分式的化简求值经典练习题(带答案)
中考分式化简求值专项练习与答案(可编辑修改word版)

,代入值得:-1
a2
12、化简得: 2 ,代入值得: 2 1
x2
2
14、化简得: a a2 ,代入值得: 7 2
第 7 页(共 7 页)
2
x
5
的整
1
数解.
第 2 页(共 7 页)
7、化简求值:
a2
6ab 9b2 a 2 2ab
5b 2 a 2b
a
2b
1 a
,其中
a,b
满足
ab4 ab2
8、先化简,再求值:
1 x
x2 x2
1 x
x
2
1
1
,其中
x 1
x
的值为方程 2x
5x
1 的解.
9、先化简,再求值: (x 1 3 ) x2 4x 4 ,其中 x 是方程 x 1 x 2 0 的解。
中考专题训练——分式化简求值
1、先化简,再求值:
x2 2x x2 1
x
1
2x 1 x 1
,其中
x
1 2
a2 2、先化简,再求值: (
5a
2
1)
a 2 4 ,其中a 2 3
a2
a2 4a 4
3、先化简,再求值: (1 1 ) x 2 2x 1 ,其中 x 3
x2
x2 4
第 1 页(共 7 页)
x 1
x 1
25
第 3 页(共 7 页)
10、先化简,再求值:
a2
a2 4 4a
4
a
2
2
a2 a
2a 2
,
其中
a
3
1 11、先化简,再求值: (
a2)
初中数学分式的化简求值专项训练题8(附答案详解)

x x
2 2
1
4 x2
4
,其中
x
2 2.
8. 先化简( m2 4m -m-2)÷m2 2m 1 ,然后从-2<m≤2 中选一个合适的整数作
m2
m2
为 m 的值代入求值.
9.先化简,再求代数式的值:
1
1 m
2
m2 2m 1 m2 4
,其中
m=1.
10.先化简,再求值:(
x2 x
x 1
x﹣1)
x3 x2 x2 2x 1
,其中
x
是不等式组
x 1<0
3 x 1
x
7
的整数解.
11.阅读下列材料,解决问题: 在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的
次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数
(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们
m1 01
【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
9. m 2 ,﹣ 1 m1 2
【解析】 【分析】 先根据分式混合运算的法则把原式进行化简,再把 m 的值代入进行计算即可. 【详解】
解:原式=
m m
1 2
.
(m
2)(m (m 1)2
2)
= m2 , m 1
;
x3
(3)已知一个六位整数 20xy17 能被 33 整除,求满足条件的 x,y 的值.
b a 2ab b2
12.先化简,再求值
a
a
a
,其中 a 3 1,b=1.
13.先化简,再求值:
最新初二数学分式化简求值练习题及答案优秀名师资料

精品文档初二数学分式化简求值练习题及答案2、先化简,再求值:12?2,其中x,,2( x?1x?1,其中a=,1(3、先化简,再求值:4、先化简,再求值:5先化简,再求值6、化简:7、先化简,再求值:,其中(,其中x=(,其中x满足x,x,1=0(2a?3ba?b? a?ba?b,其中a=(先化简x11?)?2,再从,1、0、1三个数中,选择一个你认x?1x?1x?1为合适的数作为x的值代入求值(1 / 26精品文档9、先化简,再求值:先化简下列式子,再从2,,2,1,0,,1中选择一个合适的数进行计算(12、先化简,再求值:13、先化简,再求值:,其中((318+1)?,其中x=2(x?1x,其中x=2.xx?1??x?2?3xx2x?)?14、先化简?2x?1x?1x?12a?1a2?2a?111a????值:2,其中。
2a?1a2?aa?11x,2x,118(先化简,再求值:??1,x,2?x2,4x,,5(??x2?1?2x?1?22 / 26精品文档??x?19. 先化简再计算:2?,其中x是一元二次方程x?2x?2?0的正数根. x?x?x?2m2?2m?1m?120 化简,求值: )其中m=( ? aa??x?3x2?6x?91?2?,再取恰的x的值代入求值.3请你先化简分式2x?1x?2x?1x?12a?2a2?1??a?1??224、先化简再求值其中a=+1 a?1a?2a?125、化简,其结果是(x2,16x26(先化简,再求值:?,其中x3,4(x,2x,2xx2,4x,4x,22x27、先化简,再求值:,x,2.x,162x,8x,428、先化简,再求值:?2,其中x?4( x?2x?2x?42aa3 / 26精品文档?)?a,其中a?1. a?11?a30、先化简,再求值:?a,其中aa2?11?a2?1?x?1(?1???x?x?1a?1?aab2a?b)?32(?a2?b2a?bb?a2??233先化简,再求值:?a?1???a?1,其中a1( a?1????34化简:(35(先化简,再求值:11?a2a?,其中( ?221-a1?a4 / 26精品文档x2,2x,1x36、.先化简,x值代入求值.x,1x,1x22x?1?39(当x??2时,求的值( x?1x?1x2?42?xx?)?40先化简,再把x取一个你最喜欢的数代入求值:42、先化简,再求值:43、先化简:先化简,再求值(+x(其中45、先化简,再求值,?(再从1,2,3中选一个你认为2(+)?,其中x=2(1化简,再从,1,1两数中选取一个适当的数作为x的值代x?1入求值(全国初中数学竞赛辅导第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以同一个不等于5 / 26精品文档零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据(在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值(除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答(本讲主要介绍分式的化简与求值(例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多(,,--+,说明本题的关键是正确地将假分式写成整式与真分式之和的形式(例求分式当a=2时的值(分析与解先化简再求值(直接通分较复杂,注意到平方差公式:a-b=,可将分式分步通分,每一步只通分左边两项(22例若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂(下面介绍几种简单的解法(解法1 因为abc=1,所以a,b,c都不为零(解法因为abc=1,所以a?0,b?0,c?0(6 / 26精品文档例化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简(说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧(例化简计算:似的,对于这个分式,显然分母可以分解因式为,而分子又恰好凑成+,因此有下面的解法(解说明本例也是采取“拆项相消”法,所不同的是利用例已知:x+y+z=3a,求分析本题字母多,分式复杂(若把条件写成++=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解(解令x-a=u,y-a=v,z-a=w ,则分式变为u+v+w+2=0(由于x,y,z不全相等,所以u,v,w不全为零,所以u+v+w?0,从而有7 / 26精品文档222222说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化(下例同:例化简分式:变形,化简分式后再计算求值(适当22=3,即x-8x+13,0(原式分子=+++10432322分式练习题及答案初二1、当x为何值时,分式x2 8 / 26精品文档?1x2?x?2有意义,当x为何值时,分式x2?1 x2?x?2的值为零,2、计算: a2?4x2a?2??a?2??1a?22x?x?2?x? ??1??1?x??xx?2??? x2?2x ?22?x?y??x?y?1124?3x?x?y??x?y?3x????9 / 26精品文档?x1?x?1?x?1?x2?1?x43、计算已知x2x2?2?1,求11??x的值。
初中数学分式的化简求值专项训练题7(附答案详解)

解:原式= +
=
=
当 x=0 时,原式= 1 . 2
= 1 , x2
4. 2 ,1. x2
【解析】
【分析】
先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.
【详解】
原式=((xx 11))((xx
1)(x 1)•
1)(x x2
1)
2
(x 1)(x 1)
=(x 1)(x 1)•
∴当 x 6 时,原式 6 2 1 6 2 2
【点睛】 本题考查了分式的化简求值及一元二次方程的解法,解题的关键是掌握相应的运算法则,注 意 x 的值要使得原代数式有意义.
11. 1 , 2 x2 2
【解析】 【分析】 先按分式混合运算的相关运算法则将原式化简,再代入 x 的值按二次根式的除法法则计算即 可. 【详解】
原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以
这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将 x 的值代入进行二次根式化
简.
【详解】
解:原式
=
x
x
12
x
1 x2 x2 1
1
x
x
12
x x 1 x 1x 1
x
x
12
x 1x 1 x x 1
1 x 1
.
当 x 2 1时,原式
21.先化简,再求值:
x3 x2 1
x2
x
2x 1 3
1 x 1
+1
,其中
x=﹣6.
22.先化简,再求值:
÷ ,其中 x=2sin30°+2 cos45°.
23.如果 a2+2a-1=0,求代数式 (a 4 ) a2 的值. a a2
八年级数学分式的化简求值及应用(人教版)(综合)(含答案)

分式的化简求值及应用(人教版)(综合)一、单选题(共10道,每道9分)1.化简代数式的结果为( )A. B.C. D.答案:A解题思路:故选A试题难度:三颗星知识点:略2.当时,代数式的结果是( )A. B.C. D.答案:A解题思路:当时,故选A试题难度:三颗星知识点:略3.当时,代数式的值为( )A.5B.-1C.5或-1D.0答案:B解题思路:∵且a-3≠0∴a=-3所以=-3+2=-1故选B试题难度:三颗星知识点:略4.当,化简的结果是( )A. B.C. D.答案:D解题思路:∵∴故选D试题难度:三颗星知识点:略5.先化简,然后从的范围内选取一个合适的整数作为的值代入,所求结果为( )A. B.C. D.以上都对答案:B解题思路:要点:此类型题目分为三步:①化简;②取值说理;③代入求值.∵,且为整数,∴若使分式有意义,只能取-1,当时,,故选B.试题难度:三颗星知识点:略6.化简分式,并在中选取一个你认为合适的整数代入,结果可能是( )A.-3B.-1C.0D.1答案:D解题思路:∵且是整数,∴若使分式有意义,可取-2,-1或2,当x=-2时,原式=2;当x=-1时,原式=1;当x=2时,原式=-2.故选D.试题难度:三颗星知识点:略7.已知a米布料能做b件上衣,2a米布料能做3b条裤子,则一件上衣的用料比一件裤子的用料多( )A. B.C. D.答案:A解题思路:由题意可得,一件上衣的用料为,一件裤子的用料为所以则一件上衣的用料比一件裤子的用料多故选A试题难度:三颗星知识点:略8.有A,B两箱水果,A箱水果重量为kg,B箱水果的重量为kg(其中a>1),售完后,两箱水果都卖了120元,两箱水果中高的单价是低的单价的( )倍.A. B.C.1D.无法确定答案:B解题思路:有题意可得,A箱水果的单价为B箱水果的单价为∴A箱水果的单价高于B箱水果的单价∴两箱水果中高的单价是低的单价的倍故选B试题难度:三颗星知识点:略9.已知,分式的分子分母都加上1,所得分式的值相比( )A.增大B.减小C.不变D.无法确定答案:A解题思路:所得分式的值是变大、减小还是不变,其实就是比较与的大小(考虑通过作差与0比较大小).∵,∴,,∴,∴.故选A.试题难度:三颗星知识点:略10.(上接第9题)若正分数(m>n>0)中分子和分母同时增加k(整数k>0),则( ).A.>B.<C.=D.无法确定答案:A解题思路:∵,k>0∴,,∴,∴.故选A.试题难度:三颗星知识点:略二、填空题(共1道,每道10分)11.(上接第9题,第10题)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,若原来的地板面积和窗户面积分别为x,y,同时增加相等的窗户面积和地板面积,则住宅的采光条件____(填“变好”或“变坏”).答案:变好解题思路:设增加面积为a,由第10题可知,∴住宅的采光条件变好故填变好.试题难度:知识点:略。
50道分式化简取值计算试题附答案

日期:_______50题搞定分式易错点(中考必考)分式化简求值_计时:________姓名:________成绩:________一、解答题(共50小题)1.先化简,再求值:÷(x+2﹣),其中x =.2.先化简,再求值:(+)÷,其中x =3.3.先化简,再求值:(),其中a =2.4.化简式子÷(x﹣),并在﹣1,0,1,2中选一个合适的数字代入求值.5.先化简,再求值:,其中.6.先化简,再求值:.其中x=3+3.7.化简求值:()÷,其中x是不等式组的解,请从中选择一个合适的值代入求值.8.化简,并选一个你喜欢的数作为x的值代入求值.9.先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选取一个你喜爱的x值代入求值.10.先化简,再求值:(+)÷,其中x=.11.先化简再求值:(x+1﹣)÷,且x=2017.12.先化简,再求值:,其中x=﹣2.13.先化简,再求值:÷(1+),其中x=2020.14.先化简,再求值:(1﹣)÷,当x=2019时,求代数式的值.15.先化简,再求值:,其中x的值从解集﹣2<x<3的整数解中选取.16.先化简,再求值:(1+)÷,其中x取满足﹣1≤x<3的整数.17.先化简,再求值:﹣÷,其中x=﹣1.18.先化简,再求值:(﹣)÷,其中a=﹣.19.先化简,再求值:,其中x=﹣1.20.先化简,再求值:(+)÷,其中a=+1.21.先化简,再求值:,其中.22.先化简:+÷在从﹣1≤x≤3的整数中选取一你喜欢的x的值代入求值.23.先化简,再求值:,其中24.先化简,再求值:÷(﹣1),其中x=﹣﹣1.25.先化简、再求值:(﹣)÷,其中x=﹣2.26.先化简,再求值:(x﹣1+)÷,其中x的值是从﹣2<x<3的整数值中选取.27.先化简,再求值:,其中a=﹣2.28.先化简,再求值:•(﹣1),其中x=3.29.先化简,再求值:(2﹣)÷,其中x=5.30.如果x2+x﹣3=0,求代数式的值.31.先化简,再求值:÷(﹣x﹣2),其中x=﹣132.先化简,再求值:(+)•,其中m=1.33.先化简,再求值:+÷,其中x=3.34.先化简(﹣1),然后从0,1,2中选一个合适的数作为a的值代入求值.35.先化简,再求值:,其中a=﹣2.36.先化简,再求值:(+)÷,其中m =9.37.先化简,再求代数式(+1)÷的值,其中x =13+.38.先化简÷(1﹣),再从﹣1,2,3三个数中选一个合适的数作为x 的值代入求值.39.先化简,再求值:9331963322--÷-++--a a a a a a a ,并在3,﹣3,4这三个数中取一个合适的数作为a 的值代入求值.40.先化简,再求值:(m ﹣)÷,其中m =﹣20.41.先化简再求值:(),其中x =﹣3.42.先化简,再求代数式÷的值,其中x=.43.先化简,再求值:•,其中x=2020.44.先化简再求值:÷(1+),其中a=﹣2,b=1.45.先化简,再求值:,其中x=2.46.先化简,再求值:÷,其中x=3.47.化简并计算:,其中x=3.48.先化简,再求值(1﹣)÷,其中a=﹣2.49.先化简,再求值:(x+1﹣)÷,其中x=()﹣1﹣(3﹣π)0.50.先化简,再求值:,其中.50道分式化简求值计算参考答案部分答案可能有误仅供参考一、解答题(共50小题)1.【答案】==.2.【答案】=1.3.【答案】a2+3a=10.4.【答案】=.5.【答案】=.6.【答案】=.7.【答案】=3.8.【答案】=.9.【答案】=.10.【答案】x﹣1=﹣1.11.【答案】x+4,=2017+4=2021.12.【答案】,=.13.【答案】x+1,=2021.14.【答案】,=.15.【答案】,=.16.【答案】x,=﹣1.17.【答案】﹣,=.18.【答案】a+4,=.19.【答案】,=.20.【答案】.=.21.【答案】2m+6.=5.22.【答案】,=﹣.23.【答案】﹣1﹣24.【答案】﹣x﹣1,=25.【答案】.=﹣.26.【答案】.=.27.【答案】,=3.28.【答案】,=.29.【答案】,=.30.【答案】=.31.【答案】﹣,=﹣.32.【答案】4m+4,=8.33.【答案】,=﹣4.34.【答案】,=.35.【答案】,=﹣5.36.【答案】,=.37.【答案】,=.38.【答案】,=2.39.【答案】33--a=﹣3.40.【答案】,=.41.【答案】,=.42.【答案】,=3.243.【答案】,=2018144.【答案】,=﹣2.45.【答案】x +4,=6.46.【答案】,=.47.【答案】,=3.48.【答案】,=.49.【答案】44-+-x x =350.【答案】,=.。
分式化简求值练习题库(经典精心整理)
分式化简求值练习题库(经典精心整理)1.先化简,再求值:frac{-2x-1}{x-1},\text{其中}x=-2.$$2.先化简,再求值:frac{12}{2x^2-1},\text{其中}x=-2.$$3.(2011·綦江县)先化简,再求值:frac{a^2+3a+2}{a^2-3a},\text{其中}a=-1.3.$$4.先化简,再求值:frac{x^2-4}{x^2-5x+6},\text{其中}x=3.$$5.先化简,再求值:frac{2x^2-2x-4}{x^2-3},\text{其中}x=-2.$$6.化简:frac{2x^2+4x+2}{x^2+2x+1}.$$7.(2011·曲靖)先化简,再求值:frac{2x^2-2x+1}{x^2+2x+1},\text{其中}x=-1.$$8.(2011·保山)先化简,其中:frac{a-3b}{a+b}+\frac{a-b}{a- b},\text{其中}a=1,\text{且}b=2.$$frac{x^3+x}{x^2-x-1},\text{其中}x=\frac{1+\sqrt{5}}{2}.$$9.(2011·新疆)先化简,再求值:frac{x-3}{x^2-9},\text{其中}x=10^{-3}.$$10.先化简,再求值:frac{x^2-6x+9}{x^2-5x+6},\text{其中}x=3.$$11.(2011·雅安)先化简下列式子,再从2,-2,1,-1中选择一个合适的数进行计算:frac{2x^2-4x-3}{x^2-x-2}.$$12.先化简,再求值:frac{a^2-4a+4}{a^2-2a+1},\text{其中}a=2.$$13.(2011·泸州)先化简,再求值:frac{3x+18}{x^2-5x+6},\text{其中}x=3.$$14.先化简,然后从不等组$\begin{cases}-x-5\leq 3x\\x^2-5x+2<5x-12\end{cases}$的解集中,选取一个符合题意的x的值代入求值:frac{x-5}{5-x}-\frac{x^2-2x-25}{x^2-25}.$$15.先化简,再求值:frac{a^2-4a-2}{2a^2+10a+12},\text{其中}a=-5.$$16.(2011·成都)先化简,再求值:frac{3x}{x^3-2x},\text{其中}x=\frac{\sqrt{3}+1}{2}.$$17.先化简,再求值:frac{2a+1}{a^2-2a+1},\text{其中}a=-1.$$18.先化简,再求值:frac{1}{x-2}+\frac{x-2}{x^2-4},\text{其中}x=-5.$$19.先化简再计算:frac{x}{x+1}+\frac{x+1}{x},\text{其中}x\neq 0,-1.$$20.化简,求值:其中$m=3$.frac{m^2-2m+1}{m^2-1}-\frac{m^2-m-2}{m^2-4}.$$21.(1)化简:frac{a-b}{a^2-ab},\text{其中}a\neq b.$$2)化简:frac{x+3}{2x^2+6x+9}.$$22.先化简,再求值:其中$a=2b$.frac{a^2-b^2}{a^2+ab},\text{其中}b\neq 0.$$23.请你先化简分式:frac{2x-1}{x^2-2x-3}-\frac{2x+1}{x^2+2x-3}.$$24.(本小题8分)先化简再求值,其中$a=3+1$. frac{a^2-1}{2a^2-6a+4}.$$25.化简,其结果是:x-8)^2-64x+1024.$$51、先化简,再求值:$\frac{x^2+2x+11}{x^2}$,其中$x$所取的值是在$-2<x\leq 3$内的一个整数。
分式化简求值练习题库(经典精心整理)
1 21.先化简,再求值:x2,其中 x=- 2.x 1 12、先化简,再求值:,其中 a= ﹣ 1.3、( 2011?綦江县)先化简,再求值:,其中 x= .4、先化简,再求值:,其中.5 先化简,再求值,其中 x 满足 x2﹣ x﹣ 1=0 .a 3b a b6、化简:a b a b7、( 2011?曲靖)先化简,再求值:,其中 a= .8、( 2011?保山)先化简(x 1 ) 1,再从﹣ 1、 0、1 三个数中,选择一个你认x 1 x 1 x2 1为合适的数作为x 的值代入求值.9、( 2011?新疆)先化简,再求值: ( +1) ÷ ,其中 x=2 .10、先化简,再求值: 318 ,其中 x =10–3 x –3 – 2–9x11、( 2011?雅安)先化简下列式子,再从2,﹣ 2, 1, 0,﹣ 1中选择一个合适的数进行计算..12、先化简,再求值:x x 12 1 ( -2), 其中 x=2.x x13、(2011?泸州)先化简,再求值: ,其中 .14、先化简 (x x ) 2x ,然后从不等组 x 2 3 的解集中,选取一个你认 x 5 5 x x 2 25 2x 12 为符合题意的x 的值代入求值.15、先化简,再求值: 2 a 2 4 a 2,其中 a5 .a 6a 9 2a616、( 2011?成都)先化简,再求值: ( 3x x ) x2,其中 x 3 . 17 先化简。
再求1 a2 x 1 x 1 x 212 值: 2aa 2 2a 11 ,其中 a1 。
a2 1 a a 1 21x 2- 2x + 1 x =- 5. .先化简,再求值: 1+÷2,其中18 x - 2x -419. 先化简再计算:x 2 1 x 2x 1,其中 x 是一元二次方程 x 22 x 2 0的正数根 .x 2 xx20 化简,求值:m 2 2m 1 m 1 ) 其中 = 3 .m 2 1 (m 1 1 m m ,21、( 1)化简: ÷ .( 2)化简:ab a 2ab b 2 ( ab )a a22、先化简,再求值: ,其中 .23请你先化简分式x3 x 2 6x 91, 再取恰的 x 的值代入求值 . x 21 x2 2 x 1x 124、(本小题 2a 2a 2 1其中 a= 3 +18 分)先化简再求值 a 1a 2 2a 1 a125、化简,其结果是.26.( 11·辽阜新)先化简,再求值:x x2-16,其中 x= 3-4.( - 2) ÷2-2xx- 2x27、先化简,再求值:x2+ 4x+4x+ 2-2x,其中 x=2. 2-16÷x+x2x-8428、先化简,再求值: ( 3x x ) 2x ,其中 x 3 4 .x 2 x 2 x2 429.先化简,再求值:2a a( ) a ,其中 a2 1.a 1 1 a2a 1 130、先化简,再求值: ( 21 ) a ,其中 a2a 1 a31、( 1)化简:.( 2) 1 1x2 1x x ( 3) (a 1 ) a 1a a32.( 1) (a b b2) a b。
分式的化简求值练习题及答案
分式的化简求值练习题及答案2、先化简,再求值:12?2,其中x=-2. x?1x?1,其中a=﹣1.3、先化简,再求值:4、先化简,再求值:5先化简,再求值6、化简:7、先化简,再求值:,其中.,其中x=.,其中x满足x﹣x﹣1=0.2a?3ba?babab,其中a=.先化简x11)?2,再从﹣1、0、1三个数中,选择一个你认x?1x?1x?1为合适的数作为x的值代入求值.9、先化简,再求值:先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.12、先化简,再求值:13、先化简,再求值:,其中..318+1)÷,其中x=2.x?1x,其中x=2.xx?1x?2?3xx2x)14、先化简?2x?1x?1x?12a?1a2?2a?111a值:2,其中。
2a?1a2?aa?11x-2x+118.先化简,再求值:??1+x-2÷x2-4x=-5.x2?1?2x?1?2x?19. 先化简再计算:2?,其中x是一元二次方程x?2x?2?0的正数根.x?x?x?2m2?2m?1m?120 化简,求值:)其中m=. ? aa??x?3x2?6x?912,再取恰的x的值代入求值.3请你先化简分式2 x?1x?2x?1x?12a?2a2?1a?1224、先化简再求值其中a=+1 a?1a?2a?125、化简,其结果是.x2-16x26.先化简,再求值:÷,其中x3-4.x-2x-2xx2+4x+4x+22x27、先化简,再求值:-x=2.x-162x-8x+428、先化简,再求值:?2,其中x?4. x?2x?2x?42aa)a,其中a?1. a?11?a30、先化简,再求值:?a,其中aa2?11?a21x1.?1x?x?1a?1aab2a?b)?32.?a2?b2a?bb?a2??233先化简,再求值:?a?1a?1,其中a1. a?1??34化简:.35.先化简,再求值:11?a2a?,其中. ?221-a1?ax2+2x+1x36、.先化简-x值代入求值.x-1x-1x22x?139.当x??2时,求的值. x?1x?1x2?42?xx)40先化简,再把x取一个你最喜欢的数代入求值:42、先化简,再求值:43、先化简:先化简,再求值.+x.其中45、先化简,再求值,÷.再从1,2,3中选一个你认为2.+)÷,其中x=2.1化简,再从-1,1两数中选取一个适当的数作为x的值代x?1入求值.分式的化简求值中考要求知识点睛一、比例的性质:⑴ 比例的基本性质:acad?bc,比例的两外项之积等于两内项之积. bd abcdac?dc⑵ 更比性:bdba?dbca acbd⑶ 反比性:bdacaca?bc?daca?kbc?kd⑷ 合比性:??,推广:?? ??bdbdbdbdacma?c?...?ma⑸ 等比性:如果??....?,那么?bdnb?d?...?nb二、基本运算aca?c分式的乘法:??bdb?dacada?d分式的除法:bdbcb?cn个aaa乘方:n??bbbn个aa?a=bb?bn个aanbbn整数指数幂运算性质:⑴am?an?am?n ⑵n?amn ⑶n?anbn⑷am?an?am?n 负整指数幂:一般地,当n是正整数时,a?n?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,1,即a?n是an的倒数 naaba?bacadbcad?bcbdbdbdbd异分母分式相加减,先通分,变为同分母的分式再加减,分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.例题精讲一、化简后直接代入求值先化简再求值:11,其中x??2x?1x?xa?a2aa?1?2已知:2??,其中a?3a?1a?1a?1先化简,再求值:1a2?4a?4,其中a??1 ?a?1a2?a先化简,再求值:?2?,其中x?x?1x?11x2?2x?1先化简,后求值:?x?2x2?43?a?1?先化简,再计算:?1?,其中a?3. ??a?2?a2?4?x26x1x22x411 当x??时,求代数式?2的值x?1x?1x?x2??a2?9a?3a?a2先化简分式2,然后在0,1,2,3中选一个你认为合适的a值,代入求??a?6a?9a2?3aa2?1值. a2?b2?2ab?b2?a?先化简:2?,当b??1时,再从?2?a?2的范围内选取一个合适的整数a代入a?ab?a?求值.12x将它们组合成?A?B??C或A?B?C的形式,请你从中任选一,B?2,C?x?2x?4x?2种进行计算,先化简,再求值其中x?3.4a?125a?22[a2],其中a? 先化简,再求值:a2a已知A?已知a?2b?2,试求先化简,再求值:1?ab?1? 化简,再求值:?.其中a?1, b?. ??a-bbaabab的值. baxy,其中x?1,y1.yx?yxx?y1?b?1?先化简,再求值:?,其中a?1b?1??22 a?ba?ba?2ab?b??11x2y先化简,再求值:?,其中x?1,?y1 ??22 x?yx?yx?y??2a2??b?c?ab?ac?a2?a?b??c12a?1?? 求代数式的值,其中,, b??c??a2?ab2ab?a2?b2a2?b22322二、条件等式化简求值1. 直接换元求值a?ba2?b25b已知:4a?b?4ab,求的值. ?2?a?3ba?6ab?9b2a?bx3x2?y2xy?y2已知:?,求2的值y4x?2xy?y2x2?xy2355x?y已知x,,,则的值为 yz满足?xy?zz?xy?2z111A.1B.C.?D.233x12xx2?y22y已知?,求2的值.y2x?2xy?y2x?yx?yx已知15x2?47xy?28y2?0,求的值. y3x?5y的值. 已知x2?6xy?9y2?0,求代数式 4x2?y222x3?x?1 已知x?,求的值.x5已知2a3x2?ab2y2?3b3xy已知2x?y??0,求32的值.3ax?ab2y2?2b3xy2123c,求的值. ??ab?ca?ca?b已知a2?3b2?2ab,a?0,b?0,求证:a?2b5ab2已知分式x?y的值是m,如果用x,y的相反数代入这个分式,那么所得的值为n,则m、n是什1?xy么关系?已知:mx?3y2?3,且nx2?2y?2?x?0,y??1?.试用x,y表示m. na3?3b3?2c3已知:2a?3b?c?0,3a?2b?6c?0,且abc?0,求2的值.ab?7bc2?3a2c2x3yz0已知方程组:?,求:x:y:zx?2y?3z?0?分式的化简及解分式方程天一组先化简,再求值:1、先化简,再求值:12?2,其中x=-2. x?1x?1x-1x-22x2-x2、先化简,再求值:xx满足x2-x -1=0. x+1x+2x+13、先化简,再求值:?a,其中a?a2?11?a11)?2?,其中x?x?1x?1xx2x??x?2≤3?)?26、先化简?7、先化简,再求值:16、计算aaa?1?2a?1?并任选一个你喜欢的数a代入求值. ??a??,aa??17、化简:y?35?4y?8y?2x2?y218、先化简再计算:?2x?y,其中x=3,y=2. x?y19、先将代数式?x-?x ? 1 ?化简,再从-3<x<3的范围内选取一个合适的÷1+ x+1 ?? x-1 ?整数x代入求值.a2?3aa?32??20、先化简,再求值:2,其中,aa?4a?2a?2a2?b2a?b2ab21、老师布置了一道计算题:计算??的值,a?ba?b2其中a?2008,b?2009,小明把a、b错抄成a?2009,b?2008,但老师发现他的答案还是正确的,你认为这是怎么回事?说说你的理由.解方程:1、解分式方程:2、解分式方程:x2x??1 x?13x?3x3?1?. x?1x?23、解分式方程:4、解分式方程:5、解分式方程:6、解分式方程:7、解分式方程:8、解分式方程:2x3??x?1x?1x?51??x?44?x1?2x1?2? x?22?x3x?2??0 x?1x21??x2?1x?1?x2?3? x?33?x。
中考分式化简求值专项练习与答案
中考分式化简求值专项练习与答案1、化简得:$\frac{x^2-2x}{2x-1}\div\frac{x+1}{x-1}$,代入$x=-2$得:$-2$2、化简得:$\frac{a^2-5a+2}{a+2}\div\frac{a^2-4}{a+4}$,代入$a=3+\sqrt{2}$得:$-3-\sqrt{2}$3、化简得:$\frac{1}{x+2}\div\frac{x^2-4}{x^2+4x-4}$,代入$x=-3$得:$-\frac{1}{2}$4、化简得:$\frac{-4}{2x(x+1)}$,代入$x=-1$得:$2$5、化简得:$\frac{2x^2-x}{(x-1)(x-2)}-\frac{x-1}{x+2}$,代入方程$x^2-x-1.5=0$的解得:$-\frac{1}{2}$6、化简得:$\frac{a-b}{a+b}+\frac{5b^2}{a^2-6ab+9b^2}$,其中$a+b=4$,代入求得整数解的不等式组得:$1$7、化简得:$\frac{1}{a-2b}-\frac{a+2b}{7a-42b}$,其中$a-b=27$,代入化简求值得:$\frac{1}{7}$8、化简得:$\frac{3x^2+4x-4}{x-2}-\frac{x-1}{x+125}$,代入方程$x^3-1=0$的解得:$-1$9、化简得:$\frac{x-1}{x-2}-\frac{1}{9}$,其中$x$是方程$x^2-x-1=0$的解,代入得:$\frac{1}{9}$10、化简得:$\frac{a^2-42}{a^2-4a+4}-\frac{a-2}{a-2}$,其中$a=-3$,代入得:$-2$11、化简得:$\frac{a-2}{2a+1}\div\frac{a+1}{a-1}\div\frac{a-1}{a+1}$,无解12、化简得:$\frac{1}{a-2}-\frac{a-2}{a+1}\div\frac{a-1}{a+1}$,其中$a=3+\frac{1}{\sqrt{2}}$,代入得:$\frac{1}{2}$13、化简得:$\frac{x-4}{x-1}-\frac{1}{x}$,其中$x=3-4$,代入得:$-2$14、化简得:$\frac{2a}{a^2-2a+1}-\frac{a}{2a+1}$,其中$x-x^2=0$的解,代入得:$0$15、化简得:$\frac{a+1}{a-2}-\frac{a^2-1}{a^2-2a+1}$,其中$a=\tan60^{\circ}$,代入得:$-1$1.代入a=12,化简得:(12)-13=-1.代入a=-13,化简得:(-13)-13=-26.2.代入x=3,化简得:3+4=7.3.化简得:1/a,代入x=3,化简得:1/(3-22)=-1/19.4.化简得:a-a^2,代入a=-7,化简得:(-7)-(-7)^2=42.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—2
x 2 (x 1)
=x 2
x 1
当x 5时,原式x 2 5 2 1.
x 1 5 1 2
【答案】
2
【例7】先化简,再求值:x25x3,其中x2 3.
x22x4
【考点】分式的化简求值
【难度】
【题型】解答
【关键词】
2
【解析】原式xx4252(::)* J;3)32)2(x3),当x2 3时,原式 【答案】2 2
a ab a
的整数a代入求值.
【考点】分式的化简求值
【难度】2星
【题型】解答
【关键词】2010年,贵州省贵阳市中考试题
2 2
a b a b a 2ab b a b a 1
a a b a aab2a b
在2 a 2中,a可取的整数为1,0,1,而当b1时,
c
1若a1,分式-2__-无意义;
a -b
2若a0,分式空兰无意义;
x1x x
【考点】分式的化简求值
【难度】2星
【题型】解答
【关键词】2010年,湖南郴州
【解析】原式
x
1 x 1 1
x x
1 x x 1 x x 1 x
当x
2时,
原式1 1
x 2
【答案】1
【例2】已知:
2a a a21
a(a 1)2,其中a 3
a 1 a 1
【考点】分式的化简求值
【难度】2星
【题型】解答
当a
1时,原式
a
1 1
a 2
1 2 3
【答案】
1
3
【例4】先化简,
再求值:
2x
9 1
~2~
其中x
1
x3
x3x 3x
3
【考点】分式的化简求值
【难度】2星
【题型】解答
【关键词】2010年,湖南省长沙市中考试题
【解析】原式
当x3时,原式3
【答案】3
(1丄)(x2),其中x6.
x1x1
【考点】分式的化简求值
【难度】2星
精心整理
精心整理
【题型】解答
【关键词】
【解析】原式
x2
2
y
xy x y
xy x y
当x
.2 1 ,y
2 1时,
【答案】2
【例17】化简,
再求值:
1b b1 a[.其中a -.2 1,b .2.
a-b b a a b
a
分式的加减法法则:
a
c
ad
be
ad bc
b
d
bd
bd
bd
同分母分式相加减,分母不变,把分子相加减,异分母分式相加减,先通分,变为同分母的分式再加减,分式的混合运算的运算顺序: 先算乘方,再算乘除,后算加减,如有括号,括号内 先算.
结果以最简形式存在.
例题精讲
一、分式的化简求值
【例1】先化简再求值:J- —21—,其中x2
知识点睛
一、比例的性质:
⑴比例的基本性质:
b d
乘方:(a)n a aL -
bb4 b 43bbtb5b b
n个n个
整数指数幕运算性质:
⑴amanamn(m、n为整数)
⑵(am)namn(m、n为整数)
⑶(ab)nanbn(n为整数)
⑷amanamn(a 0,m、n为整数)
负整指数幕:
般地,当n是正整数时,an丄(a0),即an(a0)是an的倒数
【例8】先化简,再计算:13§1,其中a .23.
a2a4
【考点】分式的化简求值
【难度】
【题型】解答
【关键词】
a2 3a2a2
a2a2a 1
【答案】a 2
2
【例9】当x1时,求代数式I 一1
2x1x1
【考点】分式的化简求值
【难度】3星
【题型】解答
【关键词】
2
a2a,然后在0,1,2,3中选一个你认为合适的
a1
a值,代入求值.
【考点】分式的化简求值
【难度】2星
【题型】解答
【关键词】2010年,广东省深圳市中考试题
a3a3a a3a a2
【解析】原式a32a 3 a 1a a 2a
当a 0,1,2 ,3时,原式0,2, 4 6
【答案】0,2,4,6
【例11】先化简:笃一匚a2ab b,当b1时,再从2a2的范围内选取一个合适
a
3若a1,分式无意义.
a b
所以a在规定的范围内取整数,原式均无意义(或所求值不存在)
【答案】a在规定的范围内取整数,原式均无意义(或所求值不存在)
【例12】已知A1,B22,Cx将它们组合成
x2x4x 2
中任选一种进行计算,先化简,再求值其中
【考点】分式的化简求值
【难度】3星
【题型】解答
【关键词】2010年,河南省中考试题
【难度】2星
【题型】解答
【关键词】2010年,湖北省十堰市中考试题
【解析】原式X11x1x1x2x 1
. ,2
当x 6时,原式 .、6 2 4.
【答案】4
【例
x2x 4
【考点】分式的化简求值
【难度】
【题型】解答
【关键词】
2 2
【解析】(1丄)x22x 1=2LAJ° °
x 2 x24 x 2 (x 2)(x 2)
【难度】2星
【题型】解答
【关键词】2010年,顺义一模试题
【解析】x2xy y2。
x x
当x
2010,y 2009时,原式:
=x y 2010 2009 1.
【答案】1
- 1一 严"
【例15】已知a
2 3,b2.3,试求a
b的值.
b a
【考点】分式的化简求值
【难度】2星
【题型】解答
【关键词】2010年,湖北荆门市中考试题
【解析】Ta2 3,b2 3,
二a b 4,a b 2 3,ab 1
2 2
而a ba b (a b)(a b)
ba ab ab
...a b(a b)(a b) 42、3&3
b a ab 1
【答案】83
【例16】先化简,再求值:一x一 一y一,其中x .2 1,y2 1.y x y x x y
【考点】分式的化简求值
分式的化简
中考要求
内容
基本要求
略咼要求
较咼要求
分式的概念
了解分式的概念,能确定分式有意义
的条件
能确定使分式的值为零的条件
分式的性质
理解分式的基本性质,并能进行简单
的变型
能用分式的性质进行通分和约分
分式的运算
理解分式的加、减、乘、除运算法则
会进行简单的分式加、减、乘、除运算, 会运用适当的方法解决与分式有关的问题
4 4 1
(3a 4)(a3) (3 4 4)(4 3) 2
本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似, 分式的四则混合运算
的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算.
【答案】1
2
2
【例14】已知x2010,y2009,求代数式x2xy y—y的值.
x x
【考点】分式的化简求值
【关键词】
2 2
[解析】X旦(口)2U4a1a1a1(a 1)
【答案】4
【例3】先化简,再求值:
2
1a 4a4甘出 “(1 )2,其中a1
a1a a
精心整理
【考点】分式的化简求值
பைடு நூலகம்【难度】2星
【题型】解答
【关键词】2010年,安徽省中考
【解析】
1
1 -
a
a 4a4
a2a a1a
1 a a
a 1
a 22a 2