专题由递推关系求数列的通项公式含答案
已知递推公式求通项公式

`式已知递推公式求通项公].p)i (a [p a p)i (p a pa p)(pa pa p 1p 2n )i (a a 1p .)()(pa a p p1q a }p1q a {p1q a p p1q a p 1q 1p q a 1p q pa a 11n 1i i11n n 1n 1i 1i 1nn 1n nn 1n 1n 1n 1n 1i 1n n 1n 1n n 1n 1n 1n ∑∑∑-=--=+++++-=++++=+=+=≠≥+==+=-+-+-+=-+-≠=+=f f n f f n f n f ,从而利用叠加法易得,,变形为,则两边同时除以若;,,则显然若不是常数,其中为公比的等差数列为首项,是以显然)(,变为,则两边同加上若为公差的等差数列;为首项,,则显然是以若)常见形式:(p x a x a qx a x a x x p p x a 1x a 1x x x x 0b x a -d cx dcx b ax x dca b aa a )2(2n 1n 21n 11n 211n 11n 21212n n 1n 通项公式求解,然后再利用等比数列可以用待定系数法求解,其中则有若通项公式求解,然后再利用等差数列可以用待定系数法求解,其中则有若,,令此方程的两个根为)(,即,令典型例子:不动点法--=--≠+-=-==-+++=++=++++用待定系数法求得、,,则其通项公式为若用待定系数法求得、,)(则其通项公式若,,令此方程两根为,特征方程为性递推式的好方法特征根法是专用来求线特征根法B A Bx Axa x x B A x Bn A a ,x x x x q px x qa pa a .)3(n2n1n 21n1n 21212n 1n 2n +=≠+==+=+=++.4然后用数学归纳法去证的规律猜出一个结果,简单说就是根据前几项)数学归纳法(公式,马上迎刃而解!,只需联系正切二倍角看起来似乎摸不着头脑:东西,看看下面的例子三角函数是个很奇妙的)联系三角函数(2nn 1n a1a 2a 5-=+递推新值的过程。
高考数学题型全归纳:如何由递推公式求通项公式典型例题(含答案)

如何由递推公式求通项公式高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。
找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。
下面就递推数列求通项的基本类型作一个归纳,以供参考。
类型一:1()nna a f n 或1()n na g n a 分析:利用迭加或迭乘方法。
即:112211()()+()nnnnna a a a a a a a ……或121121n n n nna a a a a a a a ……例1.(1)已知数列na 满足11211,2nna a a nn,求数列n a 的通项公式。
(2)已知数列n a 满足1(1)1,2nn n a a s ,求数列n a 的通项公式。
解:(1)由题知:121111(1)1nna a nnn n nn 112211()())n n n n na a a a a +(a -a a (1)111111()()()121122n n nn ……312n(2)2(1)n n s n a 112(2)nn s na n两式相减得:12(1)(2)n nna n a na n 即:1(2)1n na n n a n 121121n n nn n a a a a a a a a (121)121nn n n……n类型二:1(,(1)0)nn a pa q p q pq p 其中为常数,分析:把原递推公式转为:1(),1nnq a tp a t p其中t=,再利用换元法转化为等比数列求解。
例2.已知数列n a 中,11,123n n a a a ,求n a 的通项公式。
解:由123nn a a 可转化为:132(3)n na a 令3,nn b a 11n+1n则b =a +3=4且b =2b n b 1是以b =4为首项,公比为q=2的等比数列11422n n bn即123n na 类型三:1()(nn a pa f n 其中p 为常数)分析:在此只研究两种较为简单的情况,即()f x 是多项式或指数幂的形式。
已知数列的递推公式求通项公式的方法总结归纳

已知数列的递推公式求通项公式的方法
1.累加法:递推关系式为1()n n a a f n +-=采用累加法。
“累加法”实为等差数列通项公式的推导方法。
2.累乘法:递推关系式为
1()n n
a f n a +=采用累乘法。
“累乘法”实为等比数列通项公式的推导方法 3.构造法:递推关系式为(1)1n n a pa q +=+,(2)1n
n n a pa q +=+,
都可以通过恒等变形,构造出等差或等
比数列,利用等差或等比数列的定义进行解题,其中的构造方法可通过待定系数法来进行。
4. 和化项法:递推关系式为()n S f n =或()n n S f a =一般利用11,
1
,2
n n n S n a S S n -=⎧
=⎨-≥⎩进行转化。
例1.已知12a = , 1n a +=2132n n a -+⋅
求数列{}n a 的通项公式.
例2.已知11,a = 11
n n n a a n +=⋅
+,
求数列{}n a 的通项公式
例3.已知11,a =123n n a a +=+,
求数列{}n a 的通项公式
例5.已知43n n S a =+,
求数列{}n a 的通项公式.
例4.已知11,a =123n n n a a +=+,
求数列{}n a 的通项公式
例6.已知113
n n a S +=
,11a =,
求数列{}n a 的通项公式。
递推数列求通项公式的典型方法

递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=2、)(1n g a ann =+型累积法:112211.....a a aa a a a a n n n n n ---=所以()()()()11...321a g n g n g n g a n ---=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n ---==()()()()!11...321-=---n n n n ()()+∈-=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题). 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11-+-=-n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+-n N n a a n n ,求n a解 设()λλ-=--12n n a a ,则1-=λ ()1211+=+∴-n n a a{}1+∴n a 为公比为2的等比数列。
由递推公式求数列通项公式常见题型及解法

由递推公式求数列通项公式常见题型及解法对于由递推公式所确定的数列通项公式问题,通常可通过对递推公式变形,转化成等差数列或等比数列加以解决,也可以通过构造法把问题转化后予以解决.下面分类举例说明.一,%+l=%+-厂(n)型累加法:%=(一%~1)+(n一l一%一2)+…+(oa一.I)+nl=-厂(n一1)+_厂(n一2)+…+f(1)+01.例1在数列{}中,已知+=,=2,求通项公式.解:已知递推式化为…_l__一:+%+12+I’又tan(a+c)=号,tanAtanC=2+厂,tanA+tanC=3+,/一.由IanA+tanc=+,[tanAtanC=2+,v/3.解得tanA=1,tanC=2+,/丁或tanA=2+,/,tanC=1.所以A=45.,B=60.,C=75.或A=75o.B=60..C=45..当=45咐,.=8c==8,6=Ac=每=4,c=4+4_当=75.时,.=8,b=4,厂一(x/一1),c=8(,/一1).【解题反思】此题将三角形,正弦定理,三角形内角和,方程思想等知识巧妙24基础教育论坛[2011年第2期j即一--1=1,%+1’所以一1=1,l:1,啦Z啦Z111111啦劬一2’’一l一2n’将以上(n一1)个式子相加,得1一1=_2211l+..’1,—_22”‘即an=争++寺++…+一(一一.21一所以=一=.2练习:已知数列{%}满足n.=1,+.=n+2n(孔∈N).求血,结合,对学生的综合能力的运用是一个很大的考验,只有熟练掌握了三角的基本公式和基本方法技巧,才能运用自如,完整解答问题.三,有益的启示《考试说明》明确提出:要在”突出数学基础知识,基本技能,基本思想方法的考查”的同时,”重视数学基本能力和综合能力的考查”,”注重数学应用意识和创新意识的考查”,由此可见,坚持和加强在知识的交汇点处命题势在必行.在知识的交汇处命题,一方面数学学科知识之间的纵横交融,渗透综合的鲜明特点,将正,余弦定理与向量,解析几何,立体几何,数列,不等式,数列,方程等重要知识有效交汇于一体;另一方面,可有效考查学生的各类方法技能和重要数学思想的合理运用,把对学生的数学思维能力和综合应用能力的考查融合在对学生双基考二,+l=_厂(n)?型累积法:=—旦L?上…??塑?c—l(一2nl.,所以=-厂(n一1(n一2(n一3)一1)01.例2求数列.t=_『1,%=_}.%一(n≥2)的通项公式.解:当n≥2时,=堕?盟?a4…??L.al0l啦%一1【即%=面可×}:一4,l2—1’当n=l,=}=所以r(n∈N+)?查之中,因此我们必须高度重视,积极应对.数学知识交汇题,一般具有背景清晰且内涵丰富,新颖脱俗且思路灵活的特点,这就需要我们在熟练掌握数学基础知识和基本技能的基础上,深刻理解题意, 洞察内在联系,准确选择方法,要依据题设条件,合理进行变换,灵活进行转化,严谨完善解题.正弦定理,余弦定理在高考中,一般不单设试题,而是融于其他知识当中去考查,学生学习中应重视四大数学思想方法的培养.在运用定理时,要注重与其他知识的交汇,多角度联想,观察和分析问题,教师要教给学生学习的方法, 让学生学会学习,真正做到与其他知识融会贯通,切实提高学生分析问题,解决问题的能力,,促进其思维能力的发展和提高.练习:已知数列{吼}满足土上_=n (11,∈N+),ot=l,求n,1.三,%+I--,pa~+叮型方法:1)+小t?),.’,再根据等比数列的相关知识求(2)+.~%=p(%一an一)再用累加法求.(争一,先用累加法求争,再求?例3在数列{}中,a.=1,当n≥2时,有%=3一1+2,求.解法1:设+A=3(%l+A),即有=3~1+2A,对比=3l+2,得A=1.于是%+I=3(1+1),数列{+}是以a.+l=2为首项,以3为公比的等比数列,所以有=2?3一1.解法2:由已知递推式,得%+l=3%+2,%=3a.一l+2(n≥2).上述两式相减,得%+l~:3(%一%一1),因此,数列{%+.一nJl}是以o.2一a=4. 为首项,以3为公比的等比数列.所以+l一=4?3’,即3一%=4?3,所以%=2?3’1.练习:已知{}的首项n.=n(a为常数),;2a.一1(n∈N+,n≥2),求‰四,%+l=p%+/(n)型例4设数列{}满足,a=1,=一一J+2n一1(n≥2),求通项公式%.解:设6=+An,+曰,则%=b一An—B,%一l=6一l—A(一1)一B,所以b一An—B=an=1[6-I--A(n一1)一B]+2n一1,即b=1b—j+(A+2)n+(}A+一-).设所以b=16且b=%一4n+6.厶由于il6}是以3为首项,以为公比的等比数列,所以有b=3丁._由此得:一;:十4n.6.【说明】通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列). 五,+f:p%+q型例5已知b≠O,b≠士1,伪=,=了’+-+(n≥2),写出用/1,和b表示%的通项公式,解:将已知递推式两边乘以(1+6)”,得(1+6)=6(1+6)’an+l+,又设‰=(1+6),于是,原递推式化为n=bxT,仿类型三,可解得%=b—b=‘故%:.【说明】对于递推式+.=p+g,可两边除以q’,得争+上争’争,引入辅助数列6争,得n+争6n+,然后可归结为类型三.g六,+2p%+j+口型方法:待定系数法,设%+.一衄(一一%),构造等比数列.例6已知数列{}中,=1啦=2,+=++,求%.解:在%+2=%+l+两边减去+l,得%+2一+I:一一(+l一).所以{%+一%{是以02一n.=l为首项,以一为公比的等比数列.所以%+一=(一})..令E式=1,2,3,:一.(一1),再把这(n一1)个等式累加,得%一o=1 (一})+(_丁1)+?+(一})一=囊[1(一】.以;1哼((一}-11..t:,线性分式型..例7.(倒数法)已知数列{}中,a.: },+J=打,求{}的通项公式-解:j一::+2,所以{}是以为-NN,公差为2的等差数列,即l_:丁5+2(一1):,jj所以丁?练习:已知数列{}中,a.=1,=精,求{%}的通项公式?解.=}:击,所以f专}是以1为首项,公差为2的等差数列.所以=l+2(一1)_2,卜l,即Sn?所以=一一丁一1一=一fl(,n=1),删{2n1一2n3(.1一一…等差,等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试学生灵活运用知识的能力,这个”灵活”往往集中在”转化”的水平上.转化的目的是化陌生为熟悉,当然首先是等差,等比数列,根据不同的递推公式,采用相应的变[2011年第2期]基础教育论坛●_’r4:=A得解Il,l0一扛一2++A一2A一2。
三项递推关系求通项

三项递推关系求通项要求一个递推关系的通项,需要知道递推关系的初始条件和递推公式。
以下是三种常见的递推关系的通项求解方法:1. 线性递推关系:假设线性递推关系为 a_n = p*a_(n-1) + q*a_(n-2),其中p和q为常数,a_n为第n项的值。
我们需要知道的初始条件为 a_0和 a_1。
假设通项形如a_n = x^n,其中x为常数。
将其代入递推关系,得到:x^n = p*x^(n-1) + q*x^(n-2)整理,得到特征方程:x^2 - p*x - q = 0解特征方程,得到x1和x2,这两个根就是递推关系的通项的形式。
2. 非线性递推关系:假设递推关系为 a_n = f(a_(n-1), a_(n-2)),其中f为一个函数。
我们需要知道的初始条件为 a_0 和 a_1。
通常情况下,求非线性递推关系的通项比较困难,没有统一的解法。
需要根据具体的递推关系和函数f的性质来进行分析和求解。
3. 递归递推关系:递归递推关系是一种常见的递推关系形式,常用于定义数列的递推关系。
比如斐波那契数列的递推关系为:F_n = F_(n-1) + F_(n-2),初始条件为 F_0 = 0 和 F_1 = 1。
可以通过数学归纳法证明,斐波那契数列的通项为F_n = (φ^n - (-φ)^(-n)) / √5,其中φ=(1+√5)/2为黄金分割比。
总结来说,要求一个递推关系的通项,需要根据具体的递推关系形式进行分析和解决。
对于线性递推关系,可以通过特征方程解得通项表达式;对于非线性递推关系,需要具体问题具体分析;对于递归递推关系,可以通过数学归纳法证明通项的形式。
由递推关系求数列通项定律的几种方法

).
2 递推相减(或相除)
求数列an的通项公式.
1.已知数列an中,a1 1,an1 an ( 2 n N *),求数列an的通项公式
2.已知数列an中, a1
1, an1
an (n 1 2an
N
*),求an .
3.已知数列an中,a1 1,an1 2an 1,求:an
4.已知数列an 中, a1
+ an an1 n 1
得 n2 n 1
(n 2)
2
1 2 a1
an a1 1 2 3 (n 1)
an
n(n 1) 2
1 2
n2
n 2
1
(当n 1时也适合)
an
n(n 1) 2
1 2
n2
n 1 2
(n N*)
5 .形如an1 f(n) an 迭乘法
已知数列an 中,a1
解:a2 2
1,an1 an
n
n
1
,
求:an
a1 1
a3 3
×
an an1
a2 2 a4 4 a3 3
n
(n n 1
2)
an 2 3 4 n 1 n a1 1 2 3 n 2 n 1
an n (当n 1时也适合)
an n (n N*)
6 归纳法
已知数列an 中,a1
2,an1
2
1(n an
令2 3n1中n 1得2 3n1 2 a1
1
an
2
3n1
(n 1) (n 2)
2.数 列an 的 前 项 和 为Sn, 且Sn
1
2 3
an (n
N * ),求an .
由递推公式求通项的9种方法经典总结

由递推公式求通项的9种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1).[例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t=b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1qn +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n ,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用叠加法(逐差相加法)求解.[例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n .于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…, b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32, 所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧2A =2,2B -3A =-1,解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2n , 即lg a n =lg a 1-2n ,所以a n =a 1-2n .7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n,∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n 3n +2. 8.)(1n f a a n n =++型 由原递推关系改写成),()1(2n f n f a a n n -+=-+然后再按奇偶分类讨论即可例8.已知数列{}n a 中,,11=a .21n a a n n =++求n a 解析:.21n a a n n =++2212+=+++n a a n n ,故22=-+n n a a 即数列{}n a 是奇数项和偶数项都是公差为2的等差数列,⎩⎨⎧∈≥-=∴*,1,1,N n n n n n n a n 且,为偶数为奇数 9.)(1n f a a n n =⋅+型将原递推关系改写成)1(12+=+⋅+n f a a n n ,两式作商可得,)()1(2n f n f a a n n +=+然后分奇数、偶数讨论即可 例9.已知数列{}n a 中,,2,311n n n a a a =⋅=+求{}n a 解析:⎪⎩⎪⎨⎧∈≥⋅⋅=+-N n n n n a n n n ,1,231,23221,为偶数为奇数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 由递推关系求数列的通项公式一、目标要求通过具体的例题,掌握由递推关系求数列通项的常用方法:二、知识梳理求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。
三、典例精析1、公式法:利用熟知的公式求通项公式的方法称为公式法。
常用的公式有⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 及等差数列和等比数列的通项公式。
例1 已知数列{n a }中12a =,2+2n s n =,求数列{n a }的通项公式评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。
2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。
它是求型如()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。
例2 已知数列{n a }中112a =,121++32n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式321121n n n a a a a a a a a -=⋅⋅⋅⋅⋅⋅⋅⋅()0n a ≠求通项公式的方法叫累乘法。
它是求型如()1n n a g n a +=的递推数列的方法(){}()g n n 数列可求前项积例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化()1nn a g n a -=,且式子右边累乘时可求积,而左边中间项可消。
4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法称为转化法。
常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成11n d a q ++-=1n d q a q ⎛⎫+ ⎪-⎝⎭,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列(2)倒数变换——如将一阶分式递推公式1n n n ca a a d +=+(c,d 为非零常数)取倒数得1111n n d a c a c+=⋅+ 例5 已知数列{n a }中,11a =,121nn n a a a +=+,求数列{n a }的通项公式点评: 此类问题关键是取倒数使其转化为一阶线性递推数列然后可用凑配、消项变换。
⑶对数变换——如将一阶分式递推公式1pn n a ca +=()0,0,0,1n a c p p >>>≠取对数可得 1lg lg lg n n a p a c +=+例6 已知数列{n a }中,110a =,0n a >,且2110n n a a +=,求数列{n a }的通项公式点评:此类问题关键是取对数使其转化为关于n a 的对数的一阶线性递推数列即可用凑配、消项变换⑷换元变换——如将一阶分式递推公式1nn n a qa d +=+(q,d 为非零常数,q ≠1,d ≠1)变换成111n n n n a a q d d d d ++=⋅+,令nn na b d=,则转化为一阶线性递推公式 例7在数列{n a }中,11a =,13+2nn n a a +=()*n N ∈,求数列{n a }的通项公式评注:此类问题关键是通过换元将其转化为一阶线性递推公式5、待定系数法 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+q st pt s ,再应用前面转化法(4)类型的方法求解。
例8 . 已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
7、叠代法例9 已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
8、归纳法:由数列前几项用不完全归纳法猜测出数列的通项公式,再用数学归纳法证明其正确性,这种方法叫归纳法。
例10 数列{n a }满足2n n s n a =-()*n N ∈ ,求数列{n a }的通项公式四、实战演练 1、[2012·辽宁卷] 已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________. 2、 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .3、设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁4、已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
5、设正数列0a ,1a ,n a …,n a ,…满足2-n n a a 21---n n a a =12-n a )2(≥n 且110==a a ,求}{n a 的通项公式.五、能力提升(逆推法)已知数列{}n a 的前n 项和n S 与n a 满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法由递推关系求数列的通项公式答案例1解: 当2n ≥由1n n n a s s -=-=()22+2-1+2n n ⎡⎤-⎣⎦=21n -当1n =时113a s ==不满足 故3,121,2n n a n n =⎧=⎨-≥⎩例2解:由121++32n n a a n n +=+可知121113212n na a n n n n +-==-++++ ()()1211+......+n n n a a a a a a -=+--=12+111111......23341n n ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭=1n n +()2n ≥ 当1n =时也成立。
故有n a =1nn + 例3 解:当n=1时 由1111a s a ==-可得112a = 由11n n n a s s ++=-=()1111n n n a na +-+--可得12n n a na n +=+ ∴321121n n n a a a a a a a a -=⋅⋅⋅⋅⋅⋅⋅⋅=12123213451n n n n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+=()11n n + 当n=1时也成立。
故有n a =()11n n +例4解法一()凑配变换:由121n n a a -=+可得()1121n n a a -+=+,又112a +=,故数列{}1n a +是首项为2,公比为2的等比数列,1122n n a -∴+=⋅,即21nn a =-解法二(消项变换)121n n a a -=+⋅⋅⋅⋅⋅⋅Q ① ∴ 121n n a a +=+⋅⋅⋅⋅⋅⋅②②-①得()112n n n n a a a a +--=-()2n ≥,故数列{}1n n a a +-是首项为212a a -=公比为2的等比数列即12n n n a a +-=,再用累加法得21nn a =-例5 解:由121n n n a a a +=+可得1112n n a a +=+即1112n na a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项2为公差的等差数列。
∴1n a =1+2(n-1),即121n a n =-例6 解:由0n a >,且2110n n a a +=可得1lg 12lg n n a a +=+,即1lg 12lg 1n n a a ++=+∴数列{}lg 1n a +是以1lg 12a +=为首项以2为公比的等比数列∴lg 1n a +=2n 即 2110nn a -=例7解:由13+2nn n a a +=可得11312222n n n n a a ++=⋅+ 即1131(1)222n nn n a a +++=+ 令12n n na b =+ ∴132n n b b += ∴数列{}n b 是以32为首项以32为公比的等比数列即32nn b ⎛⎫= ⎪⎝⎭∴12n n na b =+=32n⎛⎫ ⎪⎝⎭即32n nn a =- 例8解:由n n n a a a 313212+=++可转化为)(112n n n n sa a t sa a -=-+++ 即n n n sta a t s a -+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s 这里不妨选用⎪⎩⎪⎨⎧-==311t s (当然也可选用⎪⎩⎪⎨⎧=-=131t s ,大家可以试一试),则)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a ,公比为31-的等比数列,所以11)31(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即2101)31()31()31(--+⋅⋅⋅⋅⋅⋅+-+-=-n n a a 311)31(11+--=-n 又11=a Θ,所以1)31(4347---=n n a 。
例9 解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- ,)1(22221----⨯+=n n n a a ……,.2212-=a a经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 方法二、1122(1),n n n a a --∴=+⨯-111122222()(1)(1)(1)3(1)3n n n n n n n n a a a a ----⇒=-⨯-⇒+=-+---- 构造数列2(1)3n na ⎧⎫+⎨⎬-⎩⎭公比为-2首项为13-的等比数列(以下略) 例10 解:易求1231,2a a ==,34715,48a a ==,由此可猜想1212n n n a --=下面用数学归纳法证明:①当1n =时,左边=11a =,右边=111212--=1,猜想成立;②假设n=k 时命题成立,即1212k k k a --=,那么由已知2k k s k a =- ①112(1)k k s k a ++=+- ② 由②-①可得112k k k a a a ++=-+∴112kk a a +=+=2112k k-+=()1111212122k k k k +++---=,即当1n k =+时命题也成立。