平面直角坐标系

合集下载

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是平面上最常用的坐标系统之一,用于描述平面上的点和其它几何图形的位置。

它由两条相互垂直的直线组成,分别称为x轴和y轴,它们的交点被称为原点。

一、坐标系介绍坐标系是用来刻画空间中各点位置的系统,而平面直角坐标系是坐标系中的一种。

平面直角坐标系的构成:1. x轴:水平的直线,向右延伸为正方向,向左延伸为负方向。

2. y轴:垂直于x轴的直线,向上延伸为正方向,向下延伸为负方向。

3. 原点:x轴和y轴的交点,被称为坐标系的原点。

二、坐标的表示方法在平面直角坐标系中,每个点可以表示为一个有序数对,即(x, y),其中x表示横坐标,y表示纵坐标。

1. 横坐标:横坐标表示点在x轴上的位置。

在原点的右边为正方向,左边为负方向。

2. 纵坐标:纵坐标表示点在y轴上的位置。

在原点的上方为正方向,下方为负方向。

三、点的位置关系根据坐标系的定义,我们可以判断点的位置关系。

1. 同一直线上的点:如果两个点的横坐标相等,纵坐标不同时,它们在同一条直线上,且与原点的距离相等。

2. 垂直关系:如果两个点的纵坐标相等,横坐标不同时,它们在同一条垂直线上,且与原点的距离相等。

3. 斜率:直线斜率是用来描述直线的倾斜程度的,斜率为0表示水平线,无限大表示垂直线。

4. 象限:根据点的坐标正负关系,可以将平面分为四个象限。

第一象限:x>0,y>0;第二象限:x<0,y>0;第三象限:x<0,y<0;第四象限:x>0,y<0。

四、点、线和图形的表示方法在平面直角坐标系中,我们可以使用坐标来表示点、线和图形。

1. 表示点:一个点的位置可以使用有序数对(x, y)来表示。

如点A(2, 3)表示横坐标为2,纵坐标为3的点A。

2. 表示线段:线段由两个端点组成,可以使用两个点的坐标来表示。

如线段AB由两个点A(2, 3)和B(4, 5)表示。

3. 表示直线:直线的方程可以使用斜率截距形式或一般式来表示。

平面直角坐标系

平面直角坐标系
Lo=(6N-3°)
式中:N———6°带的带号
图2离中央子午线越远,长度变形越大,在要求较小的投影变形时,可采用3°投影带。3°带是在......
应当注意的是,高斯投影没有角度变形,但有长度变形和面积变形,离中央子午线越远,变形就越大。其主 要特点有以下三点:
(1)投影后中央子午线为直线,长度不变形,其余经线投影对称并且凹向于中央子午线,离中央子午线越远, 变形越大。
第一象限还可以写成Ⅰ,第二象限还可以写成Ⅱ,第三象限还可以写成Ⅲ,第四象限也可以写成Ⅳ。 .第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
1.关于x轴成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反) 2.关于y轴成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同) 3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
发展历程
笛卡尔坐标的思想是法国数学家、哲学家笛卡尔所创立的。
传说:
有一天,笛卡尔(Descartes 1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没 有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢? 这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、 才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝 爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子 里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地 面交出了三条直线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位 置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、 2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a, b)可以表示平面上的一个点,平面上的 一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。百科x混知:图解 笛卡尔

平面直角坐标系

平面直角坐标系

平面直角坐标系简介平面直角坐标系是数学中一种常见的坐标系,用于描述平面上的点的位置。

它由两条相互垂直且共同交于原点的直线构成,分别称为x轴和y轴。

通过x、y轴上的数值,可以确定平面上的每一个点的坐标。

坐标轴平面直角坐标系由两个垂直的坐标轴组成,分别是x轴和y轴。

x轴是从左到右水平延伸的直线,y轴是从下到上垂直延伸的直线。

两轴交于原点O,原点是坐标系的起点,它的坐标为(0, 0)。

坐标轴上的点的坐标是由数值决定的,正方向上的数值代表右移或上移,负方向上的数值代表左移或下移。

x轴上的正方向可以取右移,y轴上的正方向可以取上移。

在平面上的点的位置是通过坐标值的组合来表示的。

坐标值在平面直角坐标系中,每个点的位置都有唯一的坐标值来确定。

一个坐标值由两个实数(x, y)组成,x表示该点在x轴上的位置,y表示该点在y轴上的位置。

坐标值的顺序可以是(x, y)或者y,x。

根据坐标轴和原点的位置,可以将坐标值分为四个象限。

第一象限的点具有正的x和y值,第二象限的点具有负的x值和正的y值,第三象限的点具有负的x 和y值,第四象限的点具有正的x和负的y值。

坐标变换平面直角坐标系除了可以用来表示点的位置外,还可以进行坐标变换。

坐标变换包括平移、旋转、缩放和倾斜等操作,这些操作可以改变坐标轴的位置和方向,从而达到变换坐标的目的。

平移是将整个坐标系在平面上沿着一个方向移动一定的距离。

例如,将坐标系向右平移3个单位,则所有点的x坐标都会增加3个单位。

类似地,将坐标系向上平移2个单位,则所有点的y坐标都会增加2个单位。

旋转是将整个坐标系绕原点或者其他点旋转一定的角度。

例如,将坐标系逆时针旋转90度,则x轴会变为新的y轴,y轴会变为新的-x轴。

通过旋转,可以改变坐标系中点的位置。

缩放是将整个坐标系沿着x轴和y轴的方向分别进行比例缩放。

例如,对x轴进行2倍缩放,则所有点的x坐标都会乘以2,从而使整个坐标系在x轴方向拉长。

类似地,对y轴进行2倍缩放,则所有点的y坐标都会乘以2,从而在y轴方向拉长。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是数学中常用的坐标系之一,用于描述平面上点的位置。

它由两个互相垂直的坐标轴组成,分别称为x轴和y轴。

x轴是平行于地面的水平线,y轴是垂直于地面的竖直线。

两个轴的交点称为原点O,坐标轴上的单位长度分别称为单位长度,在坐标轴上的点用有序数对(x,y)来表示。

概念距离公式是平面直角坐标系中求两点之间距离的一种方法,它利用勾股定理的原理得出。

即:两点之间的距离等于横坐标的差的平方加纵坐标的差的平方再开平方根。

假设平面直角坐标系上有两点A(x1,y1)和B(x2,y2),则A和B之间的距离d可以表示为:d=√((x2-x1)²+(y2-y1)²)这个公式可以用来计算直线上两个点的距离,也可以用来计算任意两个点之间的距离。

中点公式是指在平面直角坐标系中,已知线段的两个端点的坐标,求线段的中点坐标的一种方法。

中点公式的原理是利用两点的坐标分别求出横坐标的平均值和纵坐标的平均值,得到线段的中点坐标。

假设平面直角坐标系上有线段的两个端点A(x1,y1)和B(x2,y2),则线段的中点M的坐标可以表示为:M=((x1+x2)/2,(y1+y2)/2)中点公式可以简单地通过将两个端点的横坐标和纵坐标进行平均来计算出线段的中点坐标。

通过概念距离公式和中点公式,我们可以在平面直角坐标系中方便地计算出两点之间的距离和线段的中点坐标。

这些公式在几何学、物理学和计算机图形学等学科中都有广泛的应用。

平面直角坐标系是数学中基础而重要的工具之一,它不仅可以用来描述几何图形和计算空间中的点、线、面,还可以应用于解决实际问题,如测量距离、计算速度等。

同时,平面直角坐标系还可以与其他数学概念和方法相结合,如向量、导数等,形成更加完整和强大的数学分析体系。

总之,平面直角坐标系是数学中重要的工具之一,概念距离公式和中点公式是在平面直角坐标系中求解距离和中点问题时常用的方法。

通过运用这两个公式,我们可以方便地计算出两点之间的距离和线段的中点坐标,以及应用到各种实际问题中。

平面直角坐标系

平面直角坐标系

02
点在平面直角坐标系中的表示
点在平面直角坐标系中的表示方法
直角坐标法
在平面内选定一个原点O和x、y轴,对于平面内的任意一点P ,通过原点O作一直角与x轴正方向夹角为α,再作一直角与y 轴正方向夹角为β,两直角的交点即为点P的坐标。
极坐标法
以原点O为极点,x轴正方向为极轴,建立极坐标系。对于平 面内的任意一点P,通过原点O作一直线与极轴夹角为θ,再 作一直线与极轴夹角为α,两直线的交点即为点P的极坐标。
点的坐标与位置关系
点的横坐标
表示点在x轴上的投影距离 。
点的纵坐标
表示点在y轴上的投影距离 。
点的位置关系
通过比较点的坐标值,可 以确定点在平面直角坐标 系中的位置关系,如平行 、垂直、相交等。
点在平面直角坐标系中的变换
平移变换
将点沿着x轴或y轴方向移动一定的距离,点的坐 标值会相应地增加或减少。
几何图形的性质研究
利用平面直角坐标系,可以研究几何图形的性质和特点,例如对称性、中心对 称等。
04
平面直角坐标系与极坐标系的 关系
极坐标系的基本概念
1 2
极坐标系
在平面内,以一个固定点为极点,一个固定射线 为极轴,用来研究点的位置的一种坐标系。
极坐标表示
在极坐标系中,一个点的位置由一个实数r和一 个角度θ来确定,记作(r, θ)。
旋转变换
将点绕原点旋转一定的角度,点的坐标值会发生 变化。
缩放变换
将点在x轴或y轴方向上放大或缩小一定的倍数, 点的坐标值会相应地增加或减少。
03
平面直角坐标系的应用
解析几何问题
直线方程的求解
通过平面直角坐标系,可以确定 直线上任意两点的坐标,从而求 出直线的方程。

平面直角坐标系

平面直角坐标系

平面直角坐标系在数学中,平面直角坐标系是一种用于描述平面内点的坐标系统。

它由两条互相垂直的直线(通常是水平的x轴和垂直的y轴)形成,它们相交于一个点,称为原点。

本文将介绍平面直角坐标系的基本概念、坐标表示和使用方法。

一、基本概念平面直角坐标系由两个轴组成,通常称为x轴和y轴。

这两个轴的交点就是原点,用O表示。

x轴向右延伸正无穷远,用正数表示;x轴向左延伸负无穷远,用负数表示。

y轴向上延伸正无穷远,用正数表示;y轴向下延伸负无穷远,用负数表示。

二、坐标表示平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

x和y分别称为点的横坐标和纵坐标。

三、使用方法在平面直角坐标系中,可以进行一些简单的计算和几何分析。

1. 距离计算可以通过坐标计算两点之间的距离。

假设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B之间的距离d可以通过以下公式计算:d = sqrt((x2-x1)^2 + (y2-y1)^2)2. 点的位置关系可以比较两个点的坐标来判断它们的位置关系。

例如,如果点A的横坐标等于点B的横坐标并且点A的纵坐标小于点B的纵坐标,那么可以说点A在点B的上方。

3. 垂直和平行关系可以通过判断两个直线的斜率(或是特殊情况下的截距)来确定它们的关系。

如果两条直线的斜率相同,那么它们是平行的;如果两条直线的斜率的乘积为-1,那么它们是垂直的。

四、坐标系拓展除了普通的平面直角坐标系,还有其他类型的坐标系可以应用于不同的数学和物理问题。

例如,极坐标系以点到原点的距离和该点与正x 轴的角度来描述点的位置。

其他坐标系还包括球坐标系、柱坐标系等。

总结:平面直角坐标系是用于描述平面内点的坐标系统。

通过横坐标和纵坐标的数值,可以表示点在平面中的位置。

在平面直角坐标系中,可以进行距离计算、点的位置关系判断以及直线的垂直和平行关系确定。

此外,还存在其他类型的坐标系,用于解决不同的数学和物理问题。

平面直角坐标系平面直角坐标系

(注意
在有些情况下,1个单位长度表示的单位量可能 不是1,需要具体问题具体分析。)
3
特点
坐标轴上的单位长度是等长的,即1个单位长度 上对应的坐标值是等距的。
象限与八分区
• 象限:将平面分成四个区域,左上、右上、左下、右下分别称为第一、第二、第三、第四象限。 • 八分区:将平面分成八个区域,类似于象限的划分方法,但是增加了两条坐标轴上的奇数和偶数分区。具
平面直角坐标系的优化算法
平面直角坐标系也可以用于解决优化问题,例如线 性规划、非线性规划等。
线性规划问题可以定义一个目标函数和一组约束条 件,通过求解目标函数的最大值或最小值,以及满
足约束条件的最优解得到最优解。
非线性规划问题可以定义一个非线性目标函数和 一组约束条件,通过求解目标函数的最小值或最 大值,以及满足约束条件的最优解得到最优解。
特点
平面直角坐标系具有简单易行、直观形象、易于理解与运用 等优点。
平面直角坐标系的重要性
数学科学的基础
平面直角坐标系是数学科学中最为基础和重要的概念之一,它为代数、几何 、分析等多个分支提供了桥梁和工具。
解决实际问题
平面直角坐标系广泛应用于各个领域,如物理学、工程学、经济学等,用于 描述和分析实际问题。
体如下 • 第一象限:(+,+) • 第二象限:(-,+) • 第三象限:(-,-) • 第四象限:(+,-) • x轴正半轴:(+,0) • x轴负半轴:(0,-) • y轴正半轴:(0,+) • y轴负半轴:(-,0)
03
平面直角坐标系的应用
描述点的位置
平面直角坐标系由横轴和纵轴构成,原点表示为 (0,0),可以在此基础上确定任意点的位置。

平面直角坐标系

平面直角坐标系平面直角坐标系是解析几何中常用的坐标系,用于描述平面上的点和其它几何图形。

本文将详细介绍平面直角坐标系的定义、性质及应用。

一、定义平面直角坐标系由两个互相垂直的数轴(x轴和y轴)构成。

x轴水平放置,从左到右逐渐增大;y轴垂直于x轴,从下往上逐渐增大。

两条轴的交点称为原点,记作O。

平面直角坐标系将平面上的点与有序的实数对(x,y)一一对应。

二、性质1. 坐标轴性质:x轴上的点坐标为(x, 0),y轴上的点坐标为(0, y)。

2. 坐标线性质:对于坐标系内的一点P(x, y),以x轴和y轴为边,可以得到4个区域,分别对应第一象限、第二象限、第三象限和第四象限。

3. 距离计算公式:两点P1(x1, y1)和P2(x2, y2)之间的距离d可以通过勾股定理求得:d = √[(x2 - x1)² + (y2 - y1)²]。

三、应用平面直角坐标系在解析几何中有广泛的应用,常与方程、图形和向量等相关联。

1. 方程:通过坐标系可以解决一元和两元方程的问题。

对于一元方程,可以将其在坐标系中表示为一条直线,并求解其根;对于两元方程,可以表示为一条曲线,通过坐标系求解方程组的解。

2. 图形:通过坐标系,可以准确地表示和描述各种几何图形,如直线、抛物线、双曲线等。

在坐标系中,每个点都有唯一的坐标,因此可以使用坐标来确定图形上的点的位置。

3. 向量:向量是平面直角坐标系中的重要概念之一。

向量的起点可以任意选取,表示为一个有向线段,并通过坐标系表示其方向和大小。

向量可以进行加法、减法、数量积等运算,在物理学、工程学等领域有广泛的应用。

总结:平面直角坐标系是解析几何中最基本的坐标系之一,通过两个垂直的坐标轴构成。

它具有一些重要的性质,如坐标轴和坐标线的性质,以及距离计算公式。

平面直角坐标系在方程、图形和向量等方面有广泛的应用,能够准确地描述和解决各种几何问题。

平面直角坐标系平面直角坐标系


感谢您的观看
THANKS
性质
平面直角坐标系是一个正交坐标系,它具有唯一性和可数性 。
平面直角坐标系的建系的中心点 。
确定x轴与y轴
根据定义,x轴是一条与y轴垂直的数轴,y轴是 一条与x轴垂直的数轴。
确定单位长度
选择一个单位长度,通常选择一个合适的长度单 位,如毫米或厘米。
坐标系中的点与坐标
方向向量的计算
方向向量的计算可以通过两个点的坐标进行计算,得到一个向量,该向量的模等于两点之间的距离,方向与连 接两点的线段一致。
三维空间中的坐标系
三维空间中的坐标系定义
三维空间中的坐标系使用三个参数,x、y 、z,来定义空间中的任意一点。
VS
三维空间中的坐标系扩展
三维空间中的坐标系可以扩展到更高维度 的空间中,例如四维空间、五维空间等。
计算机图形学中的应用
像素坐标
在计算机图形学中,每个像素点都有其在平面直角坐标系中的位 置,通过坐标可以方便地对像素点进行操作。
渲染算法
通过平面直角坐标系可以设计各种渲染算法,如阴影算法、反射 算法等。
三维建模
在三维建模中,平面直角坐标系是基础,可以通过它来建立三维模 型的空间关系。
05
平面直角坐标系的扩展
平移平面直角坐标系中的点,其坐标值会相应地发生变化。平移过程中,点 的坐标值沿横轴或纵轴方向移动,移动距离等于平移方向上的坐标增量。
点的旋转
旋转平面直角坐标系中的点,其坐标值不会发生变化,但会围绕旋转中心转 动。旋转过程中,点的坐标值相对于旋转中心转动,旋转角度等于旋转角度 的弧度值。
距离与角度的计算
平面直角坐标系
2023-11-04
目 录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的基本运算 • 平面直角坐标系中的图形变换 • 平面直角坐标系的应用 • 平面直角坐标系的扩展

平面直角坐标系

平面直角坐标系平面直角坐标系是数学上常用的一种表示平面点位置的方法。

它由两条相互垂直的坐标轴组成,通常被称为x轴和y轴。

在平面直角坐标系中,每一个点可以由一个有序数对(x, y)来表示,其中x代表点在x轴上的位置,y代表点在y轴上的位置。

一、坐标轴和坐标平面平面直角坐标系以一个平面为基准面,通过在基准面上选择两条相互垂直的线段作为坐标轴,构成直角坐标系。

x轴和y轴分别与基准面的一个定点O相交于点O,被称为坐标原点。

二、坐标值在平面直角坐标系中,每一条坐标轴被划分为无限个等分,用来表示点在该轴上的位置。

任意一点的坐标值都是由该点在x轴和y轴上的投影决定的。

三、点的位置平面直角坐标系中的点可以分为四个象限:第一象限、第二象限、第三象限和第四象限。

第一象限位于x轴和y轴的正方向,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向,第四象限位于x轴的正方向和y轴的负方向。

四、距离和斜率在平面直角坐标系中,可以通过坐标值计算两点之间的距离和斜率。

两点之间的距离可以通过使用勾股定理计算,而斜率则可以通过斜率公式计算,斜率公式为:m = (y2 - y1) / (x2 - x1),其中m为斜率,(x1,y1)和(x2, y2)分别为两点坐标。

五、图形的表示在平面直角坐标系中,不同的图形可以通过将点的集合按照一定规则进行连接而得到。

例如,直线可以由两个点确定,抛物线可以由若干个点确定,圆可以由一个点和半径确定等。

总结:平面直角坐标系是表示平面点位置的常用方法,通过坐标轴和坐标值可以准确地表示点在平面上的位置。

在平面直角坐标系中,可以计算两点之间的距离和斜率,同时可以通过连接点来表示不同的图形。

平面直角坐标系是数学中一个重要的概念,被广泛应用于几何学、代数学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:P(x,y-a)(2)横坐标为0的点在轴上()(3)纵坐标小于0的点一定在轴下方()(4)到轴、轴距离相等的点一定满足横坐标等于纵坐标()(5)若直线轴,则上的点横坐标一定相同()(6)若,则点P()在第二或第三象限()(7)若,则点P()在轴或第一、三象限()1、若点P ()n m ,在第二象限,则点Q ()n m --,在( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)3、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是 ( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数4、在平面直角坐标系中,点()2,12+-m 一定在 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限5、如果a -b <0,且ab <0,那么点(a ,b)在 ( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限.6、如上右图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是 ( ) A 、点A B 、点B C 、点C D 、点D7、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,- 1)、(-1,2)、(3,-1),则第四个顶点的坐标为 ( ) A .(2,2) B .(3,2) C .(3,3) D .(2,3) 8、若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( )A.1个 B.2个 C.3个 D.4个9、已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( ) A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤3 10、过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为 ( ) A .(0,2) B .(2,0)C .(0,-3)D .(-3,0)11、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (-4,–1)的对应点D 的坐标为 ( ) A .(2,9) B .(5,3) C .(1,2) D .(– 9,– 4) 12、到x 轴的距离等于2的点组成的图形是 ( ) A. 过点(0,2)且与x 轴平行的直线 B. 过点(2,0)且与y 轴平行的直线 C. 过点(0,-2)且与x 轴平行的直线D. 分别过(0,2)和(0,-2)且与x 轴平行的两条直线1、已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m .2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、5,则坐标是 .已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 3、直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y=4、若│3-a │+(a-b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______. 5、已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是__________。

6、如果点M ()ab b a ,+ 在第二象限,那么点N ()b a ,在第___象限.7、若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,则m 的取值范围是 . 8、在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.9、在平面直角坐标系中,以点P ()2,1为圆心,1为半径的圆必与x 轴有 个公共点。

10、如果点M (3a-9,1-a )是第三象限的整数点,则M 的坐标为__________; 11、已知点M ()a a -+4,3在y 轴上,则点M 的坐标为_____.12、若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限。

四.解答题1、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,求a 的值及点的坐标?2、这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.3、如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位再向下平稳2个单位后,与点P 对应的点为Q ,则点Q 的坐标是什么?且在图像标出点。

3、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.初二第7周独立练习 2011.10.12满分100分 第一卷(60分)一、选择题:(每题2分,共20分)1.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3样的点P 有( )A.1个 B.2个 C.3个 D.4个 2.已知点A (2,-2),如果点A 关于x 轴的对称点是B ,点B 关于原点对称点是C ,那么点C 的坐标是( )A.(2,2)B.(-2,2)C.(-1,-1)3题3.若点P(m -1, m )在第二象限,则下列关系正确的是( ) A.10<<m B.0<m C.0>m D.1>m 4.如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( )A.(-1,1)B.(-2,-1)C.(-3,1) D .(1,-2)5. 已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 若点P (x,y )的坐标满足xy=0(x ≠y),则点P ( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上7. 如图,在平面直角坐标系中,平行四边形OABC 的顶点O 、A 、C 的坐标分别是(0,0)、(5,0)、(2,3),则顶点B 的坐标是( )A 、(3,7)B 、(5,3)C 、(7,3)D 、(8,2)8. 线段CD 是由线段AB 平移得到的.点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4) 9. 已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为( ) A. 3 B. - 3 C. 6 D. ±3 10.如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标为 ( )A.(3,2)B.(6,2)C.(6,4)D.(3,5)二、填空题:(每题2分,共20分)11.已知两点()()632121,、,P P ,那么21P P 长为 ; 12.点A(5,7-)到原点的距离是13.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则点 A 坐标是 ; 14.已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________. 15.当b=______时,点B(3,|b-1|)在第一.三象限角平分线上.16. 如果点P (m+3,m+1)在直角坐标系的x 轴上,则点P 的坐标为_________ 17.点A (-3,4),点B 在坐标轴上,且AB=5,那么点B 坐标为18. 如果点A (0,0),B (3,0),点C 在y 轴上,且ABC ∆的面积是5,C 点坐标为 . 19.正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点的坐标(0,4),B 点的坐标(-3,0),则C 点的坐标是 . 20. 如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是 .yCF BO G A E x三、解答题:21.对于边长为6的正△ABC ,建立适当的直角坐标系,并在图上标明各个顶点的坐标.22.如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1,而纵坐标不变后得到的图案;(4分)(2)在同一方格纸中,在轴的右侧,将原小金鱼图案上所有的点的坐标以相同的规律进行变化,使图案的形状不变,并且对应线段放大为原来的2倍,画出放大后小金鱼的图案,并简述你将点的坐标进行了怎样的变化.(6分)第二卷(40分)一、选择题(每题4分,共16分)1.对任意实数,点一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如图的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) .若在没有滑动的情况下,将此正五边形沿着x 轴向右滚动,则滚动过程中,下列会经过(75 , 0)的点是( )A . AB . BC . CD . D3.在一次夏令营活动中,小霞同学从营地点出发,要到距离点的地去,先沿北偏东方向到达地,然后再y x 2(2)P x x x -,A A 1000m C 70︒B x(第22题图)沿北偏西方向走了到达目的地,此时小霞在营地的( ) A. 北偏东方向上 B.北偏东方向上 C. 北偏东方向上 D. 北偏西方向上4. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( ) A .64. B .49. C .36. D .25. 二、填空题(每题4分,共20分)5. 在直角坐标平面内的机器人接受指令“”(≥0,<<)后的行动结果为:在原地顺时针旋转后,再向正前方沿直线行走.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令后位置的坐标为6. 已知点()01,-P ,O 为原点,︒=∠150POQ ,2=PQ ,则点Q 坐标为 7.如图,在平面直角坐标系中有一矩形ABCD,其中(0,0),B(8,0),C(0,4,) 若将△ABC 沿AC 所在直线翻折,点B 落在点E 处,则E 点的坐标是__________.8. 如图,将正六边形放在直角坐标系中中心与坐标原点重合,若A 点的坐标为(-1,0),则点C 的坐标为______.9.已知:如图,O 为坐标原点,四边形OABC 为矩形,A(10,0),C(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .三、解答题(24分)1.(12分)已知在平面直角坐标系中点A (-3,4),O 为坐标原点,点P 为坐标轴上一点,且PAO ∆为等腰三角形,请你画出草图并在图上标明点P 的坐标(不写过程)。

相关文档
最新文档