积分不等式的证明方法及其应用
积分不等式证明技巧解析

∫
2 f ( x ) dx ≤
∫
0
b a
1
f(
1) 1 ( ) d x + f′ 3 3
(x ∫
0
1
2
-
1) 1 dx = f ( ) . 3 3
6 借助于参数表达式来证明积分不等式
引入参数 t , 构造辅助函数
[ f ( x) ∫
- tg ( x ) ] d x ≥ 0 , 得到关于 t 的二次多项式 , 利用判别
n- 1 n- 2
+ … + 6 cn- 3 x + …
例 4 求 ( x 4 - x3 + 2 x 2 - x + 1) co s x d x. 解 列竖式计算 :
x x
4 4 3
∫
- x - x
+ 2x
2 2 2
- x - 6x + 5x
+1 - 20 + 21
3 2
12 x
3
- 10 x
∫
第 12 卷第 6 期
杨和稳 : 积分不等式证明技巧解析
27
1 ( ξ ) < 0 , x ∈ [ 0 , 1 ] , 所以 , 其中ξ介于 与 x 之间 . 因为 f ″ 3
f ( x) < f (
1 0
1) 1 1) 1 1 1) 2 ( ) (x ( ) ( x2 + f′ , f ( x ) < f ( ) + f ′ , 3 3 3 3 3 3
a x
例 4 设 f ( x ) 在 [ a , b] 上有连续导数 , 且 f ( a) = f ( b) = 0 , 证明 : b 4 ( x) | ≥ max | f ′ | f ( x ) | d x. 2
《积分不等式_(全文)》

《积分不等式_(全文)》第1章积分不等式1.1 定积分不等式的证明定理1.1 方法1:柯西-施瓦茨不等式设f(x),g(x)在[a,b]上连续,则有∫b a f2(x)dx∫bag2(x)dx≥(∫baf(x)g(x)dx)2等号成立的必要条件是存在常数k使得 f(x)=kg(x). 习题1.1: 设f(x)在区间[0,1]上连续,且1≤f(x)≤3,证明:1≤∫10f(x)dx∫11f(x)dx≤43证明:由Cauchy-Schwarz不等式:∫1 0f(x)dx∫11f(x)dx≥(∫1√f(x)√1f(x)dx)2=1又由基本不等式得:∫1 0f(x)dx∫13f(x)dx≤14(∫1f(x)dx+∫13f(x)dx)2再由条件1≤f(x)≤3,有((f(x)-1)(f(x)-3)≤0,则f(x)+3f(x)≤4⇒∫1(f(x)+3f(x))dx≤4即可得1≤∫10f(x)dx∫k1f(x)dx≤43□定理1.2 方法2:琴声不等式连续的凸函数,则有:g(1b−a ∫baf(x)dx)≤1b−a∫bag(f(x))dx若g(x)是[m,M]上的连续凹函数时,上式中的不等号相反。
习题1.2: 证明:对于连续函数f(x)>0, 有ln∫10f(x)dx≥∫1lnf(x)dx证明:令g(x)=lnx,则. g′′(x)=1x ,g′′(x)=−1x2<0,所以g(x)为凹函数,可由上式琴声不等式定理,可得ln∫10f(x)dx≥∫1lnf(x)dx或利用定积分定义,将[0,1]分』等分,可取x=1n,由“算术平均数≥几何平均数“得:1 n ∑k=1n f(kn)≥√f(1n)⋯f(nn)n=e1n∑k=1n lnf(k n)⇒∫10f(x)dx≥e lim n→∞1n∑k=1n lnf(kn)=e∫10lnf(x)dx然后两边取对数即证.∫b a tf(t)dt≤2b−a6[(2b+a)f(b)+(2a+b)f(a)]事业证明:利用琴声不等式,对于任意R∈[0,1],则有:Rf(x₁)+(1﹣R)f(x₂)≥f(Rx₁+(1﹣R)x₂) 所以再令t=xb+(1-x)a有:∫b a lf(t)dt=(b−a)∫1[xb+(1−x)a]f(xb+(1−x)a)≤(b−a)∫1[xb+(1−x)a][xf(b)+(1−x)f(a)]dx≤2b−n6[(2b+a)f(b)+(2a+b)f(a)]证明:对任意x∈[0,π2],有1-cosx ≤ sinx, 即得到∫x 0sintdt≤∫xcostdt,显然有∫π2sinxdx=∫π2cosxdx=1,且函数11+x2在[0,π2]上单调递减,所以可以利用斯蒂文森不等式,若f(x)在[a,b]上单调递减,则∫b a f(x)g1(t)dt≤∫baf(x)g2(t)dt,即有:∫n2sinx1+x2dx≤∫n2cosx1+x2dx习题1.4: 证明:∫π20sinx1+x2dx≤∫π2cosx1+x2dx习题1.5: 设a>0, f(x)在[0,a]上连续可导,证明:|f (0)|≤1a ∫a|f (x )|dx +∫a|f ′(x )|dx证明:由积分第一中值定理,有1a∫a 0|f (x )|dx =|f (ξ)|,ξ∈[0,a ] ∫z|f ′(x )|dx ≥∫z|f ′(x )|dx ≥|∫ḡf ′(ξ)dx|=|f (ξ)−f (0)|≥|f (0)|−|f (ξ)|习题1.6: 设 f(x)在[0,1]上连续可导,证明:|f (12)|≤∫10|f (x )|dx +12∫1|f ′′(x )|dx证明:由积分第一中值定理,有 [0,12],f (ξ)|dx =12|f (ξ)|,ξ∈[0,12]. 再由N-L 公式, f (12)=f (ξ)+∫12ξf ′(x )dx,04所以有:|f (12)|≤|f (ξ)|+∫120|f ′(x )|dx ≤2∫ℎ|f (x )|dx ∫1|f ′(x )|dx′(1)即1a ∫a|f (x )|dx +∫a|f ′(x )|dx ≥|f (ξ)|+|f (0)|−|f (ξ)|=f (0)|f (12)|≤|f (ξ)|+∫112|f ′(x )|dx ≤2∫112|f (x )|dx ∫112|f ′(x )|dx (2)用(1)与(2)式相加即证.习题1.7: 设f(x)在[a,b]上有一阶连续导数,f(a)=f(b)=0,求证:∫b a|f (x )|dx ≤(b−a )24M其中M 为|f'(x)|在[a,b]上的最大值。
积分不等式的证明方法及其应用

积分不等式的证明方法及其应用
【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个积分不等式的方法,并给出了相应的例题,从而更好的掌握其积分不等式的证明方法。
然后再给出重要不等式及其证明方法,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式上的应用及其两个重要积分不等式的应用。
【关键词】积分不等式、Schwarz 不等式、Holder 不等式、Gronwa11不等式、Yong 不等式 1 引言
在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz 公式求出(如2
1
x e e dx -⎰),这时我们只能用其它方法对积分值进行估计,后近似计算,另一种情况是,被积函数是没有明确给出只知道它的某些结构或性(例如设函数y 在(0,1)上连续可微,且((1)(0)1,f f -=求1
20()f x dx -⎰),应此我们希望对积分值给出某种估计,为此我们来研究积分不等式。
我们把含有定积分的不等式称为积分不等式。
2
2211ln ,(()cos )(()sin )1b b a a xdx x xdx f x xdx f x xdx ≤+≤⎰⎰⎰⎰都是积分不等式。
(完整版)各种Schwarz积分不等式的归纳及其应用举例

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)1. 预备知识 (1)2.Cauchy-Schwarz积分不等式及其推广 (2)2.1 Cauchy-Schwarz积分不等式 (2)2.2 Cauchy-Schwarz积分不等式形式上的推广 (4)2.3 Holder积分不等式 (5)2.4 Minkowski积分不等式 (9)3. 实例应用 (10)3.1 Cauchy-Schwarz积分不等式的实例 (10)3.2 Cauchy-Schwarz积分不等式形式推广的运用 (12)3.3 Holder积分不等式的应用 (12)3.4 运用Minkowski积分不得不等式证明范数 (13)4. 结束语 (13)参考文献 (14)各种Schwarz 积分不等式的归纳及其应用举例学生姓名: 学号:数学与信息科学学院 数学与应用数学指导老师: 职称:摘 要:本文归纳和总结给出不同形式的Schwarz 积分不等式,然后对其进行证明,并举例说明它在一些实际问题中的应用.关键词:Cauchy-Schwarz 积分不等式;行列式;Holder 积分不等式;Minkowski 积分不等式The examples of application and induction on some forms ofSchwarz integration inequalitiesAbstract :This paper will enumerate and then prove some forms of Schwarz integration inequality, thereby illustrate its implementation in practical problems.Key words :Cauchy-Schwarz integral inequality; D eterminant; Holder integral inequality; Minkowski integral inequality前言本文主要从三个方面归纳和总结了Schwarz 积分不等式,首先我们给出了Schwarz 积分不等式的一般形式、Schwarz 积分不等式的形式推广和Schwarz 积分不等式最出名的推广就是Holder 积分不等式以及Minkowski 积分不等式;其次运用理论来证明它的合理性;最后通过一些实例说明它在数学中,生活中的实际应用.1. 预备知识定理1.1 (Cauchy 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为实数,则222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑. (1)等式成立当且仅当i i a b λ=,1,2,,i n =.这是最常见的Cauchy 不等式,其实当n=3可追朔至法国数学家grange . Cauc-hy 不等式可以推广至复数. 如何推广呢? 不等式只在实数时才有意义,对于复数自然的选择其长度. 对任意复数z x iy =+,其长度z =(1)而言我们只须将平方的意义,更改为复数的模数的平方即可.定理1.2 (Cauchy 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为复数, 则222111nn ni ii i i i i a ba b ===⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭∑∑∑ (2) 等式成立当且仅当i i a b λ=,1,2,,i n =,λ为复数.定理1.3 (Cauchy 不等式)[3]已知i a ,i b ∈C ,则112222,111i j i j i j i j a b a b ∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑ (3) 等式成立当且仅当i i a b λ=,1,2,,i n =,λ∈C .如果21i i a ∞=<∞∑、21i i b ∞=<∞∑,则1i ii a b∞=<∞∑.从Cauchy 不等式的角度而言,无穷数列{}1i i a ∞=的平方和收敛,21i i a ∞=<∞∑,是很自然而然出现的空间,在实变函数论或泛函分析中我们称之为2l 空间. 这是n 维实数空间n R 最自然的推广,它是一个Hilbert 空间,最重要的应用就是量子力学.在数学中尤其是分析学的思考过程通常是有限和⇔无穷级数⇔积分 (4)因此想当然Cauchy 不等式是可以推广至积分.2. Cauchy-Schwarz 积分不等式及其推广2.1 Cauchy-Schwarz 积分不等式定理2.1.1 (Cauchy-Schwarz 积分不等式)[1]已知()f x ,()g x 均在[],a b 上连续,则()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰. (5)证明 (法一:定义法)在积分学中,积分几乎都是从无穷级数推得的,下面我们也从级数开始,设[],a b 上有1n -个点,依次为0121n n a x x x x x b -=<<<<<=,它们把[],a b 分成n 个小区间[]1,i i i x x -∆=,i =1,2,…,n. i b an-∆=,记{}12,,,n T =∆∆∆. 这些分点构成对[],a b 的一个分割.在每个小区间i ∆上任取一点i ξ,作以()()i i f g ξξ为高,i ∆为底的小矩形.因为()f x ,()g x 均在[],a b 上连续,则()f x ,()g x 均在[],a b 上可积,有222111()()()()nn n i i i i i i i b a b a b a f g f g n n n ξξξξ===---⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑, 两边求极限,()2201lim ()()()()nbi i aT i b a f g f x g x dx n ξξ→=-⎛⎫= ⎪⎝⎭∑⎰,2222011lim ()()()()n n b i i a T i i b a b a f g f x g x dx n n ξξ→==--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭∑∑⎰, 则()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⎰⎰⎰.(法二:判别式)开始这个不等式最常见的证明方法就是利用判别式.因为[]()2222()()()2()()()bb b ba a a a xf t g t dt f t dt x f t g t dt x g t dt ⎡⎤+=++⎢⎥⎣⎦⎰⎰⎰⎰, 可视为x 的二次方程式,由于[]2()()0b axf t g t dt +≥⎰,而且2()0b a f t dt ≥⎰,所以上式表示的是开口向上而且在轴x 上方的抛物线,由于和x 轴不相交,所以没有实数,因此判别式小于或等于0.判别式()()()2224()()4()()0bbbaaaf tg t dtf t dtg t dt ∆=-≤⎰⎰⎰,整理得()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰.(法三:半正定)注意到关于1t ,2t 的二次型[]22222121122()()()2()()()bbbbaaaat f x t g x dx t f x dx t t f x g x dx t g x dx +=++⎰⎰⎰⎰为非负二次型,从而系数行列式()()()()()()()()bba a bbaaf x f x dx f xg x dx f x g x dxg x g x dx⎰⎰⎰⎰=2()baf x dx⎰2()bag x dx ⎰-()2()()0baf xg x dx≥⎰,即()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⎰⎰⎰,从而定理2.2.1得证.从实变函数论的角度而言,我们仅需要求()f x 、()g x 是平方可积分函数([]2,L a b )则Cauchy-Schwarz 积分不等式仍然成立. 其空间关系可对照前一式(4):222R l L ⇔⇔. (6)2.2 Cauchy-Schwarz 积分不等式形式上的推广根据上面的Cauchy-Schwarz 积分不等式()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰的证明方法三中我们可以看出这个不等式可以改写为以下行列式形式:()()()()()()()()bba a bbaaf x f x dx f xg x dx f x g x dxg x g x dx⎰⎰⎰⎰0≥ .以这种形式给出的好处在于形式便于推广.定理2.2.1 (Schwarz 积分不等式形式推广)[2]设()f x ,()g x ,()h x 均在[],a b 上可积,则有()()()()()()()()()()()()0()()()()()()bbba a a bbba a a bbbaaaf x f x dx f xg x dx f xh x dxf xg x dx g x g x dxh x g x dx f x h x dxh x g x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰. (7) 证明 注意到关于1t ,2t ,3t 的二次型[]2123()()()bat f x t g x t h x dx ++⎰222222123()()()b b baaat t f x dx t t g x dx t t h x dx=++⎰⎰⎰1213232()()2()()2()()b b baaat t f x g x dx t t f x h x dx t t g x h x dx +++⎰⎰⎰为非负二次型,从而其系数行列式()()()()()()()()()()()()0()()()()()()bbba a a bbba a a bbbaaaf x f x dx f xg x dx f xh x dx f x g x dx g x g x dx h x g x dx f x h x dxh x g x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰, 从而定理2.2.1得证. 2.3 Holder 积分不等式定理2.3.1 (Holder 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为任意复数,且p ,q 1≥,111p q+=,则 11111n nnpqp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. (8) 证明 令11ii n pp i i a a a ==⎛⎫⎪⎝⎭∑ , 11ii n qq i i b b b ==⎛⎫⎪⎝⎭∑,利用几何平均不等式①,得到11p qi i i i a b a b p q≤+, 或1111111111p q i ii i n nn n pqpqp q p q i i i i i i i i a b a b pqa b a b ====≤+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑,取有限和,得11111111111111nnnpq i iii i i i n n n n pqpqp q p q i i i i i i i i a b a b pqa b a b =======≤+=⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑,因此可得11111n nnpqp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. 注 ①几何平均不等式2211()22a b ab a b ≤+⇔≤+.当2p q ==时就是Cauchy-Schwarz 不等式.Holder 不等式对n =∞也成立.另外最著名的就是积分不等式.定理2.3.2 ([],C a b 上的Holder 积分不等式)[3]已知()f x ,()g x [],C a b ∈,111p q+=,且p ,q 1≥则()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx≤⎰⎰⎰. (9)或更一般的形式定理2.3.3 ([],C a b 上的Holder 积分不等式)[3]已知1()f x ,2()f x ,…,()n f x [],C a b ∈,且1211p p ++ (1)p =1,1i p ≥ 则 ()()()12121111212()()()()()()nnbbbbpp p p p p n n aaaaf x f x f x dx f x dxf x dxf x dx≤⎰⎰⎰⎰. (10)证明 (定理2.3.2) 设()f x ,()g x [],C a b ∈,则当()0f x ≡或()0g x ≡时,上式(10)显然成立.令 i b ax a ia i x n-=+=+∆, (0,1,,i n =)则由Holder 不等式(9)可知11111()()()()n n npqp q i i i i i i i f x g x f x g x ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑, 上式两边同时乘以1n ,有1111111()()()()n nnpqp q i i i i i i i f x g x f x g x nn ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,上式右端=11111()()nnpqp q i i i i n f x g x -==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∑∑=111111()()nnpqp q p q i i i i nf xg x ⎛⎫-+ ⎪⎝⎭==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∑∑ =1111()()nnpqp q i i i i f x g x n n ==⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑,于是11111()()()()nnnpqp q i i i i i i i f x g x f x g x ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑可转化为 11111()()()()nnnpqp q iii i i i i f x g x f x g x nn n ===⎛⎫⎛⎫⎪ ⎪⎪ ⎪≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ ,而b a x n -∆=,故b an x-=∆,将n 代入11111()()()()nnnpqp q i i i i i i i f x g x f x g x nn n ===⎛⎫⎛⎫⎪ ⎪⎪ ⎪≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑,得 11111()()()()n nnpqp q i i i i i i i x x x f x g x f x g x b a b a b a ===∆∆∆⎛⎫⎛⎫≤ ⎪ ⎪---⎝⎭⎝⎭∑∑∑, 即11111111()()()()n n npqp qi i i i i i i f x g x x f x x g x x b a b a b a ===⎛⎫⎛⎫∆≤∆∆ ⎪ ⎪---⎝⎭⎝⎭∑∑∑ , 对上式两端取极限,当n →∞时,0x ∆→,得()()1111()()()()bbbpqpqa aaf xg x dx f x dxg x dx b a b a≤--⎰⎰⎰,化简上式,即得()()11()()()()bbbpqpqa aaf xg x dx f x dxg x dx ≤⎰⎰⎰,又由 ()()()()bb aaf xg x dx f x g x dx ≤⎰⎰,故()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx≤⎰⎰⎰,从而定理2.3.2得证.定理2.3.4 (pL 上的Holder 积分不等式)[5]设1p >,111p q+=,()[,]p f x L a b ∈,()[,]p g x L a b ∈,那么()()f x g x 在[,]a b 上L 可积,并且成立()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx ≤⎰⎰⎰. (11)证明 首先证明当1p >,111p q +=时,对任何正数A 及B ,有11p q A BA B p q≤+.(12)事实上,作辅助函数 ()x x x αϕα=-(0)x <<∞,01α<<,则 '1()(1)x x αϕα-=-,所以在(0,1)上'()0x ϕ>,在(1,)∞上'()0x ϕ<,因而(1)ϕ是函数()x ϕ在(0,)∞上的最大值,即 ()(1)1x ϕϕα≤=-,(0,)x ∈∞. 由此可得(1)x x ααα≤+-,(0,)x ∈∞.令 Ax B =,代入上面不等式,那么 (1)A A B B αααα≤+-.两边乘以B ,得到 1(1)A A B Bαααα-≤+- .令1p α=,则 11q α-=,于是上式成为 11p q A B A B p q≤+.如果()1()0bppaf x dx=⎰或()1()0bqqag x dx=⎰,则()0f x =..a e 于[,]a b 或 ()0g x =..a e 于[,]ab ,这时不等式(11)自然成立,所以不妨设()1()0bppaf x dx>⎰,()1()0bqqag x dx>⎰.作函数 ()1()()()bppaf x x f x dxϕ=⎰, ()1()()()bqqag x x g x dxψ=⎰.令()pA x ϕ= , ()qB x ψ=,代入不等式(12),得到()()()()pqx x x x pqϕψϕψ≤+. (13)由(13)立即可知()()x x ϕψ在[,]a b 上L 可积,由此可知)(()f x g x 也L 可积,对(13)的两边积分,得到 ()()()()1pqbbba aax x x x dx dx dx pqϕψϕψ≤+=⎰⎰⎰.因此()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx ≤⎰⎰⎰,证毕.2.4 Minkowski 积分不等式定理2.4.1 ([,]pL a b 上的Minkowski 积分不等式)[5]设1p ≥,()f x , ()g x ∈[,]p L a b ,那么()()[,]p f x g x L a b +∈,并且成立不等式111()()()()ppppppb b b a a a f x g x dx f x dx g x dx ⎛⎫⎛⎫⎛⎫≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰. (14) 证明 当1p =时,因()()()()f x g x f x g x ≤+,由积分性质可知不等式(14)自然成立.如果1p >,因为(),()[,]pf xg x L a b ∈,所以()()[,]p q qf xg x L a b ∈,由Holder 积分不等式,有()11()()()()()()pppbbbpqqaa af x f xg x dx f x dx f x g x dx ⎛⎫≤ ⎪⎝⎭⎰⎰⎰,类似对()g x 也有()11()()()()()()pqqbbbpqqaa ag x f x g x dx g x dx f x g x dx⎛⎫≤ ⎪⎝⎭⎰⎰⎰,因而 1()()()()()()pbbp aaf xg x dx f x g x f x g x dx -=⎰⎰()()()()()()p pbbqqaaf x f xg x dx g x f x g x dx ≤+⎰⎰()111()()()()p q p q b b bpqa a af x dxg x dx f x g x dx ⎡⎤⎛⎫⎛⎫⎢⎥≤+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰(15)若()()0bpa f x g x dx =⎰,则()1()()bppaf xg x dx⎰,(14)式显然成立, 若()()0bpaf xg x dx ≠⎰,则在(15)式两边除以()1()()b pqaf xg x dx ⎰,得到()1111()()()()ppppbb b pqaa a f x g x f x dx g x dx -⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰. 由111p q+=,得到 111()()()()ppppppb b b a a a f x g x dx f x dx g x dx ⎛⎫⎛⎫⎛⎫≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰, 证毕.无论是Holder 积分不等式,还是Minkowski 积分不等式,当2p q ==时,就是Cauc- hy- Schwarz 积分不等式.上面我们从空间R 和p L 空间上说明Holder 积分不等式和Min- kowski 积分不等式,对于p l 空间也有类似的Holder 积分不等式和Minkowski 积分不等式,11111pqpqi i i i i i i ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑, (Holder 积分不等式)其中1p >,111p q+=,()123,,,p l ξξξ∈,()123,,,q l ηηη∈.pp p x yx y +≤+, (Minkowski 积分不等式)其中1p ≥,()123,,,x ξξξ=,()123,,,p y l ηηη=∈,11ppip i x ξ∞=⎛⎫= ⎪⎝⎭∑,11qq i pi y η∞=⎛⎫= ⎪⎝⎭∑.由此可知p l 按范数p x 成赋范线性空间.3. 实例应用3.1 Cauchy-Schwarz 积分不等式的实例例1. 设()f x 在[],a b 上连续,且()0f x ≥,()1b a f x dx =⎰. 证明:k R ∀>,有()()22()cos ()sin 1bbaaf x kxdx f x kxdx+≤⎰⎰.证明 因为()f x 在[],a b 上连续,则()f x 在[],a b 上可积,有()()22()cos baaf x kxdxkxdx =⎰⎰,()()22()()cos ()cos bb b aa af x dxf x kxdx f x kxdx =⎰⎰⎰,因为Cauchy-Schwarz 积分不等式,有()()()22()()cos bbaaakxdxf x dxf x kxdx ≤⎰⎰⎰,从而()22()cos ()cos bbaa f x kxdxf x kxdx ≤⎰⎰,同理()22()sin ()sin bbaaf x kxdxf x kxdx ≤⎰⎰,()()2222()cos ()sin ()(cos sin )1bb baaaf x kxdx f x kxdxf x kx kx dx +≤+=⎰⎰⎰.例2. 设()f x 在[]0,a 上连续可导,(0)0g =,证明:20()()()2a a a g x g x dx g x dx ≤⎰⎰′′. 等号成立()g x cx ⇔=(c 为常数).证明 设0()()xf xg t dt =⎰′,()()f x g t =′′,(0)0f =,因为()()(0)()()()xxg x g x g g t dt g t dt f x =-=≤=⎰⎰′′,()2222()()1()()()()1()()2222aaaa af x f a ag x g x dx f x f x dx g x dxg x dx ≤===⋅≤⎰⎰⎰⎰′′′′, 当()g x cx =时,左边=2222aa c c xdx =⎰,右边=222022a a a c c dx =⎰,则左边=右边.由Schwarz 积分不等式,()g x c =′,[]0,x a ∈()g x c =′或()g x c =-′,0()()x xg t dt cdt g x cx =⇒=⎰⎰′. 3.2 Cauchy-Schwarz 积分不等式形式推广的运用例3.[4]设()f x ,()g x 均在[],a b 上可积且满足: 1) ()0f x m ≥>, 2) ()0ba g x dx =⎰,则有:22222()()()()()()b b b b a aa a f x g x dx f x dx g x dx mb a g x dx ⎡⎤≤--⎢⎥⎣⎦⎰⎰⎰⎰.证明 利用(7),取()1h x =,并注意到()0bag x dx =⎰,则()()()()()()()()()()0bbba a abbaabaf x f x dx f xg x dx f x dx f x g x dxg x g x dxo f x dxb a-⎰⎰⎰⎰⎰⎰22222()()()()()()()()bbbbbaaa aa b a f x dx g x dx f x dx g x dx b a f x g x dx ⎡⎤⎡⎤=----⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰0≥, 由此得到:222221()()()()()()b b b b b a a a a a f x g x dx f x dx g x dx f x dx g x dx b a ⎡⎤⎡⎤≤-⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰⎰,注意到定理中的条件1): ()0f x m ≥>,于是22()()baf x dx m b a ≥-⎰,从而22222()()()()()()b b b b a aa a f x g x dx f x dx g x dx mb a g x dx ⎡⎤≤--⎢⎥⎣⎦⎰⎰⎰⎰. 3.3 Holder 积分不等式的应用例4. 设()f x ,()g x 为区间[],a b 上的可积函数,m N ∈,则:()()11()()()()m b m ba mm ab af x dx f x dxg x g x dx ++≥⎰⎰⎰.证明 把区间[],a b 分成n 等分,每个小区间长为x ∆,在每个小区间上取一点i ξ,则有11111()()()()nm m i ni i n m mi i ii f xf xg g xξξξξ++===∆∆≥∆∑∑∑因为()f x ,()g x 可积所以上式0x ∆→两端取极限,由极限保号性和黎曼积分定义有()()11()()()()m b m ba mmab af x dx f x dxg x g x dx ++≥⎰⎰⎰结论得证.3.4 运用Minkowski 积分不等式证明范数例5.[5]当1p ≥时,证明[,]p L a b 按1()()ppbpa f x f x dx ⎛⎫= ⎪⎝⎭⎰定义中的范数()p f x 成为赋范线性空间.证明 由 1()()0ppb pa f x f x dx ⎛⎫=≥ ⎪⎝⎭⎰,且()0f x =等价于()0f x =, ()()pp f x f x αα=,其中α为任意实(复)数.又由 Minkowski 积分不等式,当1p ≥时,对任何(),()[,]p f x g x L a b ∈,有 1()()()()ppb pa f x g x f x g x dx ⎛⎫+=+ ⎪⎝⎭⎰11()()ppppb b a a f x dx g x dx ⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭⎰⎰()()p p f x g x =+,所以[,]p L a b 按()p f x 成为赋范线性空间.4. 结束语本文主要给出了各种类型的Schwarz积分不等式,首先我们给出了的最基本Schwarz积分不等式,也就是最常见的Schwarz积分不等式;其次将Schwarz积分不等式进行一般形式推广;然后给出Schwarz积分不等式最出名的推广Holder积分不等式;最后给出Minkowski积分不等式.每一种Schwarz积分不等式都给出了相应的新的证明方法并给出一些实例加以说明.参考文献:【1】华东师范大学数学系编,数学分析上册(第三版)[M].高等教育出版社,2001.6.【2】匡继昌,常用不等式[M].长沙:湖南教育出版社,1989.【3】林琦焜,Cauchy-Schwarz不等式之本质和意义[J].数学传播,1995,24(1):p26-42.【4】张小平, 解析不等式[M].北京:科学出版社,1987.【5】程其襄魏国强等编,实变函数与泛函分析基础(第二版)[M].高等教育出版社,2003.7.。
积分不等式的证明方法及其应用

积分不等式的证明方法及其应用一、积分不等式的证明方法:1.使用定积分定义证明:对于一个函数f(x),如果在[a,b]上f(x)≥0,那么可以使用定积分的定义进行证明。
将[a,b]分成n个小区间,每个小区间长度为Δx=(b-a)/n,那么对于每个小区间,存在一个ξi ∈ [x_{i-1}, x_i],使得f(ξi)Δx_i≤∫_{x_{i-1}}^{x_i} f(x)dx。
对于所有小区间,将不等式相加并取极限即可得到定积分不等式。
2.使用导数的性质证明:对于一个函数f(x),如果能够表示出它的导数f'(x),那么可以使用导数的性质进行证明。
首先计算f'(x),然后判断f'(x)的正负性,再根据函数在[a,b]上的取值情况,可以得到相应的不等式。
例如,如果f'(x)≥0,那么f(x)在[a,b]上是单调递增的,可以得到∫_a^bf(x)dx≥∫_a^b f(a)dx=f(a)(b-a)。
3.使用恒等式和变量替换证明:对于一个复杂的积分不等式,有时可以通过引入合适的恒等式或进行变量替换来简化证明过程。
例如,对于形如∫_a^b f(x)g(x)dx≥0的不等式,可以通过将f(x)g(x)拆分为两个函数的平方和,然后应用恒等式a^2+b^2≥0进行证明。
或者,可以通过进行变量替换将不等式转化为更简单的形式,然后再进行证明。
二、积分不等式的应用:1.极值问题:2.凸函数与切线问题:3.平均值不等式:平均值不等式是积分不等式的一种特殊情况,它可以用于证明平均值与极值之间的关系。
例如,对于一个连续函数f(x),可以通过证明(1/(b-a))∫_a^b f(x)dx≥ƒ(ξ)来得到平均值与极值之间的关系。
4.泛函分析问题:总结起来,积分不等式的证明方法包括定积分定义证明、导数性质证明、恒等式和变量替换证明等等。
而积分不等式的应用包括解决极值问题、研究凸函数的性质、平均值不等式以及泛函分析问题等。
积分不等式证明

积分不等式证明
摘要:
1.积分不等式的基本概念
2.积分不等式的证明方法
3.积分不等式的应用案例
正文:
一、积分不等式的基本概念
积分不等式是微积分学中的一个重要分支,主要研究函数在一定区间上的积分值与其在某些子区间上的积分值之间的关系。
积分不等式在数学分析、物理学、经济学等领域中有着广泛的应用。
二、积分不等式的证明方法
积分不等式的证明方法有多种,主要包括以下几种:
1.直接证明法:通过直接计算和化简,得到积分不等式的证明。
2.间接证明法:通过构造辅助函数或引入参数,将积分不等式转化为简单的不等式或恒等式,从而证明原积分不等式。
3.反证法:假设积分不等式不成立,通过推导出矛盾的结论,从而证明原积分不等式成立。
三、积分不等式的应用案例
积分不等式在实际应用中有很多案例,以下举一个简单的例子:
设函数f(x) = x^2 - x + 1,求解以下积分不等式:
∫(x^2 - x + 1) dx >= 2
解:首先对函数f(x) 求积分,得到F(x) = 1/3 * x^3 - 1/2 * x^2 + x +
C。
将上界和下界代入F(x),得到F(2) = 7/3,F(0) = 1。
因此,∫(x^2 - x + 1) dx >= 2 等价于∫(x^2 - x + 1) dx - 2 >= 0。
将F(x) 代入得到:(1/3 * x^3 - 1/2 * x^2 + x) | - 2 >= 0,化简得到x^2 - x + 1 >= 0。
由于该不等式恒成立,所以原积分不等式也成立。
利用积分的性质证明不等式

利用积分的性质证明不等式积分是微积分中非常重要的概念,它可以用来计算函数的面积、曲线的弧长、函数的平均值等等。
在解决实际问题时,我们经常会利用积分的性质来证明不等式,这种方法可以简化问题的分析过程,提高解题效率。
下面以证明柯西不等式为例,详细介绍如何利用积分的性质来证明不等式。
柯西不等式是一个非常著名的数学不等式,它的数学表达式如下:对于任意的实数a1、a2、…、an和b1、b2、…、bn,有(a1² + a2² + … + an²)(b1² + b2² + … + bn²) ≥ (a1b1 + a2b2 + … + anbn)²要证明柯西不等式,我们可以利用积分的性质,首先将函数f(x)进行平方,然后对其进行积分,进而推导出柯西不等式。
假设f(x)为定义在区间[a, b]上的连续函数,我们可以定义一个函数g(x) = f²(x)。
接下来我们对g(x)在区间[a, b]上求积分,表示为∫[a,b]g(x)dx。
由于g(x)是f(x)的平方,根据积分的性质,可以得到:∫[a,b]g(x)dx = ∫[a,b]f²(x)dx。
接下来我们对函数f(x)进行两次积分,得到的结果如下:∫[a,b]f²(x)dx = ∫[a,b][∫[a,b]f(x)du]dx。
我们可以看出,这个双重积分相当于对函数f(x)在区域C内进行了两次求面积的操作。
接下来,我们将C内部的每个小矩形区域的面积加起来,即得到整个区域C的面积。
设每一个小矩形的宽度为Δx,在区域C内任意选取一个点(ξ,x)。
根据微积分的定义,存在一点c,使得:f(ξ)-f(c)=f'(c)Δx。
根据上面的表达式,我们可以得到:f(ξ)-f(c)=f'(c)Δx≥0。
我们可以看出,f'(c)代表函数f(x)的导数,而根据导数的定义,它反映了函数f(x)在特定点的变化率,也可以理解为函数f(x)的斜率。
几类定积分不等式的证明_王阳

(苏州大学外国语学院 江苏苏州 215006)
犹太人对自己的生活是有着传统性的恪守,男婴出生第八天要 举行割礼仪式,是对再生的追求,也是对性的约束。一直生活在异
[摘 要]现代美国犹太人在美国这块“应许之地”、“希望之乡”的生 乡的犹太人对自己的身份经历了尴尬、模糊和认定的全面过程。在
分法先求出 f (x) 在[a,b] 上的最大、最小值,再用估值定理即可。
∫ 例:求证
2 exp(− 1 ) ≤ 2
1
−
2 1
exp(− x2 )dx
≤
2
2。
证:先求被积函数
f (x) = exp(− x2 ) 在 ⎡⎢⎣−
1, 2
1 ⎤ 上的最大 2 ⎥⎦
和最小值。
∫ ∫ λ f ( x )dx ≥ λ 1 f ( x )dx 。
0
0
三、利用柯西-许瓦兹不等式证明定积分不等式
( ) ∫ ∫ 当 所 求 证 的 不 等 式 中 含 有 : b f 2 (x)dx, b f (x)dx 2 或
a
a
∫ ∫ b f (x)dx b g(x)dx 的形式时,可用柯西——许瓦兹不等式求证。
a
a
∵ f ′(x) = −2x exp(−x2 )
3.4 落地技术的对比研究
且经过 T 检验(p<0.01),它们之间存在显著性差异,体现出两个项
最佳着地技术是尽可能加大脚跟与身体重心之间的水平距离,
目的较大差别。众所周知,助跑速度和起跳能力是决定跳跃成绩的 尽量利用身体重心的抛物线轨迹使双脚落得更远。从起跳脚离地后,
两个最为重要的因素,而在实际情况中,则恰恰是由于主观上要求 运动员身体重心抛物线的移动轨迹就已被决定。但在实际跳跃中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分不等式的证明方法及其应用【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个证明积分不等式的基本方法,并给出了相应的例题,从而更好地掌握其积分不等式的证明方法。
尔后再给出四个重要积分不等式及其证明方法和应用,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式等上的应用及两个重要积分不等式的应用。
【关键词】积分不等式 Schwarz 不等式 Ho ..lder 不等式 Gronwall 不等式Young 不等式1 引言在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz 公式求出(如210x e dx -⎰),这时我们只能用其它方法对积分值进行估计,或近似计算;另一种情况是,被积函数是没有明确给出,只知道它的结构或某些性质(例如设函数f 在[]0,1上连续可微,且(1)(0)1f f -=,求1'20()f x dx ⎰),因此我们希望对积分值给出某种估计.为此我们来研究下积分不等式. 我们把含有定积分的不等式称为积分不等式.⎰⎰≤2121ln ln xdx x xdx x ,()()22()cos ()sin 1bbaaf x kxdx f x kxdx+≤⎰⎰都是积分不等式.2积分不等式的证明方法2.1 定义法我们根据定积分的定义,把积分区间n 等分,得出积分和,再由离散型式子,得出积分和之间的大小关系,再令∞→n ,取极限即可.例1设函数)(x f 在区间 []0,1上可积 .试证明有不等式10()f x dx ⎰.证 先用Jensen 不等式法证明不等式 : 对 R x x x n ∈∀,,,21 , 有不等式nx x x n x x x nn 2222121+++≤+++ . 设T 为区间] 1 , 0 [的n 等分.由上述不等式,有∑∑==⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛ni ni nn i fnn i f 1211 1. 令∞→n , 注意到函数)(x f 和)(2x f 在区间 [ 0 , 1 ]上的可积性以及函数 ||x 和x 的连续性,就有积分不等式1()f x dx ⎰.例2 设f 在区间[],a b 上连续,()0p x ≥,()0b ap x dx ≥⎰,且()m f x M ≤≤,()h x 在[],m M 上有定义,并有二阶导数''()0h x >,试证明:()()()(())()()()b baabbaap x f x dxp x h f x dxh p x dxp x dx≤⎰⎰⎰⎰.证 (利用积分和)将[],a b n 等分,记()i i x a b a n =+-,()i i p p x =,()i i f f x =,1,2,3i =因为''()0h x >,所以()h x 为凸函数,所以1111()()nni iiii i nniii i p fp h f h pp====≤∑∑∑∑则有1111()()nni ii i i i nni i i i b a b ap f p h f n n h b a b a p p n n ====--≤--∑∑∑∑ 令n →+∞取极限,便得欲证明的积分不等式.2.2 利用定积分的基本性质例3 设)(x f 在[],a b 上二次连续可微,()02a bf +=,试证:3()()24b a M b a f x dx -≤⎰,其中''sup ()a x bM f x ≤≤=.证 将)(x f 在2a b x +=处用泰勒公式展开,注意到()02a bf +=,则 '''21()()()()()222!2a b a b a b f x f x f x ξ+++=-+-,)(x f 的右端第一项在[],a b 上的积分为0,故''21()()()2!2bb aa ab f x dx f x dx ξ+=-⎰⎰''21()()22b a a b f x dx ξ+≤-⎰31()|62ba ab M x +≤- 3()24M b a -=,其中''sup ()a x bM f x ≤≤=.例4设函数()f x 在[]0,1连续且递增,证明:对任意()0,1k ∈,有1()()kf x dx k f x dx ≤⎰⎰.证1 11000()()()()()kk kk k f x dx f x dx k f x dx f x dx f x dx ⎡⎤-=+-⎢⎥⎣⎦⎰⎰⎰⎰⎰ 1(1)()()kkk f x dx k f x dx =-+⎰⎰ []12(1)()()k k f f ξξ=--0≥12(1)k ξξ<<<<其中0,移项即得.证2 1()()kf x dx k f x dx ≤⎰⎰1()()()kkkf x dx k f x dx k f x dx ⇔≤+⎰⎰⎰10(1)()()kk k f x dx k f x dx ⇔-≤⎰⎰或1011()()1k kf x dx f x dx k k ≤-⎰⎰但f 在闭区间[]0,1上连续且递增,故1011()()()1k k f x dx f k f x dx k k ≤≤-⎰⎰,即 1011()()1k k f x dx f x dx k k≤-⎰⎰成立,原题获证. 2.3 利用重积分证明积分不等式把积分不等式中的定积分变换成重积分,再利用重积分的性质证明积分不等式. 例5 已知()0f x ≥,在[],a b 上连续,()1ba f y dy =⎰,k 为任意实数,求证:()()22()cos ()sin 1bbaaf x kxdx f x kxdx+≤⎰⎰(*)证 (*)式左端()cos ()cos ()sin ()sin b b bba aaaf x kxdx f y kydy f x kxdx f y kydy =+⎰⎰⎰⎰[]()()()b baadx f x f y cosk x y dy =-⎰⎰()()1b baadx f x f y dy ≤=⎰⎰原式获证.2.4 利用缩放积分区间来证明积分不等式的方法例 6 设函数()f x 在[]0,1上有连续二阶导数,(0)(1)0f f ==,()0f x ≠(()0,1x ∈),试证:''1()4()f x dx f x ≥⎰. 证 因()0f x ≠(()0,1x ∈),故()f x 在()0,1内恒正或恒负(否则由介值性知必有零点在()0,1内,与()0f x ≠矛盾),不妨设()0f x >(0<的情况类似可证),()0,1x ∈,因()f x 在[]0,1上连续,故存在[]0,1c ∈,使得01()max ()x f c f x ≤≤=,于是对任意01a b <<<有''''1100()()()()f x f x dx dx f x f c ≥⎰⎰1''''011()()()()b a f x dx f x dx f c f c =≥⎰⎰''1()()baf x dx f c ≥⎰''1()()()f b f a f c =- 下面我们来恰当地选取,a b ,得到所需的估计.注意到(0)(1)0f f ==,应用Lagrange 公式得,()'()(0)()0,,()0f c f f c c f c c ξξ-∃∈==-; ()'(1)()(),1,()11f f c f c c f c c ηη-∃∈==---. 令,a b ξη==,则''1''0()1()()()()f x dx f b f a f x f c ≥-⎰1()()1()1(1)f c f c f c c c c c =+=--因为211(1)24c c c c +-⎛⎫-≤= ⎪⎝⎭,所以''10()14()(1)f x dx f x c c ≥≥-⎰,获证. 2.5 构造变限积分的方法对于一个积分不等式,可把常数a 变为变量构造辅助函数()y F x =,再利用函数()y F x =的性质来证明积分不等式.例7 设()f x 在[]0,1上可微,且当[]0,1x ∈时,'0()1f x <<,(0)0f =,试证明:11230(())()f x dx f x dx >⎰⎰.证1 问题在于证明11230(())()0f x dx f x dx ->⎰⎰故令230()(())()xxF x f t dt f t dt =-⎰⎰,因(0)0F =,故只要证明在(0,1)内有'()0F x >.事实上,'30()2()()()x F x f x f t dt f x =-⎰ 20()2()()xf x f t dt f x ⎡⎤=-⎢⎥⎣⎦⎰令20()2()()xg x f t dt f x =-⎰,故只要证明在(0,1)内有()0g x >,因(0)0g =,故只要证明在(0,1)内有'()0g x >.事实上,'''()2()2()()2()(1())g x f x f x f x f x f x =-=-,已知(0)0f =,'0()1f x <<([]0,1x ∈),故(0,1)x ∈时,()0f x >,所以'()0g x >,故'()0F x >.证2 已知(0)0f =,'0()1f x <<([]0,1x ∈),故(0,1)x ∈时,()0f x >所以问题在于证明12013(())1()f x dx f x dx>⎰⎰(*)令20()(())x F x f s ds =⎰,30()()xG x f s ds =⎰则(*)式左端(利用Cauchy 中值定理)有120130(())(1)(0)(1)(0)()f x dx F F G G f x dx-=-⎰⎰''()()F G ξξ=032()()()f f t dtf ξξξ=⎰ 022()()f t dtf ξξ=⎰0222()2()()(0)f t dt f t dtf f ξξ-=-⎰⎰''2()11(01)2()()()f f f f ηηξηηη==><<<2.6 其它方法证明积分不等式的方法很多,像判别式法,面积法,概率论法等,在此我就不一一介绍了.3 几个重要积分不等式及其应用本节我们将会介绍几个著名的不等式.这些不等式不仅本身是重要的,而且证明这些不等式的方法,也十分典型.因此本节将系统地介绍这些不等式,并着重讨论它们的证明与应用.3.1 Schwarz 不等式及其应用3.1.1 Cauchy 不等式[ 9 ] 对任意n 个数0,1,2,3,i a i n ≥=恒有222111()()()nnni i i i i i i a b a b ===≤∑∑∑,其中等号当且仅当i i a b 与成比例时成立.我们将这种离散的和的不等式推广到积分不等式,就得到Schwarz 不等式. 3.1.2 定理1(Schwarz 不等式)[ 9 ]dx x g dx x f dx x g x f ba ba ba ⎰⎰⎰≤)()())()((222,)(),(x g x f 在区间],[b a 上可积,其中等号当且仅当存在常数,a b ,使得()()af x bg x ≡时成立(,a b 不同时为0).证1 将],[b a n 等分,令()i ix a b a n =+-,应用Cauchy 不等式得222111(()())()()nnni i i i i i i f x g x f x g x ===≤⋅∑∑∑,则有222111111(()())()()n n n i i i i i i i b a b a b a f x g x f x g x n n n n n n===---≤⋅∑∑∑,令n →+∞得 dx x g dx x f dx x g x f bababa⎰⎰⎰≤)()())()((222.证2 利用定积分的性质易知0])()([2≥-⎰dx x tg x f ba ,即0)()()(2)(222≥+-⎰⎰⎰bab ab adx x f dx x g x f t dx x g t(1)当2()0bag x dx =⎰时,因为()g x 在区间],[b a 上可积,所以2()g x 在区间],[b a 上也可积且非负,故有2()0,g x a e =⋅于E ,所以()0,g x a e =⋅于E ,继而有()()0,f x g x a e =⋅于E ,所以有()()0ba f x g x dx =⎰,命题得证,其中[],E ab =.(2)当2()0bag x dx ≠⎰时,上面方程是关于t 的二次多项式不等式,因此,判别式:0)()(4))()((4222≤-=∆⎰⎰⎰bababadx x g dx x f dx x g x f ,即:dx x g dx x f dx x g x f bababa⎰⎰⎰≤)()())()((222,命题得证.证3 利用二重积分来证明Schwarz 不等式.222()()(()())bbbaaaf x dxg x dx f x g x dx -⎰⎰⎰222211()()()()()()()()22b b b b b b a a a a a a f x dx g x dx f y dy g y dy f x g x dx f y g y dy =⋅+⋅-⎰⎰⎰⎰⎰⎰ 22221[()()()()2()()()()]2bb aa dy f x g y f y g x f x g x f y g y dx =+-⎰⎰21[()()()()]2bb aa dy f x g y f y g x dx =-⎰⎰0≥即有dx x g dx x f dx x g x f bab a b a ⎰⎰⎰≤)()())()((222,由此看出若)(),(x g x f 在区间],[b a 上连续,其中等号当且仅当存在常数,a b ,使得()()af x bg x ≡时成立(,a b 不同时为0).3.1.2 Schwarz 不等式的应用应用Schwarz 不等式,可证明另外一些不等式,使用时要注意恰当选取函数,f g . 例1 已知()0f x ≥,在[],a b 上连续,()1ba f y dy =⎰,k 为任意实数,求证:()()22()cos ()sin 1bbaaf x kxdx f x kxdx+≤⎰⎰(*)证 (*)式左端第一项应用Schwarz 不等式,得()()22()cos )baaf x kxdxkx dx=⎰⎰2()cos ()b baaf x kxdx f x dx ≤⎰⎰2()cos b af x kxdx =⎰ 同理()22()sin ()sin bbaa f x kxdxf x kxdx ≤⎰⎰所以()()2222()cos ()sin ()cos ()sin bbbbaaa af x kxdx f x kxdxf x kxdx f x kxdx +≤+⎰⎰⎰⎰()baf x dx ≤⎰1=例2 求证:111222222((()()))(())(())bbbaaaf xg x dx f x dx g x dx +≤+⎰⎰⎰,其中)(),(x g x f 在区间],[b a 上连续,其中等号当且仅当存在常数,a b ,使得()()af x bg x ≡时成立,,a b 不同时为0.证 222(()())()()2()()bbbbaaaaf xg x dx f x dx g x dx f x g x dx +=++⎰⎰⎰⎰11222222()()2(())(())bbbbaaaaf x dxg x dx f x dx g x dx ≤++⎰⎰⎰⎰2112222(())(())b b a a f x dx g x dx ⎡⎤=+⎢⎥⎣⎦⎰⎰对上式两边开平方即得要证明的积分不等式.3.2 Ho ..lder 不等式及其应用3.2.1 基本形式[ 1 0 ] 设,0,1,2,3,i i a b i n ≥=,',k k 为实数,且有'111k k +=,则 当1k >(从而'1k >)时,11''111nnnkk k k i i i i i i i a b a b ===⎛⎫⎛⎫≤⋅ ⎪⎪⎝⎭⎝⎭∑∑∑ 当1,0k k <≠(从而'1k <)时,11''111nnnkk k k i i i i i i i a b a b ===⎛⎫⎛⎫≥⋅ ⎪⎪⎝⎭⎝⎭∑∑∑ 其中等号当且仅当i i a b 与成比例时成立. 3.2.2 Ho ..lder 不等式的积分形式[ 1 0 ]定理2 设(),()0f x g x ≥,并使得所论的积分有意义,,'0,1k k ≠为共轭实数(即'111k k+=),则 当1k >(从而'1k >)时,()()11''()()()()bbbk k k k aaaf xg x dx f x dxg x dx ≤⎰⎰⎰当1,0k k <≠(从而'1k <)时,()()11''()()()()bbbkk k k aaaf xg x dx f x dxg x dx ≥⎰⎰⎰若,f g 连续,则其中的等号当且仅当'()()k k f x tg x ≡时成立. 证 当1k >(从而'1k >)时,令[,]E a b =.因为(),()0f x g x >,所以'()0,()0bbkk aaf x dxg x dx ≥≥⎰⎰,(1)若()0bk af x dx =⎰,又()0f x ≥,则()0k f x ≥,所以(),k f x a e =⋅于E ,故(),f x a e =⋅于E ,所以有()(),f x g x a e=⋅于E ,故()()()()0baEf xg x dx f x g x dx ==⎰⎰,原式得证.同理'()0bk ag x dx =⎰时,原式可证.(2)若()0bk af x dx ≠⎰,'()0bk ag x dx ≠⎰,令()1()()()k kEf x x f x dxϕ=⎰,()''1()()()k k Eg x x g x dxψ=⎰,因为有''k kA B AB k k≤+(此式见本文第13页例8),令(),()A x B x ϕψ==,则得''()()()()k k x x x x kk ϕψϕψ≤+''''()()()()k k k k EEf xg x k f x dxkg x dx=+⎰⎰所以'11()()1Ex x dx k kϕψ≤+=⎰,()()'11()()1()()E k k kk EEf xg x dx f x dxf x dx⇒≤⎰⎰⎰()()11''()()()()bbbkk kk aaaf xg x dx f x dx g x dx ⇒≤⎰⎰⎰.当1,0k k <≠(从而'1k <)时,因'(1)0k k k +-=,则()()''1(1)()()()()()()kbbbkkkk k k k aaaf x dx f x gx dx f x g x gx dx -+-==⎰⎰⎰()1'()(()())()kbbbkkk aaaf x dx f xg x dx g x dx -⇒≤⋅⎰⎰⎰()()()()'1111''()()()()()()k bbbbbkkkk k k k k aaaaaf xg x dx f x dxg x dxf x dxg x dx-⇒≥=⎰⎰⎰⎰⎰所以有()()11''()()()()bbbkk kk aaaf xg x dx f x dx g x dx ≥⎰⎰⎰.在上述两种情况中,等号当且仅当'()()k k f x tg x ≡时成立. 3.2.2 Ho ..lder 不等式的应用 例3 试证明:3sin cos 20(0)4xxxadx adx a πππ-⋅≥>⎰⎰.证 令2x t π=+,sin cos 20xt xadx a dt πππ=⎰⎰于是sin cos cos cos 2220000xxtx xadx adx adt a dx πππππ--⋅=⋅⎰⎰⎰⎰2cos cos 2220t ta dt ππ-⎛⎫≥ ⎪⎝⎭⎰24ππ=⋅34π=例5 设函数f 在[]0,1上连续可微,且(1)(0)1f f -=,求1'20()1f x dx ≥⎰.证 在Ho ..lder 不等式中取'2k k ==,则()()()111111222'2'220()()1f x dxf x dxdx=⋅⎰⎰⎰11''01()()f x dx f x dx ≥⋅==⎰⎰(1)(0)1f f -=故有1'20()1f x dx ≥⎰3.3 Gronwall 不等式及其应用3.3.1 Gronwall 不等式[2]定理3 设k 为非负常数,(),()f t g t 为区间[],a b 上的连续非负函数,且满足不等式 ()()()taf t k f sg s ds ≤+⎰,[],t a b ∈,则有()()exp()t af t kg s ds ≤⎰,[],t a b ∈.证1 当0k ≠时,令()()()t at k f s g s ds ϕ=+⎰,则()t ϕ在[],a b 上恒正且可导,则'()()()()()t f t g t g t t ϕϕ=≤,则'()()()t g t t ϕϕ≤'()()()t t aa s ds g s ds s ϕϕ⇒≤⎰⎰, ln ()ln ()()ta t a g s ds ϕϕ⇒-≤⎰()()exp()b af t kg s ds ⇒≤⎰;当0k =时,()()()t af t f sg s ds ≤⎰,[],t a b ∈0ε∀>,()()()tat f s g s ds ϕε=+⎰,则有()()exp()t af tg s ds ε≤⎰由ε的任意性知,()()00exp()taf tg s ds ≤=⋅⎰,原式得证.证2 令()()()t at f s g s ds ϕ=⎰, ()()exp ()tat g s ds ψ=-⎰则()0a ϕ=,()1a ψ=且()t ϕ在[],a b 上可导,'()()()(())()t f t g t k t g t ϕϕ=≤+'()()()()t t g t kg t ϕϕ⇒-≤'()()()()()()t t g t t kg t t ϕϕψψ⎡⎤⇒-≤⎣⎦对上式两边取积分得,'()()()()()()t taa s s g s s ds kg s s ds ϕϕψψ⎡⎤-≤⎣⎦⎰⎰()()0()()exp(())tat t k t k t k k g s ds ϕψψϕ⇒-≤-+⇒≤-+⎰()()exp(())exp(())t taaf t t k k k kg s ds k g s ds ϕ⇒≤+≤-+=⎰⎰,原式得证.3.3.2 Gronwall 不等式的应用下面我们来看一下Gronwall 在证明一阶线性微分方程的惟一性时的应用. 例 6 设积分方程00(,())xx y y f y d ξξξ=+⎰在区间[]00,x x h +上存在连续解,且(,)f x y 关于y 满足Lipschitz 条件:1212(,)(,)f x y f x y k y y -≤-,证明这个连续解()x ϕ是惟一的.证 设此方程还有一连续解()x ψ.现在取00()x y ϕ=,构造皮卡逼近函数序列如下:00001()()(,())x nn x x y x y f d ϕϕξϕξξ-=⎧⎪⎨=+⎪⎩⎰ ,[]00,x x x h ∈+,1,2,3n =则00()(,())x x x y f d ϕξϕξξ=+⎰,00()(,())xx x y f d ψξψξξ=+⎰()()(,())(,())xxx x x x f d f d ϕψξϕξξξψξξ-=-⎰⎰0(,())(,())xx f f d ξϕξξψξξ≤-⎰()()xx k d ϕξψξξ≤-⎰应用Gronwall 不等式得()()0x x ϕψ-≤,则有()()x x ϕψ≡,即连续解()x ϕ是惟一的.3.4 Young 不等式及其应用著名的不等式还有很多,我们不准备一一介绍,最后,我来绍一个在证法上有特点的Young 不等式. 3.4.1 Young 不等式[ 1 0 ]定理4 设()f x 递增,连续于[)0,+∞,(0)0f =,,0a b >,1()f x -表示()f x 的反函数,则10()()abab f x dx f y dy -≤+⎰⎰,其中等号当且仅当()f a b =时成立.该式从几何上看上要分清楚的.因积分等于曲边梯形的面积,可能发生的三种情况,如下图所示,这时0()a OABO f x dx S =⎰,10()bOCEO f y dy S -=⎰,OADEO ab S =,其中OCEO S 表示图形OCEO 的面积.(1)(2)(3)()b f a = ()b f a < ()b f a >证 01我们证明()10()()()af a f x dx f y dy af a -+=⎰⎰①因为()f x 递增,连续于[]0,a 上,故1f -递增,连续于[]0,()f a 上.故①式有意义.将[]0,a n 等分,记分点为0120n x x x x a =<<<<=,相应的点为()i i y f x =,(1,2,3,i n =)构成[]0,()f a 上的一个分划:0120()n y y y y f a =<<<<=,因为()f x 在[]0,a 上连续,故在[]0,a 上一致连续.故n →+∞时,对于分划0120()n y y y y f a =<<<<=来讲,有11111max max()max(()())0i i i i i ni ni ny y y f x f x --≤≤≤≤≤≤∆=-=-→()n →+∞,故()111011()()lim ()()n naf a i i i i n i i f x dx f y dy f x x f y y ---→∞==⎡⎤+=∆+∆⎢⎥⎣⎦∑∑⎰⎰()11111lim ()()(())()()ni i i i i i n i f x x x f f x f x f x ----→∞=⎡⎤=-+-⎣⎦∑()1111lim ()()()()ni i i i i i n i f x x x x f x f x ---→∞==-+-⎡⎤⎣⎦∑[]111lim ()()ni i i i n i f x x x f x --→∞==-∑[]00lim ()()n n n f x x x f x →∞=-()0(0)()af a f af a =-⋅=, ①式获证.2由①式可知,若()b f a =,则10()()a bab f x dx f y dy -≤+⎰⎰中等号成立.03若0()b f a <<,则由f 的连续性知,存在()00,x a ∈,使得0()f x b =,于是00()110()()()()()abx af x x f x dx f y dy f x dx f x dx f y dy --+=++⎰⎰⎰⎰⎰00()10(()())()x f x a x f x dx f y dy f x dx -=++⎰⎰⎰00000()()()()f x a x f x x af x ab >-+==04()b f a >时,只要把f 看作是1f -的反函数,就可由03的结论得到.05 联系02,03,04可知定理成立.3.4.2 Young 不等式的应用例7 证明当,1a b >时,不等式1ln a ab e b b -≤+成立.证 令()1x f x e =-,则f 单调递增且连续,1()ln(1)f y y -=+ 因,1a b >,应用Young 不等式可得1110(1)(1)()()a b a b f x dx f y dy -----≤+⎰⎰⇒1ln a ab e b b -≤+.例8 设,0a b >,1p >,111p q +=,试证:p qa b ab p q≤+.证 设1()p f x x -=,则f 单调递增且连续,11()q f x y --= 因1p >,应用Young 不等式可得100()()p qaba b ab f x dx f y dy p q-≤+=+⎰⎰,且等号当且仅当()f a b =即p q a b =时成立。