金属学与热处理教案
最新《金属材料与热处理》教案

最新《金属材料与热处理》教案第一部分:教学目标本节课的教学目标主要包括:1.了解金属材料的基本概念和分类;2.掌握热处理的基本原理和方法;3.了解金属材料的热处理工艺及其在材料性能改善中的应用。
第二部分:教学内容本节课的教学内容主要包括以下几个方面的内容:1.金属材料的基本概念和分类:a.金属的定义和特点;b.金属材料的分类与特性。
2.热处理的基本原理和方法:a.热处理的概念和目的;b.热处理的基本原理和作用机制;c.热处理方法的分类和应用。
3.金属材料的热处理工艺及其应用:a.固溶处理的工艺过程和作用;b.淬火处理的工艺过程和作用;c.时效处理的工艺过程和作用;d.其他热处理方法及其应用。
第三部分:教学方法本节课的教学方法主要包括以下几种:1.讲授法:通过讲解理论知识,介绍金属材料的基本概念、热处理的原理和方法等内容。
2.实例法:通过案例分析和实际应用示例,加深学生对金属材料和热处理的理解和掌握。
3.实验法:通过实验演示,展示金属材料热处理的过程和效果,提高学生的实际操作能力。
4.讨论法:通过小组讨论和全班讨论,增强学生的思考和交流能力,培养学生的团队合作意识。
第四部分:教学过程设计1.导入:通过引入金属材料与热处理的实际应用和重要性,激发学生对本课程的兴趣和思考。
2.知识讲解:依次介绍金属材料的基本概念和分类,热处理的基本原理和方法,金属材料的热处理工艺及应用。
3.实验演示:进行金属材料的热处理实验演示,展示实际操作步骤和效果,并鼓励学生积极参与和实践。
4.案例分析:通过分析实际应用案例,讨论金属材料热处理在材料性能改善中的重要作用和实际应用。
5.小组讨论:将学生分为小组,安排小组讨论环节,通过讨论和交流,加深学生对金属材料和热处理的理解和掌握。
6.总结归纳:对本节课的重点内容进行总结归纳,强调学生在今后的学习和实践中应该注意的问题和要点。
7.作业布置:布置相关练习和作业,巩固学生对本节课知识的理解和掌握。
金属材料与热处理市公开课获奖教案省名师优质课赛课一等奖教案

金属材料与热处理教案一、教学目标:1. 了解金属材料的基本概念、分类和特性;2. 掌握金属的热处理方法及其在材料强度、韧性和耐蚀性方面的应用;3. 理解金属材料热处理对微观结构的影响,并学会通过热处理改善材料性能。
二、教学内容:1. 金属材料的基本概念和分类:a. 金属材料的定义;b. 金属材料的分类:有色金属和黑色金属;c. 金属材料的特性:导电性、导热性、可塑性和延展性。
2. 金属材料的热处理方法:a. 固溶处理:概念、原理和应用;b. 淬火处理:概念、原理和应用;c. 回火处理:概念、原理和应用;d. 冷加工和时效处理:概念、原理和应用。
3. 金属材料的热处理对性能的影响:a. 强度的改善:冷加工、固溶处理和淬火处理;b. 韧性的改善:回火处理;c. 耐腐蚀性的改善:时效处理和表面处理。
4. 热处理实验:a. 实验一:固溶处理与淬火处理的实验;b. 实验二:回火处理的实验;c. 实验三:冷加工与时效处理的实验。
三、教学方法:1. 理论讲授:通过讲解金属材料的基本概念、分类和特性,以及不同热处理方法的原理和应用,使学生掌握相关知识。
2. 实验教学:通过热处理实验,让学生亲自操作并观察材料的性能变化,加深对热处理方法和影响的理解。
3. 讨论交流:组织学生讨论不同热处理方法的优缺点,以及在实际应用中的选择和搭配,培养学生的分析和判断能力。
四、教学评估:1. 实验报告:针对每个实验,学生需撰写实验报告,包括实验目的、原理、步骤、结果及分析等内容。
2. 课堂练习:设计相关的选择题和计算题,帮助学生检验对知识掌握的程度。
3. 期末考试:综合考核学生对金属材料和热处理的全面理解,考察学生运用所学知识解决问题的能力。
五、教学资源:1. 教材:金属材料与热处理教材,包括相关理论和实验操作指南。
2. 实验设备和材料:实验室所需的金属材料和热处理设备。
六、教学进度安排:1. 第一周:金属材料的基本概念和分类;2. 第二周:固溶处理和淬火处理;3. 第三周:回火处理;4. 第四周:冷加工和时效处理;5. 第五周:热处理实验;6. 第六周:复习和期末考试。
《金属材料与热处理》教案

《金属材料与热处理》教案教案:金属材料与热处理一、教学目标:1.了解金属材料的基本性质和分类;2.掌握金属材料的热处理工艺;3.理解金属材料的结构与性能的关系。
二、教学内容:1.金属材料的概述(1)金属材料的定义和特点(2)金属材料的分类及应用领域2.金属材料的热处理(1)热处理的目的和基本原理(2)常见的热处理方法和工艺流程(3)热处理对金属材料性能的影响3.金属材料的结构与性能关系(1)金属晶体结构与性能的关系(2)金属的固溶体和析出相的形成与性能的关系三、教学过程:1.导入(15分钟)(1)讲解金属材料的定义和特点;(2)引入金属材料的分类及应用领域。
2.讲解金属材料的热处理(30分钟)(1)讲解热处理的目的和基本原理;(2)介绍常见的热处理方法和工艺流程;(3)分析热处理对金属材料性能的影响。
3.组织热处理实验(60分钟)(1)准备实验所需的金属材料和设备;(2)进行热处理实验,并观察实验结果;(3)分析实验结果,讨论热处理对金属材料性能的影响。
4.讲解金属材料的结构与性能关系(30分钟)(1)讲解金属晶体结构与性能的关系;(2)介绍金属的固溶体和析出相的形成与性能的关系。
5.总结与提问(15分钟)(1)总结金属材料与热处理的基本知识;(2)提问检查学生掌握情况。
四、教学资源:1.教材《金属材料与热处理》;2.实验室设备和金属材料。
五、教学评估:教师通过学生的表现、回答问题的情况以及实验结果的分析等来评估学生对金属材料与热处理知识的掌握程度。
六、教学反思:通过本课的教学,使学生了解到金属材料的基本性质和分类,掌握了金属材料的热处理工艺,并理解了金属材料的结构与性能的关系。
在教学中,我通过引入实验环节,增加了学生的实践操作,提高了他们对知识的理解。
同时,我也发现有些学生对金属材料的晶体结构和热处理工艺的理解有难度,需要在教学中提供更多的实例和练习。
此外,教学过程中还需要加强与学生的互动,提高他们的学习主动性和合作能力。
金属材料与热处理》理论课教案

金属材料与热处理》理论课教案第一章:金属材料的概述一、教学目标:1. 了解金属材料的定义、分类和特点。
2. 掌握金属的晶体结构及金属键的基本概念。
3. 熟悉金属的性能及应用。
二、教学内容:1. 金属材料的定义与分类2. 金属的晶体结构3. 金属键的特点4. 金属的性能5. 金属材料的应用三、教学方法:1. 讲授法:讲解金属材料的定义、分类和特点,金属的晶体结构及金属键的基本概念。
2. 案例分析法:分析金属材料的性能及应用。
四、教学准备:1. 教案、教材、多媒体课件。
2. 金属材料样品、图片等教学资源。
五、教学过程:1. 导入:引导学生思考金属材料的定义及分类。
2. 讲解:详细讲解金属的晶体结构、金属键的特点,金属的性能及应用。
3. 互动:提问学生关于金属材料的问题,解答学生的疑问。
4. 案例分析:分析金属材料的性能及应用,引导学生了解金属材料在工程中的应用。
5. 总结:对本节课的内容进行总结,强调重点知识点。
六、课后作业:1. 复习本节课的内容,整理笔记。
2. 查找相关资料,了解金属材料在工程中的应用案例。
第二章:金属的塑性变形与再结晶一、教学目标:1. 了解金属的塑性变形及其原因。
2. 掌握金属的再结晶过程及影响因素。
3. 熟悉金属的冷加工和热加工工艺。
二、教学内容:1. 金属的塑性变形及其原因2. 金属的再结晶过程3. 影响再结晶的因素4. 金属的冷加工和热加工工艺三、教学方法:1. 讲授法:讲解金属的塑性变形及其原因,金属的再结晶过程及影响因素。
2. 案例分析法:分析金属的冷加工和热加工工艺。
四、教学准备:1. 教案、教材、多媒体课件。
2. 金属的塑性变形和再结晶的图片、图表等教学资源。
五、教学过程:1. 导入:引导学生思考金属的塑性变形的概念及其原因。
2. 讲解:详细讲解金属的塑性变形及其原因,金属的再结晶过程及影响因素。
3. 互动:提问学生关于金属的塑性变形和再结晶的问题,解答学生的疑问。
金属材料与热处理教案

金属材料与热处理教案一、教学目标1. 知识与技能:(1)了解金属材料的分类及性能;(2)掌握金属热处理的基本方法及其应用;(3)学会运用金属热处理知识解决实际问题。
2. 过程与方法:(1)通过观察、实验等途径,培养学生对金属材料的认知能力;(2)通过小组讨论、实践操作等环节,提高学生对金属热处理方法的理解和应用能力。
3. 情感态度与价值观:(1)培养学生热爱科学、勇于探索的精神;(2)培养学生珍惜资源、保护环境的意识。
二、教学内容1. 金属材料的分类及性能(1)金属材料的分类:黑色金属、有色金属及合金;(2)金属材料的性能:力学性能、物理性能、化学性能。
2. 金属热处理的基本方法(1)退火:降低硬度、提高韧性;(2)正火:提高硬度、降低韧性;(3)淬火:提高硬度、降低韧性;(4)回火:调整硬度与韧性。
3. 金属热处理的应用(1)金属零件的制造与修复;(2)金属工具的制造与维护;(3)金属设备的改进与优化。
三、教学重点与难点1. 教学重点:(1)金属材料的分类及性能;(2)金属热处理的基本方法及其应用。
2. 教学难点:(1)金属热处理过程中温度、时间、冷却速度等参数的控制在实际应用中的重要性;(2)金属热处理对金属性能的影响规律。
四、教学方法1. 采用讲授法,系统地向学生介绍金属材料与热处理的基本知识;2. 利用实验法,让学生直观地了解金属热处理的过程及效果;3. 通过小组讨论法,培养学生合作探究、解决问题的能力。
五、教学安排1. 第一课时:金属材料的分类及性能;2. 第二课时:金属热处理的基本方法;3. 第三课时:金属热处理的应用;4. 第四课时:金属热处理实践操作;5. 第五课时:总结与拓展。
六、教学评价1. 课堂评价:通过提问、讨论、实验操作等方式,了解学生在课堂上的学习情况;2. 作业评价:通过学生提交的作业,检查学生对金属材料与热处理知识的掌握程度;3. 实验报告评价:对学生在实践操作中的表现进行评价,包括操作技能、问题解决能力等。
金属材料与热处理教案

金属材料与热处理教案第一章:金属材料的概述教学目标:1. 了解金属材料的定义和分类。
2. 掌握金属材料的性质和用途。
教学内容:1. 金属材料的定义:金属材料是指由金属元素或金属合金组成的材料。
2. 金属材料的分类:金属材料主要包括纯金属和合金两大类。
3. 金属材料的性质:金属材料具有优良的导电性、导热性和韧性等。
4. 金属材料的用途:金属材料广泛应用于建筑、机械、电子等领域。
教学活动:1. 引入金属材料的概念,引导学生思考金属材料的日常应用。
2. 介绍金属材料的分类,让学生了解不同类型的金属材料。
3. 通过实例讲解金属材料的性质,如导电性、导热性和韧性等。
4. 探讨金属材料的用途,让学生了解金属材料在各个领域的重要性。
第二章:金属的结晶与晶体结构教学目标:1. 了解金属的结晶过程和晶体结构。
2. 掌握金属的晶体类型和性质。
教学内容:1. 金属的结晶过程:金属从液态转变为固态的过程称为结晶。
2. 金属的晶体结构:金属晶体主要由金属原子通过金属键相互连接而成。
3. 金属的晶体类型:金属晶体主要分为面心立方晶格和体心立方晶格两种类型。
4. 金属的晶体性质:不同晶体结构的金属具有不同的性质,如硬度和延展性等。
教学活动:1. 引入金属的结晶过程,引导学生了解结晶的基本概念。
2. 介绍金属的晶体结构,让学生掌握金属原子的排列方式。
3. 通过示意图讲解金属的晶体类型,如面心立方晶格和体心立方晶格。
4. 探讨金属的晶体性质,让学生了解不同晶体结构对金属性质的影响。
第三章:金属的塑性变形与再结晶教学目标:1. 了解金属的塑性变形和再结晶过程。
2. 掌握金属的塑性变形方式和再结晶的条件。
教学内容:1. 金属的塑性变形:金属在外力作用下发生形状改变而不断裂的过程。
2. 金属的塑性变形方式:主要包括拉伸、压缩、弯曲和扭转等。
3. 再结晶:金属在加热和冷却过程中,晶体结构发生改变的现象。
4. 再结晶的条件:再结晶发生的温度、应变量和时间等因素。
金属学与热处理教案

绪论一、本课程的任务及在工业生产中的地位任务:研究固态相变的规律性,研究金属或合金热处理组织与性能之间的关系以及热处理理论在工业生产中和应用。
地位:(1)工业生产领域:工业生产中不可缺少的技术,是提高产品质量和寿命的关键工序,是发挥材料潜力、达到机械零部件轻量化的主要手段。
(2)材料研究领域:研制和开发新材料。
列举工业生产切削刀具实例,提出“服役条件”使用性能组织结构化学成分(材料)二、金属热处理的发展概况中国:古代高水平。
春秋战国~明清以前:从出土文物可见。
近代落后。
明清~新中国以前:统治者闭关锁国。
现代奋起直追。
新中国以前~至今:总体上和发达国家比仍有一定差距。
具体表现在(1)科研:个别研究处于世界领先水平,总体研究水平相对落后;(2)生产:工业生产自动化程度不高,能耗较大,特别是技术设备和装备相对落后。
世界范围:十九世纪以前:民间技艺阶段十九世纪后期:实验技术和科学阶段现代:理论科学阶段:X-ray、SEM、TEM等检测手段的提高和应用,极大地促进了材料科学研究和应用的进一步发展。
固态相变以马氏体相变为核心,围绕马氏体相变展开研究工作,材料工作者经历了一个多世纪的研究,取得了丰硕的研究成果,并用这些成果指导实践,取得了巨大的经济效益。
值得指出的是,马氏体相变的研究工作也存在一些未知问题需要继续深入探索。
马氏体相变的研究经历以下几个阶段:(1)1878年德国Martens首次采用光学显微镜观察到淬火钢的针状组织;(2)1895年法国Osmond将钢淬火后的相命名为马氏体;(3)1926~1927年X-ray衍射确定钢中马氏体为体心正方结构(4)近代马氏体相变的研究领域扩大,由金属或合金扩展到无机非金属和高分子材料,马氏体定义(命名)也存在诸多争论。
三、本课程的学习内容学习内容共分六章。
按照教学大纲接续上部分(金属学部分)内容排序为:第九章:金属在加热过程中的相变——奥氏体相变;第十章:金属在冷却过程中的转变图;第十一章:珠光体相变;第十二章:马氏体相变;第十三章:贝氏体相变;第十四章:钢在回火过程中的转变。
金属材料与热处理电子教案

金属材料与热处理电子教案《金属学与热处理》教案前言“学校是培养人才的重要园地,教育是崇高的社会公益事业”。
“教育是一个系统工程,要不断提高教学质量和教育水平……”。
“学校的根本任务是培养人才,培养社会主义的建设者和接班人,而教学工作是人才培养的中心环节之一。
因此,教学工作是学校的中心工作”。
作为大学教师如何落实党和国家交给我们培养四有人才的伟大使命,这是每一个燕山大学教师值得深思的问题。
教学质量是高等学校的生命线,而教学及教学研究、课程建设则是每个教师重要的日常工作,加强课程建设积极开展教学研究迅速提高教学质量则是直接关系到能否培养出合格的社会主义的建设者和接班人的大问题,在倡导“加强基础,拓宽专业,提高能力,素质教育”的今天,课程建设及教学研究显得尤其重要。
《金属材料》是我校冶金系、机械系金属材料、冶金、机械类冷、热加工各专业必修课,也是机械类冷、热加工各专业重要的技术基础课。
本课程的任务是从机械工程材料的应用角度出发,阐明工程材料的基础理论,了解材料的化学成分、加工工艺、组织结构与性能之间的关系;介绍常用工程材料及其应用等基本知识。
本课程的目的是使学生们通过课堂教学和实验教学,掌握工程材料的基本理论及基本知识和实验技能,具备根据机械零件使用条件和性能要求,对结构零件进行合理的选材及制定零件加工工艺路线的初步能力。
纵观金属材料所含内容可知,该课程内容较为庞杂。
具有三多一少的特点;即所谓内容头绪多(含材料结构、钢的热处理原理及工艺、非金属材料、金属材料等等)、原理规律多(涉及原理、规律几十个)、概念定义多、以及理论计算少(除相图计算外,基本没有计算的内容)。
由于该课程具有上述特点,加之有些微观结构看不见、摸不到,而且课程内容枯燥、乏味,因此,教师感到难教,学生感到难学。
为冶金系相关课程建设,以利于提高“金属材料”今后教学质量及课程建设,特撰写本教案。
总纲一、课程性质及教学目的:金属材料是冶金技术、材料压力加工、机械制造、机械设计、机械电子等冶金材料类、机械类和近机类各专业的技术基础课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属学与热处理教案.txt∞-一人行,必会发情二人行,必会激情三人行,必有奸情就不会被珍惜。
真实的女孩不完美,完美的女孩不真实。
得之坦然,失之淡然,顺其自然,争其必然。
绪论一、本课程的任务及在工业生产中的地位任务:研究固态向变的规律性,研究金属或合金热处理组织与性能之间的关系以及热处理理论在工业生产中和应用。
地位:(1)工业生产领域:工业生产中不可缺少的技术,是提高产品质量和寿命的关键工序,是发挥材料潜力、达到机械零部件轻量化的主要手段。
(2)材料研究领域:研制和开发新材料。
列举工业生产切削刀具实例,提出“服役条件”使用性能组织结构化学成分(材料)二、金属热处理的发展概况中国:古代高水平。
春秋战国~明清以前:从出土文物可见。
近代落后。
明清~新中国以前:统治者闭关锁国。
现代奋起直追。
新中国以前~至今:总体上和发达国家比仍有一定差距。
具体表现在(1)科研:个别研究处于世界领先水平,总体研究水平相对落后;(2)生产:工业生产自动化程度不高,能耗较大,特别是技术设备和装备相对落后。
世界范围:十九世纪以前:民间技艺阶段十九世纪后期:实验技术和科学阶段现代:理论科学阶段:X-ray、SEM、TEM等检测手段的提高和应用,极大地促进了材料科学研究和应用的进一步发展。
固态相变以马氏体相变为核心,围绕马氏体相变展开研究工作,材料工作者经历了一个多世纪的研究,取得了丰硕的研究成果,并用这些成果指导实践,取得了巨大的经济效益。
值得指出的是,马氏体相变的研究工作也存在一些未知问题需要继续深入探索。
马氏体相变的研究经历以下几个阶段:(1)1878年德国Martens首次采用光学显微镜观察到淬火钢的针状组织;(2)1895年法国Osmond将钢淬火后的相命名为马氏体;(3)1926~1927年X-ray衍射确定钢中马氏体为体心正方结构(4)近代马氏体相变的研究领域扩大,由金属或合金扩展到无机非金属和高分子材料,马氏体定义(命名)也存在诸多争论。
三、本课程的学习内容学习内容共分六章。
按照教学大纲接续上部分(金属学部分)内容排序为:第一章:金属在加热过程中的相变——奥氏体相变;第二章:金属在冷却过程中的转变图;第三章:珠光体相变;第四章:马氏体相变;第五章:贝氏体相变;第六章:钢在回火过程中的转变。
第一章:金属加热过程中的相变—奥氏体相变概述:热处理工艺一般由加热、保温和冷却三个阶段组成,其目的是为了改变金属或合金的内部组织结构,使材料满足使用性能要求。
除回火、少数去应力退火,热处理一般均需要加热到临界点以上温度使钢部分或全部形成奥氏体,经过适当的冷却使奥氏体转变为所需要的组织,从而获得所需要的性能。
奥氏体晶粒大小、形状、空间取向以及亚结构,奥氏体化学成分以及均匀性将直接影响转变、转变产物以及材料性能。
奥氏体晶粒的长大直接影响材料的力学性能特别是冲击韧性。
综上所述,研究奥氏体相变具有十分重要的意义。
本章重点:奥氏体的结构、奥氏体的形成机制以及影响奥氏体等温形成的动力学因素。
本章难点:奥氏体形成机制,特别是奥氏体形成瞬间内部成分不均匀的几个C%点,即C1、C2、C3和C4。
§1-1 奥氏体的组织结构和性能一、奥氏体的结构:定义:C溶于γ–Fe形成的间隙式固溶体。
1.C 原子位于γ–Fe 点阵的中心和棱边的中点(八面体间隙处);2.C原子进入γ–Fe点阵间隙位置引起;γ–Fe点阵等称膨胀;C%增加,奥氏体点阵常数增大,但奥氏体的最大溶C量(溶解度)为2.11%3.C原子在奥氏体中分布是不均匀的,存在浓度起伏;图 1-1GrGpGA1 T1 TΔGΔT图 1-2GEP SC4C3C2 C1T1图 1-34.合金元素原子(Mn、Si、Cr、Ni 等)溶入奥氏体中取代Fe 原子的位置,形成置换式固溶体,称合金奥氏体。
二、奥氏体的组织:(1)原始组织有关奥氏体组织通常为等轴状多边形晶粒,这与(2)加热速度有关(3)转变程度有关不平衡加热奥氏体晶粒呈针状或球状(只作为了解内容)。
三、奥氏体的性能1.机械性能:(1)屈服强度、硬度低(2)塑性、韧性高;2.物理性能:(1)比容最小;(2)导热性差;(3)线膨胀系数大;(4)顺磁性。
3.应用:(1)变形加工成型;(2)奥氏体不锈钢耐蚀性;(3)膨胀仪表灵敏元件。
§1-2 奥氏体的形成一、热力学条件ΔG=Gγ-Gp<0(1)Ac1和Ar1引出临界点概念: (2)Ac3和Ar3(3)ACcm和Arcm二、奥氏体的形核以共析钢为例,讨论钢中奥氏体形成。
奥氏体晶核主要在F和Fe3C的相界面形核,其次在珠光体团界、F亚结构(嵌镶块)界面形核。
这样能满足:(1)能量起伏;(2)结构起伏;(3)成分起伏三个条件。
三、奥氏体的长大α + Fe3C γ晶体结构:体心立方复杂斜方面心立方含碳量: 0.0218% 6.67% 0.77%易于变形加工成型;(3)热强性高。
奥氏体长大过程是依靠原子扩散完成的,原子扩散包括(1)Fe原子自扩散完成晶格改组;(2)C原子扩散使奥氏体晶核向α相和Fe3C相两侧推移并长大。
1.C 原子扩散:一旦奥氏体晶核出现,则在奥氏体内部的C%分布就不均匀,由从图1-3可见:C1—与Fe3C相接的奥氏体的C%;C2—与F相接的奥氏体的C%;C3—与Fe3C相接的F的C%;C4—与奥氏体相接的F的C%;从图1-3 可以看出,在T1温度下由于C1、C2、C3、C4 不同导致奥氏体晶核形成时,C原子扩散,如图1-4,扩散的结果破坏了T1温度下C%的浓度平衡,迫使与奥氏体相接的F和Fe3C溶解恢复T1温度下C%的浓度平衡,如此历经“破坏平衡”——“建立平衡”的反复,奥氏体晶核长大。
2.奥氏体晶格改组:(1)一般认为,平衡加热过热度很小时,通过Fe 原子自扩散完成晶格改组。
(2)也有人认为,当过热度很大时,晶格改组通过Fe原子切变完成。
3.奥氏体晶核的长大速度:奥氏体晶核向F和Fe3C两侧的推移速度是不同的。
根据公式:B Bc CKdx CG KD dcDD= - ×1 / g式中,K—常数; gC D —C 在奥氏体中的扩散系数;dxdc—相界面处奥氏体中C的浓度梯度; B DC —相界面浓度差;“-”表示下坡(高浓度向低浓度处)扩散。
向F一侧的推移速度与向Fe3C一侧的推移速度之比:BFBFe C BFe CFe C BFFCCKCCKGGDD=D×D= 3 33//C2C%AF Fe3CC1C4C3珠光体片间距图 1-4780℃时, 14.80.41 0.026.67 0.89 3.--=DD=BFBFe CFe CFCCGG 。
表明相界面向F 一侧的推移速度比向Fe3C一侧的推移速度快14.8倍,但是通常片状珠光体的F片厚度比Fe3C片厚度大7倍,所以奥氏体等温形成时,总是F先消失,Fe3C剩余。
四、残余 Fe3C 和奥氏体均匀化α→γ结束后,还有相当数量的Fe3C尚未溶解,这些Fe3C被称为残余Fe3C。
另外在原来Fe3C的部位,C%较高,而原来F部位C%较低,必须经过适当的保温后,奥氏体中的C%才能趋于均匀。
综上,奥氏体形成分四个阶段:奥氏体形核;核长大;残余Fe3C溶解;奥氏体均匀化,其示意图见图1-5。
五、非共析钢的奥氏体化过程和共析钢的奥氏体化对比,非共析钢的奥氏体化过程分两步进行,首先完成P→A,这与共析钢相同;然后是先析相的奥氏体化过程。
这些都是靠原子扩散实现的。
值得指出的是,非共析钢的奥氏体化碳化物溶解以及奥氏体均匀化的时间更长。
§1-3 奥氏体等温形成动力学奥氏体等温动力学是研究奥氏体等温形成速度问题。
本课程只讨论共析钢奥氏体等温动力学,对于过共析钢先共析相Fe3C 溶解与第三阶段差别不大,故不在讨论;亚共析钢因为(1)组织中有非共析成分;(2)奥氏体转变有两个区间,即两相区和单相区。
因此,这里只定性讨论共析钢奥氏体等温动力学。
奥氏体的形成速度取决于形核率I和线长大速度G,在等温条件下,形核奥氏体形核核长大残余 Fe3C溶解奥氏体均匀化图 1-5率I和线长大速度G均为常数。
一、形核率 I均匀形核条件下,形核率I与温度的关系为:kTGkTQI C e eD- - = / ×式中,C/—常数;T—绝对温度;Q—扩散激活能;DG—临界形核功;k—玻耳兹曼常数。
可见,奥氏体等温形成时,等温温度T提高,(1) DT 增大,相变驱动力增大,DG降低,形核率I增大;(2)C原子的扩散系数gC D 增大,C的扩散速度增大,有利于点阵重构,形核率I 增大;(3)由相图(图1-3)可见,C2-C4= DC减小,奥氏体形核所需的C的浓度梯度减小,形核率I增大。
二、长大速度G奥氏体的线生长速度为相界面的推移速度,B Bc CKdx CG KD dcD=D= - ×1 / g式中,“- ”表示向减小浓度梯度的下坡扩散;k—常数; gc D —C在奥氏体中的扩散系数;dxdc—相界面处奥氏体中C的浓度梯度; B DC —相界面浓度差。
等温转变时: gc D 、dxdc (由相图决定1 2PC CdxdcD-= )均为常数, 0 DP 为珠光体片间距,平衡冷却时,平均片间距与每一片间距相同。
则:B CG KD= -/。
(1)由于忽略碳在铁素体的扩散,此计算值与实际速度偏小;(2)对粒状珠光体亦适用。
讨论:(1)温度T升高, gc D 呈指数增加,长大速度G增加,(2)温度T升高,C1-C2增加,dxdc增加,速度G增加;(3)温度T升高, B DC =C2-C4下降,长大速度G增加。
综上:温度T 升高,形核率I长大速度G均增大三、等温形成动力学曲线转变量与转变时间的关系曲线—等温动力学曲线,信息少。
转变温度与转变时间的关系曲线—等温动力学图,信息多。
1、曲线的建立四、影响奥氏体等温形成速度的因素一切影响形核率I和长大速度G的因素均影响珠光体→奥氏体的因素。
1.加热温度的影响(1)加热温度T升高,过热度ΔT增大,相变驱动力ΔG增大,原子扩散速度增加,形核率I 和长大速度G 均增加;(2)从等温转变图可知,加热温度T升高,奥氏体等温形成的孕育期变小,相变完成时间变短;(3)加热温度T 升高,由相图(图1-3)可知C1-C2增大,dc/dx增加,奥氏体界面浓度差ΔCB减小,长大速度G均增加;(4)加热温度T升高,奥氏体向F一侧推移速度比向Fe3C一侧推移速度快,F 消失瞬间残余Fe3C 量增加,奥氏体中C%降低,相变不平衡程度增加;(5)加热温度T 升高,形核率I 增加的速度比长大速度G 增加的速度快,奥氏体晶粒细化(提高强韧性)。
2.原始组织的影响(1)原始组织越细,碳化物越分散,珠光体的层片间距S0越小,相界面越多,形核率I 越大,同时碳的浓度梯度dc/dx 增加,长大速度G 均增加;(2) 和粒状珠光体比,片状珠光体相界面大而薄,易于溶解,因此,原始组织为片状珠光体形成速度比粒状珠光体快。