四川大学数一二线性代数期末考试试卷A

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

【期末试题】2018-2019秋线性代数(理工)

【期末试题】2018-2019秋线性代数(理工)

三、证明题(共 19 分)
1. (7 分)证明:向量组 ������1, ������2, ������3 线性无关的充分必要条件是向量组 ������1 + ������2, ������2 + ������3, ������3 + ������1 线性无关. 2.(6 分)设方阵 ������ 使得 ������3 = 2������, 证明 ������2 − ������ 可逆,并求 ������2 − ������ 的逆矩阵. 3.(6 分)设 ������ 阶方阵 ������ 满足 ������2 = ������. 则 ������ 是齐次线性方程组 ������������ = 0 解的充分必要条件 为:存在向量 ������ 使得 ������ = ������ − ������������.
0

相似,

������������ =
__________.
1 2 3 4 0 0 4 y
1 0 0
x
0
0
1
1

110 2. 若存在3维列向量不能由向量组 (0) , (������) , (2) 线性表出,则 ������ = __________.
121
1 2 4 ������1 3. 若二次型 (������1, ������2, ������3) (0 2 2) (������2) 正定,则 ������ 的取值范围为 __________.
0 0 ������ ������3 4. 设������为3阶实对称阵,������2 − ������ = 2������, ������������(������) = 0,则二次型 ������������������������ 的规范形为 __________.

2019-2020-1《线性代数》期末试卷(A)答案及评分标准

2019-2020-1《线性代数》期末试卷(A)答案及评分标准

A卷2019-2020-1《线性代数》期末试卷(A)答案及评分标准《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期 2016年1月15日题号一二三四五六七总分本题满分15 15 21 16 12 14 7本题得分阅卷人注意事项:1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4. 本试卷正文共7页。

说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分)1.5阶行列式中,项4513523124a a a a a 前面的符号为【 负 】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+ 等于【 0 】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【 2 】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【 1 】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【 1 】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【 -8 】.二、选择题(共5个小题,每小题3分)1. 设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【 A 】.(A) 2-; (B) 21-; (C) 1-; (D) 2.2. 矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【 A 】.(A) 210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (B)210110001⎛⎫⎪ ⎪ ⎪⎝⎭; (C) 110120001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D) 110110001⎛⎫⎪ ⎪ ⎪⎝⎭.3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【 A 】.(A) ||0A =; (B) ||1A =; (C) A 可逆; (D) A 满秩.4. 设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【D 】.(A) 4; (B) 8; (C) 0; (D) 1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【 B 】.(A) 2=a ; (B) 1=a ; (C) 3=a ; (D) 以上选项都不对.三、求解下列各题(共3小题,每小题7分)1. 若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k . 解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得=3+0=+2+20=323211λλλλλλk 由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k = 6. ----------7分 2. 设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得 0=+B E A又 02=122010012=+≠--E A----------2分因此 0=B因此可得 5=-a . ----------7分3. 设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为 -1,t ,3,因此A 的特征值也为 -1,t ,3 利用特征值的性质可得21132(4)3t a t a ++=-++⎧⎨-=-⎩ ----------5分 解得12a t ==,. ----------7分四、(共2小题,每小题8分)1.求向量组123410311301,,,217242140⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪ ⎪⎝⎭, 把A 进行行变换,化为行最简形, ()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分2. 问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量, 即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -, ----------6分而114300000A E a -⎛⎫⎪-= ⎪ ⎪⎝⎭,因此可知0≠a . ----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解; ----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ----------12分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为1. ----------4分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ,正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛==15452--,012222323322ηηηξηξηξη,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3515541552-15452-35,0125132p p , ----------12分令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=. ----------14分七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1. “设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由. 解:该结论成立。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

四川大学线性代数期末试卷

四川大学线性代数期末试卷

四川大学试卷(A)(2005-2006学年第二学期)一、判断下列命题是否正确,简单说明理由(每小题4分,共12分)1. 若AB=AC,且0≠A 时,则B=C. 2.当44<<-t 时,实二次型3223222132143),,(x tx x x x x x x f +++=为正定二次型.3. 0λ是n 阶矩阵A 的一个特征值的充分必要条件是秩n A E <-)(0λ. 填空题(每小题3分,共12分)(将正确答案填在横线上) 1. 设A 是4阶实数矩阵, A*是A 的伴随矩阵,,80|*2|-=A 则|A|=______. 2. 非齐次线性方程组β=AX 有解的充分必要条件是____ ________________________. 设向量组s ααα,,,21 可由向量组t βββ,,,21 线性表示,则 秩(s ααα,,,21 ) 秩(t βββ,,,21 ).4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=231α是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11111111b A 的一个特征向量,则=b ______.三、选择题(每小题3分,共12分)(将正确选项的字母填入括号内)1. 设)1(>n 阶排列n i i i ,,,21 和n 阶排列121,,,,i i i i n n -的奇偶性相反,则必有( )(A).,或144-==k n k n; (B ).122-==k n k n 或; (C). 1424-=-=k n k n 或; (D ).434k n k n =-=或以上为正整数k .2. 设A 是一个54⨯矩阵,β是一个4维非零列向量,321,,X X X 是线性方程组 β=AX (1)的线性无关的解,且(1)的任意解都是321,,X X X 的线性组合,则( )正确. (A) 235=-)=秩(A ; (B) )不能确定秩(A ;(C) 方程组的通解为131211,)21(21k X k X k X 其中-++是任意常数; (D)方程组的通解为213223111,),()(kk X X k X X k X -+-+是任意常数.3. 设n 阶可逆矩阵A 与对角形矩阵B 相似,则( )不正确. (A ) 1-A 不可以对角化 ; (B )B 的主对角线上的元素全不为零;(C ) A 有n 个线性无关特征向量;(D )E A A 532+-可以对角化. 4. 设A,B 都是3阶实对称矩阵, 满足: ,33B A =则有 ( ).(A ) BA = ; (B )A 与B 合同,但不相似(C ) A 与B 相似 ; (D )A 与B 的特征值相同,但不相似. 四、 计算行列式2264749542732252----- . (本题满分8分).五、 求向量组)1,3,1,2(1-=α,),1,1,1,1(2=α )1,7,1,3(3-=α,),5,3,5(4x -=α的分).解矩阵方程 X B XA T =+.(本题满分10分).,011113232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=A 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=021241012B .讨论含有参数的线性方程组 ⎪⎪⎩⎪⎪⎨⎧=++-=++++-=+-+-=+++2)4(42)5(314531432432143214321x a x x bx a ax x x x x x x x x x x何时无解,何时有唯一解,何时有无穷多解?当有无穷多解时,求出通解(本题满分12分).312121321843),,(x x x x x x x x f ++=233234x x x ++ 化为标准形,写出所用的正交变换(本题满分12分).1.设21,αα分别是n 阶矩阵A 的对应于特征值21,λλ的特征向量,且12λλ≠,设向量21ααβ+=.证明: 向量组ββA ,线性无关.2. 设A 为n 阶矩阵, 满足:,01452=-+E A A 证明: 秩++)7(E A 秩n E A =-)2(,并且矩阵A 相似于对角形矩阵.。

四川大学线性代数2004级A卷第2学期

四川大学线性代数2004级A卷第2学期

一、填空题 2. 设向量组
1 2, 5, 5 , 2 2, 0,1 , 3 2, 3,1 , 4 7, 8,11
线性________________。 解:由于向量组中向量的个数多于向量的维数,故向 量组必然线性相关。
一、填空题
3 7 8 1 3. 设 A 0 1 2 , A 是A的伴随矩阵,则 A ___。 5 0 0 2
得 r 1 ,2 ,3 ,4 3, 且 1 ,2 ,4 为该向量组的一个极大无 关组。
1、讨论当b 取何值时,非齐次线性方程组 x1 2x2 3x3 7 x4 3 四、解答题 x1 3x2 5x3 13x4 5 5x 4x 3x x b 2 3 4 1
二、选择题
1. 设有矩阵 A32 , B23 , C 33 ,则下列式子中,( )的运算
是可行的。
A AC
解 根据
B AB C
C CB
D CA BC
矩阵可乘的规则:左边矩阵的列数与右边矩阵的行数相等 及 矩阵可加减的规则:两矩阵同型 可知,唯有第二个答案中的式子的运算是可行的。
3:求向量组
三、计算
1 1, 2,3,1 ,2 5,11, 10,1 , 3 3,8,1,9 ,4 0,2,9, 19
的秩和一个极大无关组。 解:将向量组竖写并构成矩阵,对其进行初等行变换
1 5 3 0 1 5 3 0 2 11 8 0 1 2 2 2 1T ,2T ,3T ,4T 3 10 1 9 0 0 0 1 1 9 19 0 0 0 0 1
1 - 1 1 5
- 1 - 2 - 1 1 3 2 0 - 1 3 5 0 0 - 3 - 2 0 0

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 页 共6页
1

川大学期末考试试卷(A )
科 目:《大学数学》(线性代数)
一、填空题(每小题3分,共15分)
1. 2
32
32
3
a a a
b b
b c c c = __abc()_____.
2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性___
____.
3. 设A =378012002⎡⎤
⎢⎥-⎢⎥⎢⎥-⎣⎦
, A *是A 的伴随矩阵, 则 |1
5-A*| = _________.
4. 当t 满足______的条件时, 2
2
2
12311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.
第 页 共6页
2 二、选择题(每小题3分,共15分)
1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.
(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.
2. 设D=123
012247
-, ij A 表示D 中元素ij a 的代数余子式, 则3132333
A A A ++=
( )
.(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,
123,,X X X 是非齐次线性方程组AX =β的三个线性
无关解向量, 则( )为AX =0的通解.
(A) 11223;k X k X X +- (B) 123();X k X X +-
(C)
1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+
4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).
(A) 1
1
--=BC A X ; (B) 1
1
--=C BA X ; (C) 1
1
--=A BC X ; (D) 1
1
--=BA C X .
5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.
(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件
三、计算下列各题(每小题10分,共30分)
1. 计算行列式 1112
0132.1223
1
420
------
第 页 共6页
3
2. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥
⎢⎥⎢⎥---⎣⎦⎣⎦
.
X=[-1 5]
5/4 2 .-1/2 .-1 3





]1,3,2,1[1-=α, ]1,10,11,5[2--=α,
]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.
四、解答下列各题(每小题12分,共24分)
1.讨论当b取何值时, 非齐次线性方程组
1234
1234
1234
2373
35135
543
x x x x
x x x x
x x x x b
+++=


+++=

⎪++-=

有解; 当有
解时, 求方程组的通解.
第页共6页
4
第 页 共6页
5
23
2232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.
第 页 共6页
6 五、证明题(每小题8分, 共16分)
1. 设12321311A λ-⎡⎤⎢⎥
=-⎢⎥⎢⎥-⎣⎦
, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,
并证明. rank B *=0, 其中B *是B 的伴随矩阵.
2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组
)(,,421II ααα线性相关, 证明: 向量组
)(,,4321III αααα-线性无关.。

相关文档
最新文档