概率论与数理统计题库及答案

合集下载

概率论与数理统计-题库带答案

概率论与数理统计-题库带答案

概率论与数理统计-题库1、某人投篮命中的概率是0.8,直到投中为止,投篮次数为4次的概率是()A、)B、)C、)D、)答案: C2、袋中有5个球,3个新2个旧,每次取一个,无放回地取两次,则第二次取到新球的概率是()A、)B、 )C、 )D、 )答案: A3、设随机变量,且,则= ( )。

A、)0 ;B、 ) ;C、 ) (C) ;D、 ) (D)答案: B4、设随机变量的密度函数为:,则使成立的常数=( )。

A、)B、 )C、 )D、 )答案: D5、设两个随机变量和相互独立且同分布,则下列各式成立的是()A、 )B、 )C、 )D、 )答案: B6、答案:7、答案:8、答案:9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、如果某批产品有a 件次品,b件合格品.采用(1)有放回(2)不放回抽样方式从中抽取n次,每次一件产品.问正好有k件是次品的概率各是多少?答案:(1)有放回抽样,(2)不放回抽样,16、袋中有球12个,2白10黑,今从中取4个,试求(1)恰有一个白球的概率(2)至少有一个白球的概率。

答案:设A事件为恰有一个白球,B事件为至少有一个白球,17、设随机变量X的分布列为P{=k}=,k=1,2,...求:(1)参数a.(2)P{X>4} (3)Y=2X+1的分布列。

答案:(1)(2)(3),k=1,2,...18、一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X的分布列;(2)P(X<1)答案:(1),k=0,1,2,3,4(2)19、答案:解析:20、盒子中有3个黑球、2个白球、3个红球,在其中任意地取出4个,以X和Y分别表示取到的黑球、红球个数,求X和Y的联合分布。

答案:解析:21、设和是分别为来自总体X和Y的简单随机样本,X 与Y独立同分布,且,样本均值分别记为和,求。

()答案:∵∴∴22、总体A,是来自总体的样本。

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。

概率论和数理统计试题及答案

概率论和数理统计试题及答案

概率论和数理统计试题及答案概率论和数理统计试题及答案⼀、填空题:1、设A 与B 相互独⽴,P(A) =31, P(B) =21, 则P (B-A) = . 解:111()()[1()](1)233P B A P B P A -=-=?-=2、设~[1,3]X U (均匀分布),则2()E X = ,(2)D X = .(52)E X -= ,解:()2;()1/3E X D X ==22()()()13/3E X D X E X =+= (2)4()4/3D X D X ==(52)5()21028E X E X -=-=-=3、设随机变量X 服从指数分布,即 ~(2),X E 定义随机变量2,31,31,3X Y X X >??==??-则 Y 的分布列为。

解:3322620()()(1)(3)21Y x xF Y P Y y P Y P X e dx e e σσσ-----+=≤=≤-=<==-=-?33226()()(11)(3)21Y x xF Y P Y y P Y P X e dx e e ---=≤=-<≤=≤==-=-?3322620()()(12)(3)21Y xx F Y P Y y P Y P X edx ee σσσ++----=≤=<≤=>==-=-?其中σ是与y ⽆关的量4、设~(200,0.1)X B ~(3)Y P ,2~(3,2)Z N ,且X ,,Y Z 相互独⽴, 则(235)E X Y Z --+= , (235)D X Y Z --+=解:(235)2()3()()522000.1333533E X Y Z E X E Y E Z --+=--+=??-?-+=(235)4()9()()72274103D X Y Z D X D Y D Z --+=++=++=5、设总体2~(,)X N µσ,123,,x x x 为来⾃X 的样本,123?0.50.1x x ax µ=+-是未知参数µ的⽆偏估计,则a =。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

概率论和数理统计试题及答案

概率论和数理统计试题及答案

概率论和数理统计试题及答案一、填空题:1 11、 设 A 与 B 相互独立,P(A) = , P(B)=,贝U P (B-A)=.3 2 ----------------11 1解: P(B _A)二 P(B)[1 _P(A)](1 ): 23 32、 设 X~U[1,3](均匀分布),则 E(X 2)=, D(2X)二 ______________.E(5X _2) = ___________________ ,解: E(X)二 2;D(X) =1/ 3E(X 2) = D(X) E(X)2 =13/3 D( 2X 4D (X =)4 / 3E(5X - 2)= 5E X ) 2 102Y~ P(3),Z ~ N(3,2 ),且 X , Y,Z 相互独立,则3、设随机变量X 服从指数分布,即X ~ E(2),定义随机变量2,X 3 Y £,X =3-1,X :3解:F Y (Y)=P(Jy)二 P(丫 乞 一1) = P(X :: 3)2e'x dx = -e^x 0F Y (Y)二 P(Y D二 P(—1 :: 丫 乞1) = P(X 空 3)3=2e "dx =-e'xF Y (Y)二 P(丫 乞 y)二 P(1 :: Y ^2) = P(X 3)则Y 的分布列为二 1 —e ■6 -2C其中二是与y 无关的量2e"dx _ -e^x4、设 X ~ B(200,0.1)E(2X -3Y -Z 5) = , D(2X -3Y -Z 5)二 ____________________2XE(D(2X -3Y -Z 5) =4D(X) 9D(Y) D(Z) =72 27 4 =10325、设总体X ~ N(j 匚),X i, X2, X3 为来自X 的样本,二0.5/ • 0.1X2 - ax 3 是未知参数丄的无偏估计,则a =。

解:因为是无偏估计所以E(?)=E(0.X+ 0.x1— ax =) 0E5x 什)E.2X-( aJEj x ()= (0.5 0.-1 E)X(=)( 0.5- 01"口二)(0.5 0•中=)1a ~ -0. 46、设X〜N(叫,打),Y~N(」2,/),X与丫相互独立,且X与丫分别为X,Y的样2 2本均值,样本容量分别为n i,n2。

(完整word版)概率论和数理统计考试试题和答案解析.doc

(完整word版)概率论和数理统计考试试题和答案解析.doc

一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。

2、一个袋子中有大小相同的红球 6 只、黑球 4 只。

(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。

3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为:0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。

8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21- (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 41414121(B)161814121(C)1631614121 (D)81834121-3. 设连续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=- (B) 21)21(==X P (C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ). (A)⎰bax x F d )( (B)⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -6. 下列函数中能够作为连续型随机变量的密度函数的是( ).7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+-)(x Φ1)(=x (C) Φ=-)(a Φ)(a (D) 2)(=<a x P Φ1)(-a9. 下列数组中,不能作为随机变量分布列的是( ).(A )61,61,31,31 (B) 104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23-=X Y ( ).(A) )3,2(-N (B) )3,4(-N (C) )3,4(2-N (D) )3,2(2-N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ).(A) n (B) p (C) 1- p (D)p-1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ). (A) E X D X (),().==321 (B) 9.0)(,3)(==X D X E(C) E X D X ().,()==033 (D) E X D X ().,().==032113. 设),(~p n B X ,2.1)(,2)(==X D X E ,则p n ,分别是( ).(A) 4.0,5 (B) 2.0,10 (C) 5.0,4 (D) 25.0,814. 设),(~p n B X ,且6.3)(,6)(==X D X E ,则=n ( ).(A) 30 (B) 20 (C) 15 (D) 1015. 设)10,50(~2N X ,则随机变量( )~)1,0(N .(A)10050-X (B) 1050-X (C) 50100-X (D) 5010-X16. 对于随机事件A B ,,下列运算公式( )成立.(A) )()()(B P A P B A P +=+ (B) )()()(B P A P AB P =(C) )()()(A B P B P AB P = (D) )()()()(AB P B P A P B A P -+=+17. 下列事件运算关系正确的是( ).(A) A B BA B += (B) A B BA B += (C) A B BA B += (D) B B -=118. 设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B19. 设A B ,为随机事件,A 与B 不同时发生用事件的运算表示为( ).(A) A B + (B) A B + (C) AB AB + (D) A B20. 若随机事件A ,B 满足AB =∅,则结论( )成立. (A) A 与B 是对立事件 (B) A 与B 相互独立(C) A 与B 互不相容 (D) A 与B 互不相容21. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件.(A) 二人都没射中 (B) 至少有一人没射中 (C) 两人都射中 (D) 至少有一人射中22. 若事件A B ,的概率为6.0)(=A P ,5.0)(=B P ,则A 与B 一定( ).(A) 相互对立 (B) 相互独立 (C) 互不相容 (D) 相容23. 设A ,B 为两个任意事件,则P (A +B ) =( ).(A) P (A ) + P (B ) (B) P (A ) + P (B ) - P (A )P (B ) (C) P (A ) + P (B ) - P (AB ) (D) P (AB ) – [P (A ) + P (B ) ]24. 对任意两个任意事件A B ,,等式( )成立.(A) P AB P A P B ()()()= (B) P A B P A P B ()()()+=+ (C) P A B P A P B ()()(())=≠0 (D) P AB P A P B A P A ()()()(())=≠025. 设A ,B 是两个任意事件,则下列等式中( )是不正确的.(A) )()()(B P A P AB P =,其中A ,B 相互独立 (B) )()()(B A P B P AB P =,其中0)(≠B P (C) )()()(B P A P AB P =,其中A ,B 互不相容 (D) )()()(A B P A P AB P =,其中0)(≠A P26. 若事件A 与B 互斥,则下列等式中正确的是( ). (A) P AB P A P B ()()()= (B) P B P A ()()=-1(C) P A P A B ()()= (D) P A B P A P B ()()()+=+27. 设A ,B 为两个任意事件,则下列等式成立的是( ).(A) B A B A +=+ (B) B A AB ⋅= (C) B A B B A +=+ (D) B A B B A +=+28. 设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-29. 甲、乙两人各自考上大学的概率分别为0.7,0.8,则甲、乙两人同时考上大学的概率为( ).(A) 0.56 (B) 0.50 (C) 0.75 (D) 0.9430. 若A B ,满足( ),则A 与B 是对立事件.(A) 1)(=+B A P (B) A B U AB +==∅, (C) P A B P A P B ()()()+=+ (D) P AB P A P B ()()()=31. 若A 与B 相互独立,则等式( )成立.(A) P A B P A P B ()()()+=+ (B) P AB P A ()()=(C) P A B P A ()()= (D) P AB P A P B ()()()=32. 设n x x x ,,,21Λ是正态总体),(2σμN (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关. (A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α33. 假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小34. 从正态总体),(2σμN 中随机抽取容量为n 的样本,检验假设0H :,0μμ=1H :0μμ≠.若用t 检验法,选用统计量t ,则在显著性水平α下的拒绝域为( ).(A) )1(-<n t t α (B) t ≥)1(1--n t α (C) )1(->n t t α (D) )1(1--<-n t t α35. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差36. 对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差37. 设n x x x ,,,21Λ是正态总体),(2σμN 的一个样本,2σ是已知参数,μ是未知参数,记∑==ni i x n x 11,函数)(x Φ表示标准正态分布)1,0(N 的分布函数,975.0)96.1(=Φ,900.0)28.1(=Φ,则μ的置信水平为0.95的置信区间为( ).(A) (x -0.975n σ,x +0.975nσ) (B) (x -1.96n σ,x +1.96n σ)(C) (x -1.28nσ,x +1.28nσ) (D) (x -0.90nσ,x +0.90nσ)38. 设321,,x x x 是来自正态总体N (,)μσ2的样本,则μ的无偏估计是( ).(A)3321x x x -+ (B) 321x x x -+(C) 321x x x ++ (D) 321x x x --39. 设x x x n 12,,,Λ是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321x x x ++ (B)321525252x x x ++ (C) 321515151x x x ++ (D) 321535151x x x ++40. 设21,x x 是取自正态总体)1,(μN 的容量为2的样本,其中μ为未知参数,以下关于μ的估计中,只有( )才是μ的无偏估计.(A) 213432x x + (B) 214241x x + (C) 214143x x - (D)215352x x +41. 设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n x x x ,,,21Λ是该总体的一个样本,记∑==ni i x n x 11,则总体方差2σ的矩估计为( ).(A) x (B) ∑=-n i i x n 12)(1μ(C) ∑=-n i i x x n 12)(1 (D) ∑=n i i x n 12142. 设n x x x ,,,21Λ是来自正态总体22,)(,(σμσμN 均未知)的样本,则( )是统计量.(A) 1x (B) μ+x (C)221σx (D)1x μ43. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量. (A ) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X44. 设X 是连续型随机变量,其密度函数为⎩⎨⎧∉∈=],,1(,0],,1(,ln )(b x b x x x f 则常数b =( ).(A) e (B) e + 1 (C) e – 1 (D) e 245. 随机变量)21,3(~B X ,则X P (≤=)2( ).(A) 0 (B) 81(C)21 (D) 8746. 设),2(~2σN X ,已知2(P ≤X ≤4.0)4=,则X P (≤=)0( ).(A) 0.4 (B) 0.3 (C) 0.2 (D) 0.147. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ).(A) 2,2-==b a (B) 1,2-=-=b a (C) 1,21-==b a (D) 2,21==b a48. 设随机变量X 的密度函数为f x (),则E X ()2=( ).(A) xf x x ()-∞+∞⎰d (B)x x f x d )(2⎰∞+∞-(C)x x xf d )(2⎰∞+∞- (D)(())()x E X f x x --∞+∞⎰2d49. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( )成立.(A) )]([)(X E X E X D -= (B) 22)]([)()(X E X E X D += (C) )()(2X E X D = (D) 22)]([)()(X E X E X D -=50. 设随机变量X 服从二项分布B (n , p ),已知E (X )=2.4, D (X )=1.44,则( ). (A) n = 8, p =0.3 (B) n = 6, p =0.6 (C) n = 6, p =0.4 (D) n = 24, p =0.1二、证明题1. 试证:已知事件A ,B 的概率分别为P (A ) = 0.3,P (B ) = 0.6,P (B A +) = 0.1,则P (AB ) =0.2. 试证:已知事件A ,B 相互独立,则)()(1)(B P A P B A P -=+.3. 已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.4. 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证:A 与B 是相容的.5. 设随机事件A ,B 相互独立,试证:B A ,也相互独立.6. 设A ,B 为随机事件,试证:)()()(AB P A P B A P -=-.7. 设随机事件A ,B 满足AB =∅,试证:P A B P B ()()+=-1.8. 设A ,B 为随机事件,试证:P A P A B P AB ()()()=-+.9. 设B A ,是随机事件,试证:)()()()(AB P B A P B A P B A P ++=+.10. 已知随机事件A ,B 满足A B ⊃,试证:)()()(B P A P B A P -=-.三、计算题1. 设B A ,是两个随机事件,已知5.0)(=A P , 4.0)(=A B P ,求)(B A P .2. 某种产品有80%是正品,用某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示一产品确为正品,求P (A ).3. 某单位同时装有两种报警系统A 与B ,每种系统独立使用时,其有效概率9.0)(=A P ,95.0)(=B P ,在A 有效的条件下B 有效的概率为97.0)(=A B P ,求)(B A P +.4. 设A , B 是两个独立的随机事件,已知P (A ) = 0.4,P (B ) = 0.7,求A 与B 只有一个发生的概率.5. 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.6. 假设B A ,为两事件,已知4.0)(,6.0)(,5.0)(===A B P B P A P ,求)(B A P +.7. 设随机变量)2,3(~2N X ,求概率X P <-3(≤)5 (已知Φ3841.0)1(=,Φ7998.0)3(=φ).8. 设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求)(B A P .9. 从大批发芽率为8.0的种子中,任取4粒,问(1)4粒中恰有一粒发芽的概率是多少?(2)至少有1粒种子发芽的概率是多少?10. 已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P +.11. 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().12. 已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .13. 已知P (B ) = 0.6,)(B A P =0.2,求)(AB P .14. 设随机变量X ~ N (3,4).求 P (1< X < 7)(Φ3841.0)1(=,Φ2977.0)2(=).15. 设)5.0,3(~2N X ,求2(P ≤X ≤)6.3.已知Φ9884.0)2.1(=,2977.0)2(=Φ.16. 设B A ,是两个随机事件,已知4.0)(=A P ,5.0)(=B P ,45.0)(=A B P ,求)(B A P +.17.已知某批零件的加工由两道工序完成,第一道工序的次品率为0.03,第二道工序的次品率为0.01,两道工序的次品率彼此无关,求这批零件的合格率.18.已知袋中有3个白球7个黑球,从中有放回地抽取3次,每次取1个,试求⑴恰有2个白球的概率;⑵有白球的概率.19. 268-16.某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.20.某篮球运动员一次投篮投中篮框的概率为0.9,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.21.某气象站天气预报的准确率为70%,在4次预报中,求⑴恰有3次准确的概率;⑵至少1次准确的概率.22.已知某批产品的次品率为0.1,在这批产品中有放回地抽取4次,每次抽取一件,试求⑴有次品的概率;⑵恰有两件次品的概率.23.某射手射击一次命中靶心的概率是08.,该射手连续射击5次,求:⑴命中靶心的概率;⑵至少4次命中靶心的概率.24.设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到黑球的概率.25.一袋中有10个球,其中3个黑球7个白球.今从中有放回地抽取,每次取1个,共取5次.求⑴恰有2次取到黑球的概率;⑵至少有1次取到白球的概率.26.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.27.机械零件的加工由甲、乙两道工序完成,甲工序的次品率是0.01,乙工序的次品率是0.02,两道工序的生产彼此无关,求生产的产品是合格品的概率.28.一袋中有10个球,其中3个黑球7个白球.今从中依次无放回地抽取两个,求第2次抽取出的是黑球的概率.29. 两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

相关文档
最新文档