平面直角坐标系(打印版)
平面直角坐标系

平面直角坐标系平面直角坐标系是平面上最常用的坐标系统之一,用于描述平面上的点和其它几何图形的位置。
它由两条相互垂直的直线组成,分别称为x轴和y轴,它们的交点被称为原点。
一、坐标系介绍坐标系是用来刻画空间中各点位置的系统,而平面直角坐标系是坐标系中的一种。
平面直角坐标系的构成:1. x轴:水平的直线,向右延伸为正方向,向左延伸为负方向。
2. y轴:垂直于x轴的直线,向上延伸为正方向,向下延伸为负方向。
3. 原点:x轴和y轴的交点,被称为坐标系的原点。
二、坐标的表示方法在平面直角坐标系中,每个点可以表示为一个有序数对,即(x, y),其中x表示横坐标,y表示纵坐标。
1. 横坐标:横坐标表示点在x轴上的位置。
在原点的右边为正方向,左边为负方向。
2. 纵坐标:纵坐标表示点在y轴上的位置。
在原点的上方为正方向,下方为负方向。
三、点的位置关系根据坐标系的定义,我们可以判断点的位置关系。
1. 同一直线上的点:如果两个点的横坐标相等,纵坐标不同时,它们在同一条直线上,且与原点的距离相等。
2. 垂直关系:如果两个点的纵坐标相等,横坐标不同时,它们在同一条垂直线上,且与原点的距离相等。
3. 斜率:直线斜率是用来描述直线的倾斜程度的,斜率为0表示水平线,无限大表示垂直线。
4. 象限:根据点的坐标正负关系,可以将平面分为四个象限。
第一象限:x>0,y>0;第二象限:x<0,y>0;第三象限:x<0,y<0;第四象限:x>0,y<0。
四、点、线和图形的表示方法在平面直角坐标系中,我们可以使用坐标来表示点、线和图形。
1. 表示点:一个点的位置可以使用有序数对(x, y)来表示。
如点A(2, 3)表示横坐标为2,纵坐标为3的点A。
2. 表示线段:线段由两个端点组成,可以使用两个点的坐标来表示。
如线段AB由两个点A(2, 3)和B(4, 5)表示。
3. 表示直线:直线的方程可以使用斜率截距形式或一般式来表示。
平面直角坐标系

式中:N———6°带的带号
图2离中央子午线越远,长度变形越大,在要求较小的投影变形时,可采用3°投影带。3°带是在......
应当注意的是,高斯投影没有角度变形,但有长度变形和面积变形,离中央子午线越远,变形就越大。其主 要特点有以下三点:
(1)投影后中央子午线为直线,长度不变形,其余经线投影对称并且凹向于中央子午线,离中央子午线越远, 变形越大。
第一象限还可以写成Ⅰ,第二象限还可以写成Ⅱ,第三象限还可以写成Ⅲ,第四象限也可以写成Ⅳ。 .第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
1.关于x轴成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反) 2.关于y轴成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同) 3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
发展历程
笛卡尔坐标的思想是法国数学家、哲学家笛卡尔所创立的。
传说:
有一天,笛卡尔(Descartes 1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没 有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢? 这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、 才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝 爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子 里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地 面交出了三条直线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位 置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、 2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a, b)可以表示平面上的一个点,平面上的 一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。百科x混知:图解 笛卡尔
平面直角坐标系

平面直角坐标系简介平面直角坐标系是数学中一种常见的坐标系,用于描述平面上的点的位置。
它由两条相互垂直且共同交于原点的直线构成,分别称为x轴和y轴。
通过x、y轴上的数值,可以确定平面上的每一个点的坐标。
坐标轴平面直角坐标系由两个垂直的坐标轴组成,分别是x轴和y轴。
x轴是从左到右水平延伸的直线,y轴是从下到上垂直延伸的直线。
两轴交于原点O,原点是坐标系的起点,它的坐标为(0, 0)。
坐标轴上的点的坐标是由数值决定的,正方向上的数值代表右移或上移,负方向上的数值代表左移或下移。
x轴上的正方向可以取右移,y轴上的正方向可以取上移。
在平面上的点的位置是通过坐标值的组合来表示的。
坐标值在平面直角坐标系中,每个点的位置都有唯一的坐标值来确定。
一个坐标值由两个实数(x, y)组成,x表示该点在x轴上的位置,y表示该点在y轴上的位置。
坐标值的顺序可以是(x, y)或者y,x。
根据坐标轴和原点的位置,可以将坐标值分为四个象限。
第一象限的点具有正的x和y值,第二象限的点具有负的x值和正的y值,第三象限的点具有负的x 和y值,第四象限的点具有正的x和负的y值。
坐标变换平面直角坐标系除了可以用来表示点的位置外,还可以进行坐标变换。
坐标变换包括平移、旋转、缩放和倾斜等操作,这些操作可以改变坐标轴的位置和方向,从而达到变换坐标的目的。
平移是将整个坐标系在平面上沿着一个方向移动一定的距离。
例如,将坐标系向右平移3个单位,则所有点的x坐标都会增加3个单位。
类似地,将坐标系向上平移2个单位,则所有点的y坐标都会增加2个单位。
旋转是将整个坐标系绕原点或者其他点旋转一定的角度。
例如,将坐标系逆时针旋转90度,则x轴会变为新的y轴,y轴会变为新的-x轴。
通过旋转,可以改变坐标系中点的位置。
缩放是将整个坐标系沿着x轴和y轴的方向分别进行比例缩放。
例如,对x轴进行2倍缩放,则所有点的x坐标都会乘以2,从而使整个坐标系在x轴方向拉长。
类似地,对y轴进行2倍缩放,则所有点的y坐标都会乘以2,从而在y轴方向拉长。
(夺分金卷)A4版打印苏科版八年级上册数学第五章 平面直角坐标系含答案

苏科版八年级上册数学第五章平面直角坐标系含答案一、单选题(共15题,共计45分)1、将点P(m+2,2m+4)向右平移1个单位得到P′,且P′在Y轴上,那么P′坐标是( )A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)2、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)3、已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四4、已知点P的坐标(2a,6﹣a),且点P到两坐标轴的距离相等,则点P的坐标是()A.(12,﹣12)或(4,﹣4)B.(﹣12,12)或(4,4)C.(﹣12,12)D.(4,4)5、已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为()A.(1,2)B.(-2,-1)C.(2,-1)D.(2,1)6、已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)7、抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限8、在平面直角坐标系中,点P(m-3,4-2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9、如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10、如图,在平面直角坐标系中,直线与轴,轴分别交于点,,为内部一点,则的最小值等于( )A. B. C. D.11、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1, A2, A3,A 4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13)C.(14,14)D.(﹣14,﹣14)12、若ab>0,则P(a,b)在()A.第一象限B.第一或第三象限C.第二或第四象限D.以上都不对13、如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=xB.y=﹣2x﹣1C.y=2x﹣1D.y=1﹣2x14、已知,,把线段平移至线段,其中点A、B分别对应点C、D,若,,则的值是()A.-1B.0C.1D.215、在平面直角坐标系中,点(-3,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,等腰直角三角形中,点A、点B分别在y轴、x轴上,且.将绕点B顺时针旋转使斜边落在x轴上,得到第一个;将绕点顺时针旋转使边落在x轴上,得到第二个;将绕点顺时针旋转使边落在x轴上,得到第三个;……顺次这样做下去,得到的第2019个三角形落在x轴上的边的右侧顶点所走的路程为________.17、已知点Q(2m2+4,2m2+m+6)在第一象限角平分线上,则m=________.18、在平面直角坐标系中,点P(﹣5,3)关于原点对称点P′的坐标是________.19、如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B的坐标是________.20、如图所示,在长方形ABCD中,CD=3,CB=2,则此时点A的坐标为________。
(完整版)平面直角坐标系知识点总结(可编辑修改word版)

温馨提示(a , b )与(b , a )顺序不同,含义就不同。
例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。
夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。
例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。
y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。
(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。
1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。
平面直角坐标系(知识总结-试题和答案)

初中精品数学精选精讲学科:数学任课教师:授课时间:年月日(1)用坐标表示地理位置(2)用坐标表示平移13.平面直角坐标系其他公式(1)坐标平面内的点与有序实数一一对应。
(2) 一三象限角平分线上的点横纵坐标相等。
(3)二四象限角平分线上的点横纵坐标互为相反数。
(4)一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
(5)y轴上的点,横坐标为0.(6)x轴上的点,纵坐标为0.(7)坐标轴上的点不属于任何象限。
二、经典例题讲解【例1】我们常用_________表示平面内某点的位置.在地理上,常用___________表示地理位置.【例2】下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b, a)表示的位置不同C.(3,+2)与(+2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置.【例3】P(x,y)满足xy=0,则点P在_____________-.例5.在平面直角坐标系中,顺次连接A(-3,4),B(-6,-2),C(6,-2), D(3,4)四点,所组成的图形是____.【例4】若线段AB平行于x轴,AB长为5,若A的坐标为(4,5),则B的坐标为_________【例5】若点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上【例6】一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐标为(3,0),求点 A5•的坐标。
【例7】如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为( )【例8】如图,面积为12cm2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数)(1)、求点D、E的坐标、(2)求四边形ACED的面积。
平面直角坐标系练习完美A4版打印

竹西公园 荷花池图1图2第六章整章复习一、耐心填一填,一锤定音! 1.电影票上“4排5号”,记作(4,5),则“5排4号”记作______. 2.点(2-,3)向右平移2个单位后的坐标是______. 3.所有纵坐标为零的点都在______轴上.4.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为______. 5.如果0a <,0b >,则点()A a b ,在第______象限.点()Q a b b a -++,在第______象限.6.在矩形ABCD 中,(4)A -1,,(01)B ,,(03)C ,,则D 点的坐标为______. 7.如图1是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.(图中每个小正方形的边长均为1个单位长度)(1)请以国家AAAA 级(最高级)旅游景点瘦西湖为坐标原点,以水平向右为x 轴的正方向,以竖直向上为y 轴的正方向.用坐标表示下列景点的位置:荷花池______、平山堂______、汪氏小苑______; (2)如果建立适当的直角坐标系(不以瘦西湖为坐标原点),例如:以______为原点,以水平向右为x 轴的正方向,以竖直向上为y 轴的正方向.用坐标表示下列景点的位置:平山堂______、竹西公园______.8.如图2,如果点A 的位置为(1-,0),那么点B ,C ,D ,E 的位置分别为______、______、______、______.9.在如图3所示的直角坐标系中,A 点的坐标是______,B 点的坐标是______,C 点的坐标是______,点A ,B ,C 都在______上.10.在同一平面直角坐标系中,过x 轴上坐标是(-4,0)的点作x 轴的垂线,过y 轴上坐标是(0,-2)的点作y 轴的垂线,两垂线相交于点P ,则点P 的坐标是______. 11.已知线段MN 平行于y 轴,且M (3,-5),N (x ,2),那么x =______. 12.已知点M (A ,B ),且AB <0,则点M 在第______象限. 13.观察图象,与图4中的鱼相比,图5中的鱼__________. 14.三角形ABC 中,A (-4,-2),B (-1,-3),C (-2,-1),将三角形ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′,B ′,C ′的坐标分别为______,______,______. 7.如图6所示,从2街4巷到4街2巷,走最短的路线共有______种走法.图4 图3 图58.在一座共8层的商业大厦中,每层的摊位布局基本相同,如图7所示.小明的父亲在6楼,其位置可以表示为(6,2,3).若小明的母亲在5楼,则小明的母亲的摊位的位置可以表示为______. 二、心选一选,慧眼识金!1.下表是沈阳市地图简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是( ).A.D 7,E 6 B.D 6,E 7 C.E 7,D 6 D.E 6,D 72.如图8,横坐标是正数,纵坐标是负数的点是( ). A.A B.B C.C D.3.在平面直角坐标系中,点(2-,4)所在的象限 是( ).A.第一象限 B.第二象限C.第三象限 D.第四象限 4.已知点A (3-,2),B (3,2),则A ,B 两点相距( ). A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度 5.点P (m ,1)在第二象限内,则点Q (m -,0)在( ). A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上 6.平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比( ).A.形状不变,大小扩大了3倍 B.形状不变,向右平移了3个单位 C.形状不变,向上平移了3个单位 D.三角形被纵向拉伸为原来的3倍7.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:①根据具体问题确定适当的单位长度;②建立平面直角坐标系;③在坐标平面内画出各点.其中顺序正确的是( ). A.①②③ B.②①③ C.③①② D.①③② 8.下列说法错误的是( ).A.平行于x 轴的直线上的所有点的纵坐标相同B.平行于y 轴的直线上的所有点的横坐标相同 C.若点P (a ,b )在x 轴上,则0a = D.(3-,4)与(4,3-)表示两个不同的点 9.点P (M +3,M +1)在平面直角坐标系的x 轴上,则P 点的坐标为( ). A.(0,-2) B.(2,0) C.(0,2) D.(0,-4)10.新华电影院是具有三层楼座位的大型电影院,且每层楼只有一个电影厅.小强买了一张该电影院的门票,若他想知道他在哪个位置,需从电影票上找到相关数据的个数是( ). A.1 B.2 C.3 D.4 11.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( ).图8图7A.东南方向 B.东北方向 C.西南方向 D.西北方向12.若点P 在第四象限,且点P 到x 轴,y 轴的距离分别为4,3,则点P 的坐标为( ). A.(4,-3) B.(-4,3) C.(-3,4) D.(3,-4)13.课间操时,小华,小军,小刚的位置如图9所示,小华对小刚说,就你,我,小军我们三人的位置而言,如果我的位置用(0,0)来表示,小军的位置用(2,1)表示,那么你的位置可表示成( ). A.(5,4) B.(4,5) C.(3,4) D.(4,3)14.如图10,四边形ABCD 是矩形,原点D 是矩形的中心,AD 边平行于x 轴,则下列叙述正确的个数是( ).①A ,D 两点纵坐标相同,横坐标相反 ②A ,B 两点横坐标相同,纵坐标相反 ③A ,C 两点横纵坐标都相反A.1 B.2 C.3 D.015.正方形网格中的每个小正方形边长都为1,每个小方格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.如图11中,B ,C 两点的位置分别记为( )(2,0),(4,0),若格点三角形ABC 不是锐角三角形且面积为4,则满足条件的A 点的位置记法不对的是( ). A.(0,4) B.(1,4)C.(2,4) D.(3,4) 16.在平面直角坐标系中,已知A (2,-2),在y 轴的负半轴上 确定点P ,使三角形AOP 为等腰三角形,则符合条件的点P 共有( ).A.2个 B.3个 C.4个 D.5个三、用心做一做,马到成功!1.用有序数对表示物体位置时,(3-,2)与(2,3-) 表示的位置相同吗?请结合图形说明.2.你用过计算机中的画图软件吗?当你的鼠标在空白的工作区域移动时,状态栏上就会显示两个变化的数字,这实际上就是鼠标的“坐标”,你还能举出一些身边关于坐标的例子吗?3.如果点A 的坐标为(23a --,22b +),那么点A 在第几象限?说说你的理由.图9 图10图114.已知A (a ,21-),B (13-,b ),且A ,B 两点所在直线平行于x 轴.求a ,b 的值.5.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来. (1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0);(2)(2,0)、(5,3)、(4,0); (3)(2,0)、(5,-3)、(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方, 那么至少要向上平移几个单位长度.6.如图12,在平面直角坐标系中,已知点A (2-,0),B (2,0). (1)画出等腰三角形ABC (画一个即可);(2)写出(1)中画出的三角形ABC 的顶点C 的坐标. 7.图13为一辆公交车的行驶路线,“Ο”表示该公交车的中途停车点,现在请你帮助小明完成对该公交车行驶路线的描述:起点站→(1,1)→…→终点站.图13t128.如图14,点A 用(3,1)表示,点B 用(8,5)表示.若(3,1)→(5,1)→(5,4)→(8,4)→(8,5)表示由A 到B 的一种走法,并规定A 到B 只能向上或向右走,用上述表示法再写出两种走法, 并判断这几种走法的路程是否相等.9.如图15,三角形ABC 中任意一点00()P x y ,,经平移后对应点为100(35)P x y +-,,将三角形ABC 作同样平移得到三角形111A B C ,求1A ,1B ,1C 的坐标,并在图中画出111A B C 的位置.10.观察图16中图形由(1)→(2)→(3)→(4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的.图14图15图165.正方形ABCD的邻边分别与x轴,y轴平行,A点坐标为(2,4),且正方形面积为25(平方单位),则顶点A的对角的顶点坐标可能是多少?6.如图17,矩形ABCD的宽AB=4,长BC=6,按下列要求分别建立直角坐标系:(1)使D点坐标为(6,4);(2)使D点坐标为(0,4);(3)使B点坐标为(-3,-2);(4)使B点坐标为(-3,-4).图17。
平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于