《平面直角坐标系》水平测试(2)
新初中数学函数之平面直角坐标系基础测试题含解析(2)

新初中数学函数之平面直角坐标系基础测试题含解析(2)一、选择题1.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.2.下列说法正确的是( )A .相等的角是对顶角B .在同一平面内,不平行的两条直线一定互相垂直C .点P(2,﹣3)在第四象限D .一个数的算术平方根一定是正数【答案】C【解析】【分析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A 、相等的角是对顶角,错误;B、在同一平面内,不平行的两条直线一定相交,故此选项错误;C、点P(2,﹣3)在第四象限,正确;D、一个数的算术平方根一定是正数或零,故此选项错误.故选:C.此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.4.若点M的坐标为2-a b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M的横、纵坐标的符号;然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】2a 有意义,则-a2≥0,∴a=0.∵|b|≥0,∴|b|+1>0,∴点M在y轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.6.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.7.如图,小手盖住的点的坐标可能为( )A.(-1,1) B.(-1,-1) C.(1,1) D.(1,-1)【答案】D【解析】【详解】解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D符合此特征,故选:D8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A .O 1B .O 2C .O 3D .O 4【答案】A【解析】 试题分析:因为A 点坐标为(-4,2),所以,原点在点A 的右边,也在点A 的下边2个单位处,从点B 来看,B (2,-4),所以,原点在点B 的左边,且在点B 的上边4个单位处.如下图,O 1符合.考点:平面直角坐标系.9.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.10.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒2个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,1)C .(2019,﹣1)D .(2020,0)【答案】C【解析】分析:计算点P 走一个半圆的时间,确定第2019秒点P 的位置.详解:点运动一个半圆用时为2ππ=2秒∵2019=1009×2+1∴2019秒时,P 在第1010个的半圆的中点处∴点P 坐标为(2019,-1)故选C .点睛:本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.12.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(3,4)B .(-3,4)C .(-4,3)D .(4,3)【答案】A【解析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【详解】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选A.【点睛】本题考查了点的位置判断方法及点的坐标几何意义.13.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′的坐标是( )A.(2,3) B.(6,1) C.(2,1) D.(3,3)【答案】A【解析】【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.14.mmn-有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.15.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.16.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (3,2)]等于A .(3,2)B .(3.﹣2)C .(﹣3,2)D .(﹣3,﹣2)【答案】C【解析】【分析】根据f 、g 的规定进行计算即可得解.【详解】g [f (3,2)]=g (3,﹣2)=(﹣3,2).故选C .【点睛】本题考查了点的坐标,读懂题目信息,理解f 、g 的运算方法是解题的关键.17.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.18.在平面直角坐标系中,点(一6,5)位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B .【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.19.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.20.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P的坐标为(0,﹣4)即可判断点P(0,﹣4)在y轴上.【详解】在平面直角坐标系中,点P(0,﹣4)在y轴上,故选:B.【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)

人教版七年级下册第7章平面直角坐标系水平测试卷第10章数据的收集、整理与描述期末复习测试卷一、选择题(每小题3分,共30分)1.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()3.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“声临其境”的满意情况D.调查某中学九年级某班学生数学暑假作业检测成绩4.下列调查中,调查方式选择不合理的是A.调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A.2000名学生的体重是总体B.2000名学生是总体C.每个学生是个体D.150名学生是所抽取的一个样本6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:和最合适...的是()A.20双B.30双C.50双D.80双7.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。
从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只8.一个容量为40的样本最大值为35,最小值为12,取组距为4 ,则可以分为()A.4组B.5组C.6组D.7组9.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人10.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日二、选择题(每小题3分,共30分)11.一组数据分为5组,第一组的频率为0.15,第二组的频率为0.21,第三组的频率为0.29,第四组的频率为0.15,则第五组的频率是______.12.小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有____人.13.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是。
最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( )A .()2,0-B .()2,2-C .()2,0D .()5,12.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( ) A .3 B .1C .1或3D .2或33.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( ) A .(-2,3)B .(2,-3)C .(3,2)D .不能确定4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( ) A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-8.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( ) A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-10.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 11.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题13.下列四个命题中: ①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等; ③如果两个实数的平方相等,那么这两个实数也相等; ④当0m ≠时,点()2,P m m -在第四象限内. 其中真命题有________(填序号).14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.16.写一个第三象限的点坐标,这个点坐标是_______________.17.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.18.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.19.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.20.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.三、解答题21.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.22.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=.(1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积. (3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.23.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).24.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.25.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.26.已知()4,0A ,点B 在x 轴上,且5AB =. (1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABDS=,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 的平移规律,求出点'C 的坐标即可. 【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,,故选:C.【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C【分析】根据点A到x轴的距离与到y轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.3.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A解析:A【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2020的坐标.【详解】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.5.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D.【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.6.C解析:C【分析】确定出n+2为负数时,1-n一定是正数,再根据各象限内点的坐标特征解答.【详解】解:当n+2<0时,n<﹣2,所以,1﹣n>0,即点A的横坐标是负数时,纵坐标一定是正数,所以,点A不可能在第三象限,有可能在第二象限;当n+2>0时,n>﹣2,所以,1﹣n有可能大于0也有可能小于0,即点A的横坐标是正数时,纵坐标是正数或负数,所以,点A可能在第一象限,也可能在第四象限;综上所述:点A不可能在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.A解析:A 【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可. 【详解】解:∵230,40x y -=-= ∴x=±3,y=±2∵点(,)M x y 在第二象限 ∴x <0,y >0 ∴x=-3,y=2∴M 点坐标为(-3.2). 故答案为A . 【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键.8.C解析:C 【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B (-4,-1)的对应点D 的坐标. 【详解】∵线段CD 是由线段AB 平移得到的, 而点A (-1,4)的对应点为C (4,7),∴由A 平移到C 点的横坐标增加5,纵坐标增加3,则点B (-4,-1)的对应点D 的坐标为(-4+5,-1+3),即(1,2). 故选:C . 【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.A解析:A 【分析】根据轴对称的性质分别求出P 1, P 2,P 3,P4,P 5,P 6的坐标,找出规律即可得出结论. 【详解】解:∵P (-3,1),∴点P 关于直线y=x 的对称点P 1(1,-3),P 1关于x 轴的对称点P 2(1,3), P 2关于y 轴的对称点P 3(-1,3), P 3关于直线y=x 的对称点P 4(3,-1), P 4关于x 轴的对称点P 5(3,1), P 5关于y 轴的对称点P 6(-3,1), ∴6个点后循环一次,∵当n=2019时, 2019÷6=336…3, ∴2019P 的坐标与P 3(-1,3)的坐标相同, 故选:A . 【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.10.B解析:B 【分析】由题意易得121223341....2n n OA OA A A A A A A A A +=======,则根据平移方式可得每三个连续的点构成一个等边三角形的顶点,故可得2019A 所在位置,然后进行求解即可. 【详解】解:由题意及图像得:121223341....2n n OA OA A A A A A A A A +=======, 将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……,∴每三个连续的点构成一个等边三角形的顶点, ∴20193673÷=, ∴2019A 在x 轴上,()()()3694,0,8,0,12,0....A A A∴2019A 的横坐标为:6734=2692⨯, ∴()20192692,0A ;故选B . 【点睛】本题主要考查点的坐标规律,关键是根据题意得到点的坐标规律,然后进行求解即可.11.B解析:B 【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断. 【详解】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限. 故选:B .【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.12.B解析:B【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B.二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.15.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论. 16.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.17.(ab )【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC 进行循环往复的轴对称变换∴对应图形4次循解析:(a ,b ).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同,故其坐标为:(a ,b ).故答案为:(a ,b ).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A 点变化规律是解题关键. 18.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.19.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.20.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.三、解答题21.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.22.(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.23.(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标.【详解】(1)由图可知能通过平移使ABC 与222A B C △重合,∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称,∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b∴点A (m ,1+b ),点B (m -a ,1)又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1)∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 24.(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.25.儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【分析】直接利用学校的坐标是()2,5,得出原点位置进而得出答案.【详解】如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D -- 【分析】(1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标;(2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-, ∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。
七年级数学平面直角坐标系综合测试题2

2011~2012学年度七年级第二学期数学单元测试卷(二)(第二章平面直角坐标系)班级:___________ 座号:_________ 姓名:__________ 分数:____________一、选择题:(每小题3分,总共30分)1、下列说法正确的是()A、平面内,两条互相垂直的直线构成数轴。
B、坐标原点不属于任何象限。
C、X轴上的点必是纵坐标为0,横坐标不为0。
D、坐标为(3, 4)与(4,3)表示同一个点。
2、下列说法正确的是()A、点p(0,5)在X轴上B、点M(-a,a)在第二象限C、点A(-3,4)与点B(3,-4)在X轴的同一侧D、坐标平面内的点与有序数对是一一对应3、在平面直角坐标系中,点(-1,m2+1)一定在()A、第一象限B、第二象限C、第三象限D、第四象限4、小虫在小方格上沿着小方格的边爬行,它的起始位置是A(2,2)先爬到B (2,4),再爬到C(5,4),最后爬到D(5,6),则小虫共爬了()A、7个单位长度B、5个单位长度C、4个单位长度D、3个单位长度5、若点A(-X,-Y)在第二象限,则点B(X,Y)在()A、第一象限B、第二象限C、第三象限D、第四象限6、点P(m+3,m+1)在x轴上,则点p坐标为()A(0,-4) B(4,0) C(0,-2) D(2,0)7、下列说法正确地有()(1)点(1,-a)一定在第四象限(2)坐标上的点不属于任一象限(3)横坐标为0的点在Y轴上纵坐标为0的点在X轴上。
(4)直角坐标系中,在Y轴上且到原点的距离为5的点的坐标是(0,5)。
A 1个B 2个C 3个D 4个8、点p(a,b),ab>0,a+b<0,则点p在()A、第一象限B、第二象限C、第三象限D、第四象限9、点M在第四象限,它到X轴、Y轴的距离分别为8和5,则点M的坐标为()A(8,5) B(5,-8) C(-5,8) D(-8,5)10、过点A(-3,2)和点B(-3,5)作直线则直线AB()A 平行于Y轴B 平行于X轴C 与Y轴相交D 与y轴垂直二、填空题(每小题5分,总共30分)11、如果将一张“5排3号”的电影票记为(5,3),李珊珊同学买了一张标号为(15,2)的电影票,那么她应该坐在排号。
人教新版初中数学七年级下学期《第7章 平面直角坐标系 》2020年单元测试卷(二)

人教新版初中数学七年级下学期《第7章平面直角坐标系》2020年单元测试卷(二)一.选择题(共12小题)1.下列各点中位于第二象限的点是()A.(1,5)B.(1,﹣5)C.(﹣1,5)D.(﹣1,﹣5)2.已知点P(a,b)在第四象限,且点P到x轴的距离为3,到y轴的距离为6,则点P的坐标是()A.(3,﹣6)B.(6,﹣3)C.(﹣3,6)D.(﹣3,3)或(﹣6,6)3.如图,小手盖住的点的坐标可能是()A.(4,﹣1)B.(﹣1,﹣4)C.(2,3)D.(﹣2,2)4.点Q(m,2m﹣2)在x轴上,则Q点的坐标为()A.(0,1)B.(﹣2,0)C.(1,0)D.(0,﹣2)5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A 的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)6.在平面直角坐标系中,点P(1,2)到原点的距离是()A.1B.C.D.7.三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③8.如图,若“马”所在的位置的坐标为(﹣2,﹣1),“象”所在位置的坐标为(﹣1,1),则“兵”所在位置的坐标为()A.(﹣2,1)B.(﹣2,2)C.(1,﹣2)D.(2,﹣2)9.在平面直角坐标系xOy中,线段AB的两个点坐标分别为A(﹣1,﹣1),B(1,2).平移线段AB,得到线段A′B′.已知点A′的坐标为(3,1),则点B′的坐标为()A.(4,4)B.(5,4)C.(6,4)D.(5,3)10.在平面直角坐标系中,有C(1,2)、D(1,﹣1)两点,则点C可看作是由点D()A.向上平移3个单位长度得到B.向下平移3个单位长度得到C.向左平移1个单位长度得到D.向右平移1个单位长度得到11.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)12.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(﹣8,0)B.(8,﹣8)C.(﹣8,8)D.(0,16)二.填空题(共6小题)13.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示.14.平面直坐标系内,点P(﹣2,﹣3)到x轴的距离是.15.直角坐标系中,点P(x,y)在第二象限,且P到x轴,y轴距离分别为3,7,则P点坐标为.16.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为.17.已知AB∥y轴,A(1,﹣2),AB=8,则B点的坐标为.18.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,其中[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0按此方案,第7棵树种植点的坐标为,第2015棵树种植点的坐标为.三.解答题(共6小题)19.在平面直角坐标系中,已知点P(m﹣1,2m+4),试分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P横坐标比纵坐标大3;(3)点P在过A(﹣5,2)点,且与y轴平行的直线上.20.如图所示的是某市市政府周边的一些建筑,以市政府为坐标原点,建立平面直角坐标系(每个小方格的边长为1).(1)请写出商会大厦和医院的坐标;(2)王老师在市政府办完事情后,沿(2,0)→(2,﹣1)→(2,﹣3)→(0,﹣3)→(0,﹣1)→(﹣2,﹣1)的路线逛了一下,然后到汽车站坐车回家,写出他路上经过的地方.21.如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0.b),且a,b满足|a ﹣2|+=0,延长BC交x轴于点E.(1)填空:点A(,),点B(,),∠DAE=;(2)求点C和点E的坐标;(3)设点P是x轴上的一动点(不与点A、E重合),且P A>AE,探究∠APC与∠PCB的数量关系?写出你的结论并证明.22.点P到y轴的距离与它到点A(﹣8,2)的距离都等于13,求点P的坐标.23.综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.24.如图,在直角坐标系中,三角形ABC的三个顶点在网格点上,其中,C点的坐标是(1,2).(1)将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度,得到三角形,则点A′的坐标为(,),则点B′的坐标(,).(2)三角形ABC的面积是.人教新版初中数学七年级下学期《第7章平面直角坐标系》2020年单元测试卷(二)参考答案与试题解析一.选择题(共12小题)1.【解答】解:∵点在第二象限,∴点的横坐标是负数,纵坐标是正数,∴只有C符合要求.故选:C.2.【解答】解:点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是﹣3,∴点的坐标为(6,﹣3).故选:B.3.【解答】解:由图可知,小手盖住的点在第二象限,(4,﹣1),(﹣1,﹣4),(2,3),(﹣2,2)中只有(﹣2,2)在第二象限.故选:D.4.【解答】解:根据题意,可得:2m﹣2=0;解得m=1,所以Q的坐标为(1,0).故选:C.5.【解答】解:∵A(1,0)平移后得到点A′的坐标为(2,1),∴向右平移1个单位,向上平移了1个单位,∴B(3,2)的对应点坐标为(4,3),故选:B.6.【解答】解:点P(1,2)到原点的距离是=.故选:D.7.【解答】解:从图可知以下信息:上午送时间最短的是甲,①正确;下午送件最多的是乙,②不正确;一天中甲送了65件,乙送了75件,③正确;故选:B.8.【解答】解:∵“马”所在的位置的坐标为(﹣2,﹣1),“象”所在位置的坐标为(﹣1,1),∴右、上为正方形,棋盘中每格代表一个单位长度,∴兵”所在位置的坐标为(1,﹣2).故选:C.9.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴向右平移4个单位,向上平移2个单位,∴B(1,2)的对应点坐标为(1+4,2+2),即(5,4).故选:B.10.【解答】解:∵C(1,2)、D(1,﹣1),∴点C可看作是由点D向上平移3个单位长度得到,故选:A.11.【解答】解:点运动一个半圆用时为秒∵2019=1009×2+1∴2019秒时,P在第1010个的半圆的中点处∴点P坐标为(2019,﹣1)故选:C.12.【解答】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,﹣4),A5(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8);故选:C.二.填空题(共6小题)13.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故答案为:4排3号.14.【解答】解:点P(﹣2,﹣3)到x轴的距离是|﹣3|=3,故答案为3.15.【解答】解:∵点P(x,y)在第二象限,∴x<0,y>0,∵P到x轴,y轴距离分别为3,7,∴x=﹣7,y=3,∴P(﹣7,3),故答案为(﹣7,3).16.【解答】解:根据题意,得:2﹣a=2a+5或2﹣a+2a+5=0,解得:a=﹣1或a=﹣7,故答案为:﹣1或﹣7.17.【解答】解:∵AB∥y轴,A(1,﹣2),∴点B的横坐标为1,若点B在点A的上边,则点B的纵坐标为﹣2+8=6,若点B在点A的下边,则点B的纵坐标为﹣2﹣8=﹣10,所以,点B的坐标为:(1,﹣10)或(1,6).故答案为:(1,﹣10)或(1,6).18.【解答】解:∵当x1=1,y1=1时,P1=(1,1),∴x2=x1+1﹣6([]+[])=2,y2=y1+[]+[]=1,x3=x2+1﹣6([]+[])=3,y3=y2+[]+[]=1,x4=x3+1﹣6([]+[])=4,y4=y3+[]+[]=1,x5=x4+1﹣6([]+[])=5,y5=y4+[]+[]=1,x6=x5+1﹣6([]+[])=6,y6=y5+[]+[]=1,x7=x6+1﹣6([]+[])=1,y7=y6+[]+[]=2,∴第7棵树种植点的坐标为(1,2),由以上规律可知当1≤k≤6时,P1,P2,P3,P4,P5,P6的坐标分别为(1,1)、(2,1)、(3,1)、(4,1)、(5,1)、(6,1);当7≤k≤12时,P7,P8,P9,P10,P11,P12的坐标分别为(1,2)、(2,2)、(3,2)、(4,2)、(5,2)、(6,2);∵2015÷6=335…5,∴第2015棵树种植点的横坐标为5,纵坐标为335+1=336,则第2015棵树种植点的坐标为(5,336),故答案为:(1,2),(5,336).三.解答题(共6小题)19.【解答】解:(1)由P(m﹣1,2m+4)在x轴上,得2m+4=0.解得m=﹣2,∴P(﹣3,0);(2)由P(m﹣1,2m+4)的横坐标比纵坐标大3,得(m﹣1)﹣(2m+4)=3,解得m=﹣8,∴P(﹣9,﹣12);(3)由P在过A(﹣5,2),且与y轴平行的直线上,得m﹣1=﹣5.解得m=﹣4,∴P(﹣5,﹣4).20.【解答】解:(1)由图可得:商会大厦的坐标为(﹣1,2),医院的坐标为(3,1).(2)路上经过的地方为:大剧院,体育公园,购物广场.21.【解答】解:(1)∵a,b满足|a﹣2|+=0,∴a﹣2=0,b+5=0,∴a=2,b=﹣5,∴A(2,0),B(0,﹣5);∵tan∠DAE==1,∴∠DAE=45°,故答案为2,0,0,﹣5,45°;(2)∵AD∥BC,AD=BC,∴点B向右平移4个单位向上平移4个单位得到点C,∵B(0,﹣5),∴C(4,﹣1).∴直线BC的解析式为y=x﹣5,∴E(5,0).(3)①当点P在点A的左侧时,如图1,连接PC.∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;②当P在直线BC与x轴交点的右侧时,如图2,连接PC.∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.22.【解答】解:根据题意得|x|=13,x=±13(x+8)2+(y﹣2)2=132当x=13时,(13+8)2>132,不合题意;x=﹣13时,(﹣13+8)2+(y﹣2)2=132,解得y=14或y=﹣10∴P点坐标是(﹣13,14)或(﹣13,﹣10)答:P点坐标是(﹣13,14)或(﹣13,﹣10).23.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.故答案为:.(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,)、(2,)、(0,3)∴①HG过EF中点(1,)时,=1,=解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,)时,=2,=解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,=0,=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).24.【解答】解:(1)∵点A的坐标为(2,﹣1)、点B的坐标为(4,3),∴向左平移2个单位长度,再向上平移1个单位长度后点A′的坐标为(0,0)、点B′的坐标为(2,4),故答案为:0、0,2、4;(2)△ABC的面积为×(3+1)×4﹣×1×3﹣×1×3=5,故答案为:5.。
【数学】人教版七年级数学下册第7章《平面直角坐标系》培优试题(2)

人教版七年级数学下册第7章《平面直角坐标系》培优试题(2) 一.选择题(共10小题)1.如图所示,横坐标是正数,纵坐标是负数的点是( )A .A 点B .B 点C .C 点D .D 点2.若x 轴上的点P 到y 轴的距离为3,则点P 为( ) A .(3,0) B .(3,0)或(3,0)- C .(0,3)D .(0,3)或(0,3)-3.若0ab >,则(,)P a b 在( ) A .第一象限 B .第一或第三象限 C .第二或第四象限D .以上都不对 4.点(1,3)M m m ++在x 轴上,则M 点坐标为( ) A .(0,4)-B .(4,0)C .(2,0)-D .(0,2)-5.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保特不变,则所得图形在原图形基础上( ) A .向左平移了3个单位 B .向下平移了3个单位 C .向上平移了3个单位D .向右平移了3个单位6.如图,是象棋盘的一部分.若“帅”位于点(1,2)-上,“相”位于点(3,2)-上,则“炮”位于点( )上.A.(1,1)-D.(2,2)--C.(2,1)-B.(1,2)7.将以A(-2,7),B(-2,2)为端点的线段AB向右平移2个单位得线段A B,11以下点在线段A B上的是()11A.(0,3)B.(-2,1)C.(0,8)D.(-2,0)8.点(0,2)A在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限9.将点(3,2)B-A-先向右平移3个单位,再向下平移5个单位,得到A'、将点(3,6)先向下平移5个单位,再向右平移3个单位,得到B',则A'与B'相距() A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度10.已知点(,)A m n在第二象限,则点(||,)B m n-在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共8小题)11.已知2|2|(1)0-++=,则点(,)x yP x y在第个象限,坐标为.12.点(3,5)P--到x轴距离为,到y轴距离为.13.在平面直角坐标系中,将点(1,4)P-向右平移2个单位长度后,再向下平移3个单位长度,得到点P,则点1P的坐标为.114.李明的座位在第5 排第4 列,简记为(5,4),张扬的座位在第3 排第2 列,简记为(3,2),若周伟的座位在李明的前面相距 2 排,同时在他的右边相距2 列,则周伟的座位可简记为.15.如图,在三角形ABC中,(0,4)C,且三角形ABC面积为10,则B点A,(3,0)坐标为.16.点(21,3)-+在第一、三象限角平分线上,则x的值为,P点坐标P x x为.17.在平面直角坐标系中,点A的坐标为(1,3)-,线段//AB=,则点AB x轴,且4 B的坐标为.18.在平面直角坐标系中,若点(1,)M x人教版七年级下册数学第七章平面直角坐标系单元试题一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P(-3,-8)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图是象棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ( )A.(-1,1) B.(-1,2)C.(-2,1) D.(-2,2)3.已知x轴上的点P到y轴的距离为3,则点P的坐标为( )A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为( )A.(0,-2) B.(2,0) C.(0,2) D.(0,-4)5.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向6.平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比( )A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位C.形状不变,向上平移了3个单位D.三角形被纵向拉伸为原来的3倍7.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(2,3) B.(-2,-3)C.(-3,2) D.(3,-2)8.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0 B.y>0 C.y≤0D.y≥09.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.线段AB两端点坐标分别为A(-1,4),B(-4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1,B1的坐标分别为( )A.A1(-5,0),B1(-8,-3) B.A1(3,7), B1(0,5)C.A1(-5,4),B1(-8,1) D.A1(3,4), B1(0,1)二、填空题(共5小题,每小题4分,共20分)11.点P(a,b)在第四象限,则点Q(b,-a)在第象限.12.把点A(-4,6)先向左平移2个单位,再向下平移4个单位,此时的位置是.13.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.14.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度,MN中点的坐标为.15.观察图象,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).三、解答题(共5小题,每小题10分,共50分)16.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?17.在平面直角坐标系中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?18.如图,梯形A′B′C′D′可以由梯形ABCD经过怎样的平移得到?对应点的坐标有什么变化?19.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A 4点,再向正东方向走15米到达A 5点,按如此规律走下去,建立适当的坐标系,当机器人走到A 6点时,求A 6点的坐标.人教版七年级数学下册第8章《二元一次方程组》培优试题(2) 一.填空题(共8小题,每小题3分,共24分)1.已知二元一次方程2350x y --=的一组解为x ay b =⎧⎨=⎩,则643b a -+= .2.已知39x y -=,请用含x 的代数式表示y ,则y = .3.若实数x ,y 满足条件23x y +=,试写出一个x 和一个y 使它们满足这个条件,此时x = ;y = . 4.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay -=⎧⎨+=⎩的解,则a b -= . 5.甲、乙两人同时解关于x 、y 的方程组321,ax y x by -=⎧⎨+=⎩但是甲看错了a ,求得解为11x y =⎧⎨=-⎩,乙看错了b ,求得解为14x y =-⎧⎨=-⎩,则a b += . 6.若54413,27319,3218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则51x y z ---的立方根是 .7.若37a x y -与2a b x y +是同类项,则b = . 8.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,⋯,若21010b b a a+=⨯符合前面式子的规律,则a b += .二.选择题(共10小题,每小题3分,共30分)9.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =-D .2018m =-,4n =10.下列4组数值,哪个是二元一次方程235x y +=的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩11.下列方程组中不是二元一次方程组的是( ) A .23x y =⎧⎨=⎩B .12x y x y +=⎧⎨-=⎩C .51x y xy +=⎧⎨=⎩D .21y xx y =⎧⎨-=⎩12.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知222,44,x y a x y a +=⎧⎨-=-⎩且320x y -=,则a 的值为( )A .2B .0C .4-D .514.已知实数x ,y ,z 满足7422x y z x y z ++=⎧⎨+-=⎩,则代数式3()1x z -+的值是( )A .2-B .4-C .5-D .6-15.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .15 B .15-人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案) (2)

第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位2.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)3.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16)D.(16,44)4.在直角坐标系中,△ABC的顶点A(﹣1,5),B(3,2),C(0,1),将△ABC平移得到△A'B'C',点A、B、C分别对应A'、B'、C',若点A'(1,4),则点C′的坐标()A.(﹣2,0)B.(﹣2,2)C.(2,0)D.(5,1)5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是()A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)第5题图第6题图6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为() A.(a-2,b+3) B.(a-2,b-3)C.(a+2,b+3) D.(a+2,b-3)7.一个长方形的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下面哪个点不在长方形上()A.(4,-2) B.(-2,4)C.(4,2) D.(0,-2)8.点P(2-a,2a-1)到x轴的距离为3,则a的值为()A.2 B.-2C.2或-1 D.-19.过A(4,-2)和B(-2,-2)两点的直线一定()A.垂直于x轴B.与y轴相交但不平行于x轴C.平行于x轴D.与x轴,y轴平行10.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式a=b2-9+9-b2b+3+2.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则点P的坐标为()A.(-3,1) B.(-2,1)C.(-4,1) D.(-2.5,1)二、填空题(每小题3分,共24分)11.小李在教室里的座位位置记作(2,5),表示他坐在第二排第五列,那么小王坐在第四列第三排记作________.12.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为________.13.若第四象限内的点P(x,y)满足|x|=3,y2=4,则点P的坐标是________.14.如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C 在同一坐标系下的坐标________.第18题图15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a 的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD与x 轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q 从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P ,Q 两点出发112s 时,试求三角形PQC 的面积;(3)设两点运动的时间为t s ,用含t 的式子表示运动过程中三角形OPQ 的面积S (单位:cm 2).参考答案与解析1.D 2.D 3.B 4.D 5.C 6.A 7.B 8.C 9.C10.A 解析:∵a ,b 满足关系式a =b 2-9+9-b 2b +3+2,∴b 2-9=0,b +3≠0,∴b=3,a =2;∴点A (0,2),B (3,0),C (3,4),∴点B ,C 的横坐标都是3,∴BC ∥y 轴,∴BC =4-0=4,S 三角形ABC =12×4×3=6.∵OA =2,点P (m ,1)在第二象限,∴S 四边形ABOP =S 三角形AOP+S 三角形AOB =12×2(-m )+12×2×3=-m +3.∵四边形ABOP 的面积与三角形ABC 的面积相等,∴-m +3=6,解得m =-3,∴点P 的坐标为(-3,1).故选A.11.(3,4) 12.(1,3) 13.(3,-2) 14.(-1,7) 15.(1,1) 16.-1 17.±4 18.(2017,2) 19.解:(1)三角形A ′B ′C ′如图所示.(3分)(2)建立的平面直角坐标系如图所示.(5分)点B 的坐标为(1,2),点B ′的坐标为(3,5).(7分)20.解:(1)∵A (2,1),AB =4,AD =2,∴BC 到y 轴的距离为4+2,(1分)CD 到x 轴的距离2+1=3,(2分)∴点B 的坐标为(4+2,1),点C 的坐标为(4+2,3),点D 的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a =2a +7或1-a +2a +7=0,解得a =-2或-8,(4分)故6-5a =16或46,(6分)∴6-5a 的平方根为±4或±46.(8分)22.解:(1)过B 作BF ⊥x 轴于F ,过A 作AG ⊥x 轴于G ,如图所示.(2分)∴S 四边形ABCO =S三角形BCF +S梯形ABFG +S三角形AGO =⎣⎡⎦⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A (2,4),D (-1,1),B (1,2),E (-2,-1),C (4,1),F (1,-2).(3分)三角形DEF 是由三角形ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a -3=a +3,2b -3-3=4-b ,(7分)解得a =6,b =103,(9分)∴a -b =83.(10分)24.解:(1)三角形ABC 如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S 长方形DOEC =3×4=12,S 三角形BCD=12×2×3=3,S 三角形ACE=12×2×4=4,S 三角形AOB=12×2×1=1.(6分)∴S 三角形ABC=S长方形DOEC -S 三角形ACE-S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP=4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC=OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S三角形CPQ =12CP ·CD =12×32×4=3(cm 2).(6分)(3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S 三角形OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ =S 梯形OPME -S 三角形PMQ -S 三角形OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S三角形OPQ =S梯形OPME -S三角形PDM -S三角形DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《平面直角坐标系》水平测试(2)A 卷(基础知识部分,50分)一、精心选一选(每题2分,共10分)1.若已知P (x ,y )且0xy >,则点P 在 ( )A.第一象限B.第二象限C.第一、三象限D.第二、四象限2.有A 点和B 点,坐标分别是A(2,3)、B (3,2),则 ( )A.A 、B 为同一个点B.A 、B 为重合的点C. A 、B 为不重合的点D.无法确定3.点P (-3,4)到y 轴的距离是( )A 、3B 、4C 、-3D 、54.点P 位于y 轴左方,距y 轴3个单位长,位于x 轴上方,距x 轴4个单位长,点P 的坐标是( )A 、(3,-4)B 、(-3,4)C 、(4,-3)D 、(-4,3)5. 在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为( )A .x >0B .x <2C .0<x <2D .x >2二、细心填一填(每题3分,共15分)6.七年级⑵班座位有七排8列,张艳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在__________;7.如果P (,a b ab +)在第二象限,那么点Q (,a b -)在第______象限.8.已知点A (-3,a )是点B (3,-4)关于原点的对称点,那么a 的值是______9.如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是________.10.如图,将边长为1的正方形OAPB 沿z 轴正方向连续翻转2 006次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2006的位置,则P 2006的横坐标x 2006=__________.三、耐心解一解(第11~13题各6分,第14题7分,共25分)11.如图是聊城市市区几个旅游景点的示意图(图中每个小正方兴的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示下列景点的位置:光岳楼________;金凤广场__________;动物园___________. •光岳楼 湖心岛 • • 山陕会馆 • • 动物园12.若把1P (-3,-1)向上平移2个单位,再向右平移6个单位得到点2P ,求点2P 的坐标,并说明点1P 和点2P 有什么关系?13.如图,某校的部分平面示意图,借助刻度尺和量角器看图填空:⑴图书馆位于桃李亭的方位角是__________,到桃李亭的图上距离约为_______cm ; ⑵如果用(2,4)表示图上桃李亭的位置,那么综合楼的位置表示为__________;(6,8)表示为__________,(7,1)又表示校园内某个地方,它是__________.14.已知平面直角坐标系中有一点M(m-1,2m+3),m 为何值时,(1)点M 到x 轴的距离为1;(2)点M 到y 轴的距离为2.B 卷(激活训练部分,50分)一、精心选一选(每题2分,共10分)15.以如图所示的方格纸中,每个小正方形的边长为1,如果以MN 所在的直线为Y 轴,以小正方形的边长为单位长度建立平面直角坐标系,使A 点与B 点关于原点对称,则这时C 点的坐标可能是( )A 、(1,3)B 、(2,-1)C 、(2,1)D 、(3,1)16.如果点Q (2,1m m +-)在直角坐标系的x 轴上,则Q 点的坐标为( )A.(0,3)B.(1,0)C.(0,1)D.(3,0)17.在平面直角坐标系中,依次描出下列各点,并将各组内的点依次连接起来:⑴(2,1),(2,0),(3,0),(3,4);⑵(3,6),(0,4),(6,4),(3,6).你发现所得的图形是( )A 、两个三角形B 、房子C 、雨伞D 、电灯18.已知△ABC 的三个顶点的坐标为A (-1,4),B (2,-2),C (5,1),将△ABC 的各点的横坐标都加3,纵坐标不变,则( )504812A. △ABC 的形状和大小不变,只是向左方平移了3个单位B. △ABC 的形状和大小不变,只是向右方平移了3个单位C. △ABC 的形状不变,但比原来扩大了D .△ABC 的形状和大小都发生了变化19.在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴的正方向的夹角为α,则用[ρ,α]表示点P 的极坐标.显然,点P 的坐标和它的极坐标存在一一对应关系.如点P 的坐标(1,1)的极坐标为P[2,45°],则极坐标Q[135°]的坐标为( )A 、(-4,4)B 、(4, -4)C 、(-4, -4)D 、(4,4)二、细心填一填(每题3分,共15分)20.将点P (-3,y )向下平移3个单位,向右平移2个单位后得到点Q (x ,-1),则xy =________21.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.22.已知点P (x-1,x+3),那么点P 不可能在第___________象限.23.人们给电脑屏幕上的点也建立了坐标系,如果电脑屏幕左下方的点是(0,0)右上方的点的坐标是(720,600),要在屏幕的中央画一个点,此点的坐标是___________.24.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点. 观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_____个.三、耐心解一解(第25~27题各6分,第28题7分,共25分)25,某城市A 地和B 地之间经常有车辆来往,H 地和D 地间也经常有车辆来往.四地的坐标为:A(-3,2),D(1,1),H(-5,-3),B(-1,-4),拟建一座加油站,那么加油站建立在哪里对大家都方便,是给出具体的位置.-3234-2o-11234-3-4x y-2-1-4-51526.已知点P(4-2a ,3a-1)在第二象限,求点Q(a+1,4-5a)所在的象限27.如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD 的面积.1234567-1o123456-1-2x yC D A B28.已知点A (2,3),B (1,2),且S △ABC =1,试求出满足条件的三个C 点的坐标.-3234-2o-11234-3-4x y-2-1-4-515 C 组(能力提升部分,20分)29.如图所示,△A′B′C′是△ABC 经过平移得到的,A 、C 、B′的坐标分别为(-4,-1)、(-1,-3)、(1,0),△ABC 中任意一点P(x ,y)平移后的对应点为P′(x+6,y+4),求A′,B ,C′的坐标.30.在平面直角坐标系中(1)描出下列各点 A(一3,4) B(-6,-2) C(6,-2)(2)若以A 、B 、C 为顶点,作一个平行四边形,试写出第四个顶点的位置坐标,你的答案惟一吗?(3)求出这个平行四边形的面积.参考答案:A 卷一、精心选一选(每题2分,共10分)1.C 2.C 3.A 4.B 5.C二、细心填一填(每题3分,共15分)6.5排8列 7.二 8.4 9.(-3,-7) 10.(1338,0)三、耐心解一解(第11~13题各6分,第14题7分,共25分)11.答案不惟一,例如:以光岳楼为坐标原点建立坐标系,那么光岳楼的坐标为(0,0); 金凤广场的坐标为(-2,-2.5);动物园的坐标为(5,3).12.(-3,-1)向上平移2个单位后的坐标为(-3,1),再向左移动6个单位的坐标为(3,1),所以1P 和点2P 关于原点对称13.(1)北偏东36°,略,(2)(2,7)、图书馆、芳草亭14.(1)由题意2m+3=1或2m+3=-1,解得:m=-1或-2(2)由题意m-1=2或m-1=-2,解得:m=3或-1B 卷(激活训练部分,50分)一、精心选一选(每题2分,共10分)15.B 16.D 17.C 18.A 19.A二、细心填一填(每题3分,共15分)20.-2 21.(5,4) 22.四 23.(360,300) 24.40三、耐心解一解(第25~27题各6分,第28题7分,共25分)25.加油站应建在AB 与HD 的交点M(-2,-1)处,因为此处是道路与道路的交叉口,加油站建在此处对两条道路上的车加油都方便26.解:∵点P(4-2a ,3a-1)在第二象限∴420310a a -<⎧⎨->⎩,解得:2a >∴a+1>3,4-5a<-6 ∴Q(a+1,4-5a)在第四象限27.连接AC ,∵A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4) ∴在△ACD 中AC =6,AC 边上的高为2,∴△ACD 的面积为6同理可得:△ABC 的面积为6∴四边形ABCD 的面积为121234567-1o123456-1-2x yC D A B28.答案不唯一:比如(2,1)(1,4)(2,5)(1,0) C 组(能力提升部分,20分)29. A′,B ,C′的坐标分别为(2,3),(-5,-4),(5,1)30.(1)图略(2)答案不唯一:(3,-8)(9,4)(-15,4)(3)∵△ABC 的面积为12×12×6=36,∴平行四边形的面积为72。