第一章 偏微分方程和一阶线性偏微分方程解

合集下载

一阶偏微分方程基本知识

一阶偏微分方程基本知识

一阶偏微分方程根本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。

一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n阶常微分方程y n fx,y',y'', ,y n1,〕在变换yy,yy',L,ynyn112〕之下,等价于下面的一阶微分方程组dy1f1x,y1,y2,L,yn,dxdy2f2x,y1,y2,L,y n,dxMMMMdy nf n x,y1,y2,L,y n.dx〔〕在第三章中,已经介绍过方程组〔〕通解的概念和求法。

但是除了常系数线性方程组外,求一般的〔〕的解是极其困难的。

然而在某些情况下,可以使用所谓“可积组合〞法求通积分,下面先通过例子说明“可积组合〞法,然后介绍一阶常微分方程组“首次积分〞的概念和性质,以及用首次积分方法来求解方程组〔〕的问题。

先看几个例子。

例1求解微分方程组--WORD格式--可编辑--dx yxx2y21,dy xyx2y2 1.dt dt〔〕解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到x dx y dy x2y2x2y21,dt dt1dx2y2x2y2x2y21dt。

2这个微分方程关于变量t和x2y2是可以别离,因此不难求得其解为x2y21e2t C1,x2y2〔〕C1为积分常数。

〔〕叫做〔〕的首次积分。

注意首次积分〔〕的左端V x,y,t作为x,y,和t的函数并不等于常数;从上面的推导可见,当xx(t),y y(t)时微分方程组〔〕的解时,Vx,y,t才等于常数C1,这里的常数C1应随解而异。

因为式〔〕是一个二阶方程组,一个首次积分〔〕缺乏以确定它的解。

为了确定〔〕的解,还需要找到另外一个首次积分。

将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到y dx x dy x2y2,dt dt即x dy y dx x2y2,dt dt亦即d arctan yx。

偏微分方程的解法

偏微分方程的解法

偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。

这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。

解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。

在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。

以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。

分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。

特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。

对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。

分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。

特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。

Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。

非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。

这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。

除了上述解析解法,数值方法也是解偏微分方程的重要手段。

常用的数值方法包括有限差分法、有限元法和谱方法等。

1.3一阶线性偏微分方程的通解法

1.3一阶线性偏微分方程的通解法

1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。

1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。

)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。

试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。

高等数学偏微分方程教材

高等数学偏微分方程教材

高等数学偏微分方程教材引言:高等数学偏微分方程教材是一本专注于讲解偏微分方程的教材。

它旨在帮助学生深入理解该领域的概念和技巧,培养他们的数学思维和解决实际问题的能力。

本教材的编写旨在提供清晰、系统和综合的课程内容,以满足学生对高等数学偏微分方程的学习需求。

第一章偏微分方程简介1.1 偏微分方程的概念与分类- 偏微分方程的定义与基本概念- 常见的偏微分方程分类及其特点1.2 偏微分方程的数学建模- 偏微分方程在自然科学和工程领域的应用- 建立数学模型与偏微分方程的联系第二章一阶偏微分方程2.1 一阶偏微分方程的基本概念与解法- 一阶线性偏微分方程的解法- 一阶齐次与非齐次偏微分方程的解法2.2 传热问题与一维热传导方程- 一维热传导方程的物理背景与模型建立- 定解条件与初值问题解法- 热传导问题的数值解法与应用第三章二阶线性偏微分方程3.1 二阶线性偏微分方程的基本理论- 二阶线性偏微分方程的一般形式与特征方程 - 常系数与变系数二阶线性偏微分方程的解法3.2 波动方程与振动问题- 波动方程的物理背景与模型建立- 结束条件与初值问题的解法- 波动问题的数值解法与应用第四章椭圆型偏微分方程4.1 椭圆型偏微分方程的基本理论- 椭圆型偏微分方程的定义与性质- 球坐标与柱坐标下的椭圆型偏微分方程4.2 热传导问题与二维热传导方程- 二维热传导方程的模型建立与解法- 边值问题与数值解法- 热传导问题的应用案例第五章抛物型偏微分方程5.1 抛物型偏微分方程的基本理论- 抛物型偏微分方程的定义与分析 - 热传导方程与时间相关问题5.2 扩散过程与扩散方程- 扩散方程的模型与解法- 边界条件与初始值问题的解法- 扩散问题的数值解法与应用第六章偏微分方程的数值解法6.1 偏微分方程的数值离散化- 偏微分方程的差分格式与有限元法 - 空间离散化与时间离散化的方法6.2 常见数值解法的实现与应用- 追赶法与矩阵分解法- 迭代法与收敛性分析- 各种数值方法的优缺点与应用领域结语:高等数学偏微分方程教材的编写旨在全面深入地介绍偏微分方程的理论与应用。

偏微分方程解析解

偏微分方程解析解

偏微分方程解析解偏微分方程(Partial Differential Equation,简称PDE)是数学中研究最广泛的领域之一,它涉及到物理、工程、金融等众多领域中的实际问题。

解析解是指通过解析方法得到的能够精确描述偏微分方程解的解析表达式。

本文将介绍偏微分方程解析解的求解方法,并通过一些具体的例子进行说明。

一、一阶线性偏微分方程1.1 一维线性传热方程考虑一维线性传热方程:$$\frac{{\partial u}}{{\partial t}} = k\frac{{\partial^2 u}}{{\partialx^2}}$$其中,$u(t,x)$表示时间$t$和空间$x$上的温度分布,$k$为传热系数。

为了求解这个方程,我们引入一个新的变量,令$v(t,x) = u(t,x) -F(x)$,其中$F(x)$是由于边界条件所确定的函数。

将$v(t,x)$代入上面的方程得到:$$\frac{{\partial v}}{{\partial t}} = k\frac{{\partial^2 v}}{{\partialx^2}}$$接下来,我们可以使用分离变量法求解这个二阶偏微分方程。

假设$v(t,x)$可以表示为$v(t,x) = T(t)X(x)$的形式,则将这个表达式代入上面的方程中,得到:$$\frac{{T'(t)}}{{T(t)}} = k\frac{{X''(x)}}{{X(x)}}$$由于左边是关于$t$的表达式,右边是关于$x$的表达式,它们只能等于一个常数,即:$$\frac{{T'(t)}}{{T(t)}} = \frac{{X''(x)}}{{X(x)}} = -\lambda^2$$其中,$\lambda$是常数。

对于关于$x$的方程,我们可以得到:$$X''(x) + \lambda^2 X(x) = 0$$这是一个常微分方程,可以求解出$X(x)$的形式。

第一章 偏微分方程定解问题

第一章  偏微分方程定解问题
(3) 混合问题=泛定方程+初始条件+边界条件: 既有初始条件,也有边界条件的定解问题。
定解问题
泛定方程
演化方程 稳定方程
线性边界条件 边界条件
波动方程 输运方程 拉普拉斯方程 泊松方程 第一类边界条件 第二类 第三类
dS u1
u
(2) 第二类(Neumann)边界条件
VS
k u q(t ) n s
当q(t) 0(齐次,表示绝热)
热场
(3) 第三类(Robin)边界条件 牛顿冷却定律:单位时间内从物体通过边界上单位面积流
到周围介质的热量跟物体表面和外面的温差成正比。
dQ
h(u
u1)dSdt
k
u n
dSdt
h 热交换系数;u1 周围介质的温度, k为热传导系数
举例(设未知函数为二元函数)
1. u 0 x
解为: u f ( y)
f 为任意函数
2. u a u 0 t x
x
t
1
a
(
)
作变量代换
x x at
a u 0
解为:u f (x at)
f 为任意函数
7
举例(未知函数为二元函数)
2u
3.
0
xt
解为: u g(x) h(t)
数学物理方程主要内容
三种基本问题
初值问题 边值问题 混合问题
三种基本方程、 五种基本解法、两个基本原理、两个特殊函数
波动方程 热传导 拉普拉斯方程
通解法 行波法 分离变量法 积分变换法 格林函数法
叠加原理 齐次化原理
贝塞尔函数 勒让德函数
一些常见符号
哈密尔顿算子或梯度算子,读作nabla

偏微分方程讲义

偏微分方程讲义

习题3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §3.5 极坐标系下的分离变量法 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 3.5.2 由射线和圆弧所界定区域中问题的解法 . . . . . . . . . . . . . . . 周期边界条件问题的解法 . . . . . . . . . . . . . . . . . . . . . .
iv 3.6.3 3.6.4 3.6.5 Legendre方程的级数解、 Legendre多项式 . . . . . . . . . . . . . . Bessel方程的级数解、 Bessel函数 . . . . . . . . . . . . . . . . . . 圆盘中热传导方程的解 . . . . . . . . . . . . . . . . . . . . . . . .
习题1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §1.5 线性偏微分方程的叠加原理,定解问题的适定性 1.5.1 叠加原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
习题3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §3.6 高维曲线坐标系下的分离变量法、球函数和柱函数 . . . . . . . . . . . . 3.6.1 3.6.2 Bessel方程和Legendre方程的导出 . . . . . . . . . . . . . . . . . . 二阶线性齐次常微分方程的级数解法 . . . . . . . . . . . . . . . .

chapter1_偏微分方程定解问题

chapter1_偏微分方程定解问题

对于一般的偏微分方程,找出通解非常困难。但我们可以根据方程的物理背景或数学特点,
找出某些特定形式的特解来满足实际需要。例如,根据解析函数的实、虚部是调和函数,即 可得到二维 Laplace 方程2u 0 的中心对称解u ln 1 (r 0) ,周期解u ex sin y ,多项式解
r
u x2 y 2 等。
u
c(x, y)
u
f (x, y) ,
(1)
y b(x, y) b(x, y)
利用一阶线性常微分方程的求解方法得其通解:
, y c( x, )
u(x,
y)
e ( y0
d ) b( x, )
y
y
0
c( b(
x,s x,s
) )
ds
e y
0
f (x,)
d g(x)
b( x, )
其中g(x) 是任意的C1 函数。
1.2 定解问题及其适定性:
偏微分方程的解族很大,可以包含任意函数,例如:
例 1.2.1:求解二阶偏微分方程 2u 0 ,u u( ,) 。
解:两边依次对 , 积分,得
u f ( ) g() , 对于任意C1(R) 函数 f 和 g ,都是方程在全平面的解。
#
称m 阶偏微分方程的含有m 个任意函数的解为方程的通解,不含任意函数或某些任意函数 为常数的解为方程的一个特解。通解中的任意函数一旦确定,通解就成了特解。
第一章. 偏微分方程定解问题
偏微分方程:是指含有多元的未知函数u
u(
x)
,
x
(
x1,
x2,,
xn)
及其若干阶偏导数的关式
u u u F (x,u, , ,..., ,...,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为方程的特征线。
例如,当 , 为常数,则过任意给定的点 的特征线为直线,方程为

之所以称其为特征线,是因为沿该直线函数 取常数值。以 为常数为例,
特征线上的任意一点可表示为 ,其中 是参数,由此

即 。
利用特征线的该性质,在给定适当的初始或边界条件后就可确定方程的解。
例1求解方程 。
解特征线 ,即 ,沿该直线, 是常数。所以,
第一章偏微分方程和一阶线性偏微分方程解
本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。
典型的偏微分方程:扩散方程 , ;波动方程 , 。这是本课程讨论的主要两类方程。
偏微分方程的各类边值条件也是本章讨论的一个重点。
§1.1一维空间中的偏微分方程
例1(刚性污染流的方程)假设均匀直线管道中的水流含污染物质的线密度是 (即 处在时刻 的污染物的密度)。如果流速是 ,问题: 满足什么样的方程?
3) (弦的一端固定在弹性支承上)(Robin条件)
在高维空间,相应的边界条件为
1)Dirichlet条件: ( 是边界:
§1.4一阶线性偏微分方程解的特征线方法
对一阶齐次线性偏微分方程

从几何观点看,如果 满足该方程,则由函数 确定的平面上的向量场 ,与方程系数构成的向量场 正交。称由向量场 作为切向所确定的曲线

记 ,则非齐次的波动方程为

【end】
§1.2平面和空间上的偏微分方程
例1(三维空间中的扩散方程)假设污染流体充满三维空间的某区域, 是其密度。任取简单区域 ,相应的边界 。假设,在 时间内,流出 的流与密度关于 处的法向导数成正比,即 ,因此在 流出曲面 的流量为

同时,该区域在 的流量变化又可表示为
问题:建立 满足的方程。
解选定弦的一段 ,(此处 ),考虑其在时间段 内的运动情况。点 处的张力记为 。
沿水平方向合力为

沿垂直方向合力为

显然,水平方向合力为零(假设2:弦只在垂直方向有运动),即

垂直方向合力为

由牛顿第二运动定理,

因此

记 ,则得到标准的波动方程,

注:如果弦上有外力 作用,则
§1.3方程的初始和边界条件
对常微分方程,要完全确定方程的解就必须知道初始条件。而对偏微分方程,还必须给定适当的边界条件。以弦振动问题而言,方程是在弦之内部的点满足的条件,边界可能是固定的,也可能自由的,等等。
假如边界是 , ,则可能的条件:
1) , (固定边界)(Dirichlet条件)
2) , (在端点的垂直方向自由滑动),或更一般 (Neumann条件)
解如图,在 内的流体,经过时间 ,一定处于 。所含污染物应相同,即

由此

从而,

【End】
可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。
例2(扩散方程)假设水流静止,在 时间内,流经 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为 :

所以,在时间段 内,通过 的污染物为

或写为

【end】
例2求解方程 。
解特征线方程 ,其解为 。所以,



【end】
例3(流方程的解)考虑一端具有稳定的流速的无限长管道的流,
解特征线方程 ,过 的特征线 。所以,

当 时,

当 时,

所以,方程的解为

【end】
第一章习题
1.对平面扩散方程 ,若 的值仅依赖于 和 ,证明:

而对空间扩散方程,若 的值仅依赖于 和 ,证明:

利用守恒定律和时间的任意性,

由高斯公式推论, ,所以

由 的任意性, 。
【end】
热传导方程推导类似。
例2(二维膜振动方程)均匀鼓膜上任意截取区域 ,在平面上的投影为 。作用于 的张力的垂直分量 近似等于沿 的法向张力 。因此垂直方向总合力为 。由此,

由二维的高斯公式,

因此

这里 。
【end】
,或 。
2.求解方程 。
3.求解方程 。(提示:令 )
4.求解方程 。
5.求解方程 。
6.求解方程 。

在时刻 和 ,在 内的污染物分别为 和 ,由物质守恒定律
由 , 的任意性,

再由 , 的任意性,

【end】
例3(弦振动方程)假设
(1)弦的两端固定(非本质的假设),弦长为 ,线密度为 ;
(2)外力作用下在平衡位置附近作微小的垂直振动;
(3)弦上各点张力方向与弦的切线方向一致,大小服从Hooke定律。
相关文档
最新文档