化工原理:10_3双组分连续精馏的计算

合集下载

化工原理课件第五章 蒸馏

化工原理课件第五章 蒸馏

Q FcP (T tF )
FcP (T te ) (1 q)Fr
T

te
(1
q)
r cp
tF-原料液的温度℃ T-通过加热器后原料液的温度℃
te-分离器中的平均温度℃ F-原料液流量Kmol/h
cp-原料液平均比热KJ/(Kmol. ℃) r-平均汽化潜热
三、气液平衡关系
理想溶液:
x
A
A
p
1.2.2 非理想物系的气液平衡
1.具有正偏差的溶液 一般正偏差:pA>pA理, pB>pB理。
乙醇-水溶液相图 正偏差溶液:x=0.894,最低恒沸点,78.15℃
2. 具有负偏差的溶液 一般负偏差 pA<pA理, pB<pB理。
硝酸-水溶液相图 负偏差溶液:x=0.383,最高恒沸点,121.9℃
组分: A、B 一、相律分 析: 变量 : t、p、xA、 yA
相数: 气相、液相
自由度:f c 2 2
C:独立组分数
Ø:相数
一定压力下:液相(气相)组成xA(yA)与温度t存在一 一对应关系气液组成之间xA~yA存在一一对应关系
二、两组分理想物系气液平衡函数关系 1. 拉乌尔定律( Raoult’s Law)
xF,y,x--分别为原料液、气相与液相产 品的组成,摩尔分率。
y

FxF Wx D

F
F W
xF

W F W
x
q W 液化分率 F
=1 1 q
xF
q 1 q
x
qx q 1

q
1
1
xF
平率衡为蒸馏中气液相平衡组q 成的关系。通过(xF, xF )斜

化工原理多组分精馏

化工原理多组分精馏
化工原理多组分精馏
2021年7月13日星期二
知识要求
1 多组分精馏过程分析 2 最小回流比 3 最少理论塔板数和组分分配 4 实际回流比和理论板数 5 多组分精馏的简捷计算方法
1 多组分精馏的特点和精馏方案的选择
一 多组分精馏原理
R
多组分 混合物 采用
ESA
相际传 质传热
液体多次 部分汽化
蒸汽多次 部分冷凝
dh wh
结合 f i d i wi
di wi
Nm 1 ih
dh wh
解得 di、wi
di
Nm 1 ih
(
dh wh
)
f
i
1
N ih
m
1
( dh ) wh
wi
fi
1
N ih
m
1
( dh ) wh
II、图解法 计算步骤
➢对关键组分
dl wl
Nm 1 lh
dh wh
此式的几何意义是:
lg( d l ) lg d h
)D
/(
xl xh
lg lh
)W
xl xh
D
Nm 1 lh
xl xh
W
Dx D,l Dx D,h
Nm lh
1
WxW ,l WxW ,h
dl dh
Nm 1 lh
wl wh

dl wl
Nm 1 lh
dh wh
2)以HK为基准组分,任意组分i的分配规律。
对照:d l wl
Nm 1 lh
W ih1 1 xD,l xw,h
l 1
zi zh xW ,h
D F i1 1 x D,l xW ,h

化工原理 第六章 蒸馏

化工原理 第六章 蒸馏

相同时进行多次部分冷凝和部分汽
化。 精馏条件:塔顶的液体回流和塔 釜的产生的蒸汽回流。
29
t P=定值 t1
t P=定值 t1 t2 t3 1 2 3
xW x1
xF
y1
yF
x(y)
x1
x2 xF x3 y1
y2 y3 x(y)
图6-10 一次部分气化的图
图6-11 多次部分气化和冷凝的示意图
30
V HF 加料板F L’ hF V’ H F+1
L' L q F
L L q F
'
F L V ' V L'
V ' V (q 1)F
41
V F L V F L V (1-q)F F qF L L’ 汽液混合进料
V =V (1 q)F
V’
V’
L’ 冷液进料
p p xA p
0 A 0 B

0 A

0 B
0 B
0 P pB xA 0 0 p A pB
xB 1 x A
——泡点方程
若平衡的气相为理想气体,可用道尔顿分压定律:
0 pA pA yA x P P
yB 1 y A
——汽液两相平衡组成间的关系
0 0 0 pA pA p pB f A (t ) p f B (t ) —露点方程 yA xA 0 0 p p pA pB p f A (t ) f B (t )
3
传质过程或分离操作:物质在相间的转移过程。
蒸馏:将液体混合物部分气化,利用各组分的挥发 度不同的性质以实现分离目的的操作。
易挥发组分(轻组份):沸点低的组分 难挥发组分(重组份):沸点高的组分

化工原理-复习

化工原理-复习

第1章 蒸馏符号:1.英文字母:D ——塔顶产品(馏出液)流量,kmol/h L ——塔内下降的液体流量,kmol/h V ——上升蒸气的流量,kmol/h 2.上标:°——纯态* ——平衡状态 '——提馏段一、 概述1. 易挥发组分(轻组分):沸点低的组分难挥发组分(重组分):沸点高的组分 2. 传质过程(分离操作):物质在相间的转移过程。

3. 蒸馏:将液体混合物部分气化利用各组分挥发度不同的特性达到分离的目的。

分类:(1)操作流程:①间歇蒸馏 ②连续蒸馏 (2)蒸馏方式:①简单蒸馏②平衡蒸馏(闪蒸) ③精馏:(有回流)较难分离 ④特殊精馏:很难分离(3)操作压力:①常压蒸馏②减压蒸馏:Ⅰ、沸点较高 Ⅱ、热敏性混合物 ③加压蒸馏:常压下的气态混合物(4)组分的数目:①两组分精馏②多组分精馏:工业生产中最为常见二、 两组分溶液的气液平衡(一) 两组分理想物系的气液平衡1. 相律(1) 平衡物系中的自由度数、相数及独立组分数间的关系。

(2) F=C-φ+2(2:外界只有温度&压力2个条件可影响物系的平衡状态) 2. 两组分理想物系的气液平衡函数关系(气液相组成与平衡温度间的关系) 理想物系:①液相为理想溶液。

②气相为理想气体。

(1) 用饱和蒸气压&相平衡常数表示的气液平衡关系 1) 拉乌尔定律理想溶液上方的平衡分压:p A =p A °x Ap B =p B °x B =p B °(1-x A ) 溶液沸腾时:p=p A +p B联立:x A =p-p B °p A °-p B ° →泡点方程:气液平衡下液相组成与平衡温度间的关系x B =1-x A}较易分离或分离要求不高}原理、计算无本质区别2) 道尔顿分压定律(外压不太高时,平衡的气相可视为理想气体) y A =p Apy A =p A °p x A →露点方程:气液平衡时气相组成与平衡温度间的关系 y B =1-y A(2) 用相对挥发度表示的气液平衡关系 1) 挥发度υ(与温度有关):υA =p Ax AυB =p Bx B理想溶液:υA =p A °;υB =p B °2) 相对挥发度α(溶液中易挥发组分的挥发度与难挥发组分的挥发度之比):α=υA υB = p Ax A p Bx B若操作压力不高,气相遵循道尔顿分压定律:α= py A x Apy B x B=y A x B y B x A=y A (1-x A )x A (1-y A ) →y A =αx A 1+(α-1)x A理想溶液:α=p A °p B °3) y=αx1+(α-1)x若α>1,α愈大,挥发度差异愈大,分离愈易。

化工原理 二元连续精馏的计算

化工原理 二元连续精馏的计算

多股进料
汽化潜热相等,该式 能成立吗?
7.4.1 物料衡算
(1)全塔物料衡算
总物料衡算:F=D+W
轻组分衡算:FxF=Dx D+WxW
D xF xW ,W =1-D
F xD xW F
F
a.x D、xW
一定,则 D 、W FF
一定
b.规定Dx D ,则W ,xW 随之而定;
D F
xF xD
,x D
Fx F D
Rmin
xD ye ye xe
最小回流比与分离要求、 相平衡关系有关。
几种特殊情况下的Rmin
Rmin
xD yq
yq xq
③ 最优回流比
费 用
R 理论板数
R V=R 1D V
V V (q 1)F V R 操作费
总费用 操作费 设备费
Rmin
Ropt
回流比
Ropt 1.2 ~ 2.0Rmin
• 操作条件变动引起温度变 化最明显的塔板。这些塔 板的温度对外界干扰的反 映最灵敏。
t max
② 回流比的影响
已知:N, xF ,, q, D / F求:R 时xD , xW 如何变化?
分析:L V
R 1 R
1
1
1 R
, L V
1 W V
1
(R
FD 1)D (q
1) F
1
(R
1 D/ F 1)D / F (q
(4)捷算法求理论板数
步骤: • 由芬斯克公式计算Nmin Y • 计算Rmin,由费用最低确定R
• 吉利兰关联
X R Rmin ,Y N Nmin
R 1
N 1
Y=0.75 1 X 0.567

化工原理蒸馏

化工原理蒸馏

第六章蒸馏蒸馏定义:蒸馏分类:易挥发组分难挥发组分有回流蒸馏(精馏)无回流蒸馏:简单蒸馏(间歇操作)平衡蒸馏(连续操作)特殊蒸馏:萃取蒸馏、恒沸蒸馏按操作压力可分为加压、常压和减压蒸馏两组分精馏和多组分精馏第一节双组分溶液的气液相平衡一、溶液的蒸汽压与拉乌尔定律纯组分的蒸汽压与温度的关系:拉乌尔定律:在一定温度下,理想溶液上方气相中任意组分的分压等于纯组分在该温度下的饱和蒸气压与它在溶液中的摩尔分数的乘积。

p=p A0x AA(6-2)p=p B0x B=p B0(1-Bx) (6-3)A式中p A、p B——溶液上方A,B组分的平衡分压,Pa;p0——在溶液温度下纯组成的饱和蒸汽压,随温度而变,其值可用安托尼(Antoine)公式计算或由相关手册查得,Pa;x、x B——溶液中A,B组分的摩尔分数。

A二、理想溶液气液平衡(一)t-y-x图1.沸点-组成图(t- x- y图)(1)结构以常压下苯-甲苯混合液t- x- y图为例,纵坐标为温度t,横坐标为液相组成x A和汽相组成y A(x,y均指易挥发组分的摩尔分数)。

下曲线表示平衡时液相组成与温度的关系,称为液相线,上曲线表示平衡时汽相组成与温度的关系,称为汽相线。

两条曲线将整个t- x- y图分成三个区域,液相线以下称为液相区。

汽相线以上代表过热蒸汽区。

被两曲线包围的部分为汽液共存区。

t- x- y图数据通常由实验测得。

对于理想溶液,可用露点、泡点方程计算。

(2)应用在恒定总压下,组成为x,温度为t1(图中的点A)的混合液升温至t2(点J)时,溶液开始沸腾,产生第一个汽泡,相应的温度t2称为泡点,产生的第一个气泡组成为y1(点C)。

同样,组成为y、温度为t4(点B)的过热蒸汽冷却至温度t3(点H)时,混合气体开始冷凝产生第一滴液滴,相应的温度t3称为露点,凝结出第一个液滴的组成为x1(点Q)。

F、E两点为纯苯和纯甲苯的沸点。

图苯-甲苯物系的t- x- y图图苯-甲苯物系的y- x图应用t- x- y图,可以求取任一沸点的气液相平衡组成。

化工原理 精馏

化工原理  精馏

6.2 平衡蒸馏与简单蒸馏
露点线
t/C
泡点线
0
xA xf
yA 1.0
x(y)
任一时刻,易挥发组分在蒸汽中的含量 y 始终大于剩余在釜内的液
相中的含量 x,釜内易挥发组分含量 x 由原料的初始组成 xF 沿泡点 线不断下降直至终止蒸馏时组成 xE,釜内溶液的沸点温度不断升高 ,蒸汽相组成 y 也随之沿露点线不断降低。
图 3.3 无中间产品的 多次部分 气化的分离示意图
3.精馏原理
混合液体连续或多次部分汽化,液相组成沿 t-x(y) 相图的 泡点线变化,可得难挥发组分含量很高而易挥发组分含量很低的 釜液。
组成也可算出溶液泡点。
纯组分 饱和蒸汽压与温度的关系,用安托因(Antoine)方程表示:
logp0 A B tC
A、B、C 为安托因常数,可由相关的手册查到。
6.1 双组分溶液的气液相平衡关系
当汽相为理想气体时
yA
pA P
pA0xA P
xA
P pB0 pA0 pB0
yA
pA0 P
PpB0 pA0 pB0


加热器 F, xF, tF

t0 Q
D, yD, te yD
闪 蒸 罐
xW W, xW, te
2 平衡蒸馏与简单蒸馏
2.1 平衡蒸馏
2. 物料衡算 总物料衡算
FD W


加热器 F, xF, tF

t0 Q
D, yD, te yD
闪 蒸 罐
xW W, xW, te
易挥发组分的物料衡算 FFxDDy WWx
3.1 多次部分气化和部分冷凝 过程分析
t/C

1章蒸馏4第五节两组分连续精馏的计算(简捷法)+其他精馏

1章蒸馏4第五节两组分连续精馏的计算(简捷法)+其他精馏
灵 敏→ 板
会形成另外一条温度分 布曲线。 布曲线。 受外界影响温度变化 最大的板——灵敏板。 灵敏板。 最大的板 灵敏板 t t
例:
1. 某精馏塔在操作时,加料热状态由原来的饱和液体 进料改为冷液进料,且保持F, xf,回流比R 和提馏段 上升蒸汽量V'不变,则此时D ,xD ,W 。 (增加,不变,减少,无法确定) 2. 某精馏塔在操作时,加料热状态由原来的饱和液 体进料改为冷液进料,且保持F, xf,V,D不变,则此 时xD ,xw ,R ,L/V 。 (增加,不变, 减少)
xn1 xn EML = (1-51a) xn1 x *n
实验时, 通常在R 下测取单板效率。 实验时 通常在 ∞下测取单板效率。
3、点效率 EO 、
中 国 矿 业 大 学 化 工 学 院 化 工 系
指塔板上各点的局部效率。以气相推动力为例: 指塔板上各点的局部效率。以气相推动力为例:
Байду номын сангаас
y yn+1 EOV = * yo yn+1
1. 全塔效率 E (总板效率 总板效率) 总板效率 是塔内各单板效率的平均值: 是塔内各单板效率的平均值:
中 国 矿 业 大 学 化 工 学 院 化 工 系
xD, , D
E= (NT / NP)×100% × 实际板数: 实际板数: NP= NT / E 目前公认的较为符合实际的是美国 化工学会的预测板效率的A Ch. 化工学会的预测板效率的 A.I.Ch.E 法和奥康奈尔法 法和奥康奈尔法。 奥康奈尔
Y = 0.545827 0.591422X + 0.002743/ X (1-50)
N Nmin = N +2
上式适用于 0.01<X<0.9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L L D
xn
D L D
xD
令 R L ——回流比 D
yn1
R R 1 xn
xD R 1
——精馏段操作线方程
3
返回
精馏段操作线:
y
当R, xD为一定值时,该操 作线为一直线.
斜率: R L
xD
R 1 V
R 1
截距:
xD R 1
操作线为过点(xD, xD )
画操作线过程如下:
4
xD x 返回
10-10 提馏段操作线方程
F( iV-iF)=(L’-L)(iV-iL) 令:
iV iF L' L iV iL F
q iv iF
每千摩尔进料从进料状况变成饱和蒸汽所需的热量
iv iL
原料的千摩尔汽化潜热
q——进料热状况参数
q L L L L qF F V V (1 q)F
9
返回
F
L
VF
L
V
F
14
其他条件不变,q值变化 只会影响提馏段操作线, 精馏段不变。
返回
提馏段操作线求法
1、公式法:
y
L' V'
x
W V'
xw

y L qF x WxW L qF W L qF W
2、两点法:
y R x xD R 1 R 1
y q x xF q 1 q 1
x xd y yd
特殊情况:
7
返回
1、加料板的物料衡算
物料恒算:F+V’+L=V+L’ V V ' F (L' L)
或 (L' L) F (V V ')
2、热量衡算
F, xF, iF
FiF+LiL,m-1+V’iV,m+1=ViV,m+L’iL,m
L iL,m-1V iV,m 加料板m
式中: iV,iL,iF---分别为饱和蒸汽、饱和
q=1时,xd=xF q=0时 , yd=xF
交点d (xd ,yd)与b (xW ,xW)两点相接即提馏段操作线:
y xw yd xw x xw xd xw
15
返回
习题1(求进料的汽液相组成):
常压连续操作的精馏塔来分离苯和甲苯混和液,已知 进料中含苯0.6(摩尔分数),进料状态是汽液各占一半(摩 尔数),从塔顶全凝器取出馏出液的组成为含苯0.98(摩尔 分数),已知苯—甲苯系统在常压下的相对挥发度为2.5。 试求:1)进料的汽液相组成;(2)最小回流比。
L’ iL,m V’ iV,m+1
液体、原料液的摩尔焓,KJ/kmol;
8
返回
假设:iL,m=iL,m+1=iL =原料在饱和液体状态下的摩尔焓
iV,m = iV,m-1=iV=原料在饱和蒸汽状态下的摩尔焓
(V-V’)iV=FiF-(L’-L)iL
[F-(L’-L)] iV=FiF-(L’-L)iL
D xF xW F xD xW
2
塔底采出率 W 1 D xD
F
F xD
塔顶易挥发组分回收率
塔底难挥发组分回收率
xF
xBAWWFDF((11xxFD
W,
100%
xW ) 100%
xF )
返回
xW
10-9 精馏段操作线方程
V L D Vyn1 Lxn DxD
yn1
L V
xn
D V
xD
V’ L’
V’ L’
V V’
L L’
冷液进料
泡点进料
汽液混合进料
q>1
L' L F
V V'
q=1
V '=V
L'=L+F
0<q<1
V =V (1 q)F
L L qF
10
返回
VL F
V’ L’
饱和蒸汽进料 q=0
V V F L L
11
VL F
V’ L’
过热蒸汽进料 q<0
V V' F
L' L
返回

iv iL
rF
2、 q L L
F
3、对以下3种进料状况:q=0, 0<q<1, q=1, q表示进料中液相所占的摩尔分率
将q代入提馏段操作线方程得:
y L qF x WxW L qF W L qF W
12
返回
进料方程(q线方程)
Vy Lx DX D
V
'
y
L'
x
WX
W
V ' V (q 1)F 代入
L' L qF
(V 'V ) y (L'L)x (WX W DX D )
y q x xF q 1 q 1
q线方程或进料方程
也是精馏段和提馏段交点d的轨迹方程
13
返回
q>1 q=1 0<q<1 d q=0 d q<0
(液相0.49;汽相0.71;Rmin=1.227)
16
返回
第三节 双组分连续精馏的计算
(一)全塔物料衡算 (二)精馏段操作线方程 (三)提馏段操作线方程 (四)进料热状况的影响 (五) 进料方程(q线方程)
1
返回
10-8 全塔物料衡算
F、D、W——kmol/h xF、xD、xW——摩尔分率
D, xD
F D W FxF DxD WxW
F, xF
塔顶采出率
L' V ' W L'xm V ' ym1 WxW
ym1
L V
' '
xm
W V'
xw
L' L 'W
xm
W L 'W
xw
——提馏段操作线方程
5
返回
操作线的实际做法
d
6
返回
10-10 进料热状况的影响 (1) 冷液 (2) 饱和液体(泡点进料) (3) 气液混合 (4) 饱和蒸汽(露点进料) (5) 过热蒸汽
相关文档
最新文档