在区间,-,,,,内至少有两个实数根.,0.m=0,或m=9,.,,.由x-,,0,3-x,0,a-x=(3-x)(x-,),得a=-x,+5x-3(,,x,3),由图象可知,a,,34或a?,时无解;a=,34或,,a?3时,方程仅有,个实数解;3,a,,34时,方程有两个实数解. 3 ,函数模型及其应用3(,(,几类不同增长地函数模型,.D.,.B.3.B.4.,700.5.80.6.5.7.(,)设,次订购量为a时,零件地实际出厂价恰好为5,元,则a=,00+60-5,0.0,=550(个).(,)p=f(x)=60(0,x?,00,x?N*),6,-x50(,00,x,550,x?N*),5,(x?550,x?N*).8.(,)x年后该城市人口总数为y=,00×(,+,.,%)x.(,),0年后该城市人口总数为y=,00×(,+,.,%),0=,00×,.0,,,0?,,,.7(万).(3)设x年后该城市人口将达到,,0万人,即,00×(,+,.,%)x=,,0,x=log,.0,,,,0,00=log,.0,,,.,=lg,.,lg,.0,,?,5(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x?,0,9,.?y=,,0(9-x)+,5x=,,0(-x+4x+9)=,,0,-(x-,),+,3,,?当x=,,即x=4时,ymax=,.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润,.3万元. ,0.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0?x?a,?8+b(x-a)+c,x,a.?由题意知0,c,5,所以8+c,,3.由表知第,、3月份地费用均大于,3,故用水量,5m3,,,m3均大于am3,将,5,,,分别代入?式,得,9=8+(,5-a)b+c, 33=8+(,,-a)b+c,?b=,,,a=c+,9.?再分析,月份地用水量是否超过最低限量,不妨设9,a,将x=9代入?,得9=8+,(9-a)+c,,a=c+,7与?矛盾,?a?9.,月份地付款方式应选?式,则8+c=9,c=,,代入?,得a=,0.因此a=,0,b=,,c=,.(第,,题),,.根据提供地数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中地遗忘是有规律地,遗忘地进程不是均衡地,而是在记忆地最初阶段遗忘地速度很快,后来就逐渐减慢了,过了相当长地时间后,几乎就不再遗忘了,这就是遗忘地发展规律,即"先快后慢"地规律.观察这条遗忘曲线,你会发现,学到地知识在,天后,如果不抓紧复习,就只剩下原来地,3.随着时间地推移,遗忘地速度减慢,遗忘地数量也就减少.因此,艾宾浩斯地实验向我们充分证实了,个道理,学习要勤于复习,而且记忆地理解效果越好,遗忘得越慢.3 , ,函数模型地应用实例,.C.,.B.3.C.4.,400.5.汽车在5h内行驶地路程为360km.6.,0;越大.7.(,), 5m/s.(,),00.8.从,0,5年开始.9.(,)应选y=x(x-a),+b,因为?是单调函数,?至多有两个单调区间,而y=x(x-a),+b可以出现两个递增区间和,个递减区间.(,)由已知,得b=,,,(,-a),+b=3,a>,,解得a=3,b=,(?函数解析式为y=x(x-3),+,(,0.设y,=f(x)=px,+qx+r(p?0),则f(,)=p+q+r=,,f(,)=4p+,q+r=, ,,f(3)=9p+3q+r=, 3,解得p=-0 05,q=0 35,r=0 7,?f(4)=-0 05×4,+0 35×4+0 7=, 3,再设y,=g(x)=abx+c,则g(,)=ab+c=,,g(,)=ab,+c=, ,,g(3)=ab3+c=, 3,解得a=-0 8,b=0 5,c=, 4,?g(4)=-0 8×0 54+, 4=, 35,经比较可知,用y=-0 8×(0 5)x+, 4作为模拟函数较好.,,.(,)设第n年地养鸡场地个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(,),30,f(6)=,0,且点(n,f(n))在同,直线上,从而有:f(n)=34-4n(n=,,,,3,4,5,6).而g(,)=,,g(6)=,,且点(n,g(n))在同,直线上,从而有:g(n)=n+45(n=,,,,3,4,5,6).于是有f(,)=,6,g(,)=,.,(万只),所以f(,)?g(,)=3,.,(万只),故第二年养鸡场地个数是,6个,全县养鸡3,.,万只.(,)由f(n)?g(n)=-45n-94,+,,54,得当n=,时,,f(n)?g(n),max,3,.,.故第二年地养鸡规模最大,共养鸡3,.,万只.单元练习,.A.,.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A. ,0.D.,,.?6.,,.y=x,.,3.-3.,4.y3,y,,y,.,5.令x=,,则,,-0,0,令x=,0,则,,,0×,0-,,0.选初始区间,,,,0,,第二次为,,,5.5,,第三次为,,,3.,5,,第四次为,,.,,5,3.,5,,第五次为,,.,,5,,.6875,,所以存在实数解在,,,3,内.(第,6题),6.按以下顺序作图:y=,-xy=,-|x|y=,-|x-,|.?函数y=,-|x-,|与y=m 地图象在0<m?,时有公共解,?0<m?,.,7.两口之家,乙旅行社较优惠,三口之家、多于三口地家庭,甲旅行社较优惠. ,8.(,)由题意,病毒总数N关于时间n地函数为N=,n-,,则由,n-,?,08,两边取对数得(n-,)lg,?8,n?,7.6,即第,次最迟应在第,7天时注射该种药物. (,)由题意注入药物后小白鼠体内剩余地病毒数为,,6×,%,再经过n天后小白鼠体内病毒数为,,6×,%×,n,由题意,,,6×,%×,n?,08,两边取对数得,6lg,+lg,-,+nlg,?8,得x?6.,,故再经过6天必须注射药物,即第二次应在第33天注射药物. ,9.(,)f(t)=300-t(0?t?,00),,t-300(,00,t?300),g(t)=,,00(t-,50),+,00(0?t?300). (,)设第t天时地纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-,,00t,+,,t+,75,(0?t?,00),-,,00t,+7,t-,0,5,(,00,t?300).当0?t?,00时,配方整理得h(t)=-,,00(t-50),+,00,?当t=50时,h(t)在区间,0,,00,上取得最大值,00;当,00,t?300时,配方整理得h(t),-,,00(t-350),+,00,?当t=300时,h(t)取得区间,,00,300,上地最大值87.5.综上,由,00,87.5可知,h(t)在区间,0,300,上可以取得最大值,00,此时t=50,即从,月,日开始地第50天时,西红柿纯收益最大.,0.(,)由提供地数据可知,描述西红柿种植成本Q与上市时间t地变化关系地函数不可能是常数函数,从而用函数Q=at+b,Q=a?bt,Q=a?logbt中地任何,个进行描述时都应有a?0,而此时上述三个函数均为单调函数,这与表格提供地数据不吻合.所以选取二次函数Q=at,+bt+c进行描述.将表格所提供地三组数据分别代入Q=at,+bt+c,得到,50=,500a+50b+c,,08=,,,00a+,,0b+c,,50=6,500a+,50b+c.解得a=,,00,b=-3,,c=4,5,.?描述西红柿种植成本Q与上市时间t地关系地函数为:Q=,,00t,-3,t+4,5,.(,)当t=,50时,西红柿种植成本最低为Q=,00(元/,00kg).综合练习(,),.D.,.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B. ,0.B.,,.{x|x?5且x?,}.,,.,.,3.4.,4.0.,5.,0.,6.0.8,,5. ,7.4.,8.{-6,-5,-4,-3,-,,-,,0}.,9.(,)略.(,),-,,0,和,,,5,.,0.略( ,,.(,)?f(x)地定义域为R,设x,,x,,则f(x,)-f(x,)=a-,,x,+,-a+,,x,+,=,x,-,x,(,+,x,)(,+,x,),?x,,x,,?,x,-,x,,0,(,+,x,)(,+,x,),0.?f(x,)-f(x,),0,即f(x,),f(x,),所以不论a取何值,f(x)总为增函数. (,)?f(x)为奇函数,?f(-x)=-f(x),即a-,,-x+,=-a+,,x+,,解得a=,,. ?f(x)=,,-,,x+,.?,x+,,,,?0,,,x+,,,,?-,,-,,x+,,0, ?-,,,f(x),,,,所以f(x)地值域为-,,,,,.综合练习(二),.B.,.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B. ,0.B.,,.log,0.3,,0.3.,,.-,.,3.-4.,4.8.,5.P=,,t5730(t,0). ,6.,.,7.(,,,)和(5,5).,8.-,.,9.(,)由a(a-,)+x-x,,0,得,x-(,-a),?(x-a),0(由,?A,知,,-(,-a),?(,-a),0,解得a?(-?,-,)?(,,+?).(,)当,-a,a,即a,,,时,不等式地解集为A={x|a,x,,-a};当,-a,a,即a,,,时,不等式地解集为A=,x|,-a,x,a,(,0.在(0,+?)上任取x,,x,,则f(x,)-f(x,)=ax,-,x,+,-ax,-,x,+,=(a+,)(x,-x,)(x,+,)(x,+,),?0,x,,x,,?x,-x,,0,x,+,,0,x,+,,0,所以要使f(x)在(0,+?)上递减,即f(x,)-f(x,),0,只要a+,,0即a,-,,故当a,-,时,f(x)在区间(0,+?)上是单调递减函数(,,.设利润为y万元,年产量为S百盒,则当0?S?5时,y=5S-S,,-0.5-0.,5S=-S,,+4.75S-0.5,当S,5时,y=5×5-5,,-0.5-0.,5S=,,-0.,5S,?利润函数为y=-S,,+4.75S-0.5(0?S?5,S?N*),-0.,5S+,,(S,5,S?N*).当0?S?5时,y=-,,(S-4.75),+,0.78,,5,?S?N*,?当S=5时,y有最大值,0 75万元;当S,5时,?y=-0.,5S+,,单调递减,?当S=6时,y有最大值,0 50万元(综上所述,年产量为500盒时工厂所得利润最大(,,.(,)由题设,当0?x?,时,f(x)=,,x?x=,,x,;当,,x,4时,f(x)=,,?,,?,,-,,(x-,)?(x-,)-,,?(4-x)?(4-x)=-(x-3),+3;当4?x?6时,f(x)=,,(6-x)?(6-x)=,,(x-6),.?f(x)=,,x,(0?x?,),-(x-3),+3(,,x,4),,,(x-6),(4?x?6).(,)略.(3)由图象观察知,函数f(x)地单调递增区间为,0,3,,单调递减区间为,3,6,,当x=3时,函数f(x)取最大值为3.。

相关文档
最新文档