排列组合典型类型题总结

合集下载

排列组合十种解题技巧与易错题归纳总结

排列组合十种解题技巧与易错题归纳总结

排列组合问题十种题型及其解题技巧、易错归纳(一)至少变恰好例题1 某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36B .72C .108D .144【解析】根据题意,分3步进行分析:①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况,②单位乙在剩下的4人中任选2人招聘,有246C =种情况,③单位丙在剩下的2人中任选1人招聘,有122C =种情况, 则有1262144⨯⨯=种不同的录取方案,选D巩固1 2019年高考结束了,有5为同学(其中巴蜀、一中各2人,八中1人)高考发挥不好,为了实现“南开梦”来到南开复读,现在学校决定把他们分到123、、三个班,每个班至少分配1位同学,为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为( ) A .84B .48C .36D .28【解析】设这五人分别为1212,,,,A B B C C ,若A 单独为一组时,只要2种分组方法;若A 组含有两人时,有11428C C ⋅=种分组方法;若A 组含有三人时,有11224C C ⋅=种分组情况;于是共有14种分组方法,所以分配方案总数共有331484A =,故选A. (二)插空法例题2 电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( )A .5424A A ⋅B .5424C C ⋅C .4267A A ⋅ D .4267C C ⋅【解析】先排4个商业广告,有44A 种排法,然后利用插空法,4个商业广告之间有5个空,插2个公益广告,有25A 种排法,根据分步计数原理,所以共有5424A A ⋅种排法,选A.巩固2 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩下的4个车位连在一起,那么不同的停放方法的种数为( ) A .18B .24C .32D .64【解析】首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列33A ,当左边两辆,最右边一辆时,有车之间的一个排列33A , 当左边一辆,最右边两辆时,有车之间的一个排列33A ,当最右边三辆时,有车之间的一个排列33A ,总上可知,共有不同的排列法33424A ⨯=种结果,所以选B(三)特殊元素优先例题3 某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有( ) A .6B .8C .12D .24【解析】根据条件乙只能安排在第二棒或第三棒;若“乙”安排在第二棒,此时有:1222C A 4=种,若“乙”安排在第三棒,此时有:1222C A 4=种,则一共有8种,选B.(四)捆绑法例题4 为迎接双流中学建校80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行6个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有() A .240种B .188种C .156种D .120种【解析】第一类:当甲在第1位时,第一步,丙、丁捆绑成的整体有4种方法,第二步,丙、丁内部排列用22A 种方法,第三步,其他三人共33A 种方法,共23234A A 42648=⨯⨯=种方法;第二类:当甲在第2位时,第一步,丙、丁捆绑成的整体有3种方法, 后面两步与第一类方法相同,共23233A A 32636=⨯⨯=种方法; 第三类:当甲在第3为时,与第二类相同,共36种方法; 总计,完成这件事的方法数为483636120N =++=,故选D.巩固3 某校迎新晚会上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有( ) A .120种B .156种C .188种D .240种【解析】先考虑将丙、丁排在一起的排法种数,将丙、丁捆绑在一起,与其他四人形成五个元素,排法种数为25252120240A A =⨯=,利用对称性思想,节目甲放在前三位或后三位的排法种数是一样的, 因此,该校迎新晚会节目演出顺序的编排方案共有2401202=种,选A. (五)不在问题的间接法例题5 某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( ) A .320B .313C .79D .1778【解析】设事件A :数学不排第一节,物理不排最后一节. 设事件B :化学排第四节.()41134333555578A C C A P A A A +==,()31123222555514A C C A P AB A A +==,故满足条件的概率是()()739P AB P A =.故选C.巩固4 某公司安排五名大学生从事A B C D 、、、四项工作,每项工作至少安排一人且每人只能安排一项工作,A 项工作仅安排一人,甲同学不能从事B 项工作,则不同的分配方案的种数为( ) A .96B .120C .132D .240【解析】若甲同学在A 项工作,则剩余4人安排在B 、C 、D 三项工作中,共有1211342136C C C C =种 若甲同学不在A 项工作,,则在C 或D 工作,共有111112423323()96C C C C C C ++=种,共36+96=132种,选C 巩固5 某次文艺汇演为,要将A ,B ,C ,D ,E ,F 这六个不同节目编排成节目单,如下表:序号 1 2 3 4 5 6 节目如果A ,B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有 A .192种B .144种C .96种D .72种【解析】由题意知A ,B 两个节目要相邻,且都不排在第3号位置, 可以把这两个元素看做一个,再让他们两个元素之间还有一个排列,A ,B 两个节目可以排在1,2两个位置,可以排在4,5两个位置,可以排在5,6两个位置, 这两个元素共有种排法,其他四个元素要在剩下的四个位置全排列,节目单上不同的排序方式有,选B .(六)走街道问题例题6 如图,某城市中,M 、N 两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M 到N 不同的走法共有( )A .10B .13C .15D .25【解析】因为只能向东或向北两个方向,向北走的路有5条,向东走的路有3条,走路时向北走的路有5种结果,向东走的路有3种结果,根据分步计数原理知共有3515⨯=种结果,选C (七)隔板法例题7 设有1n +个不同颜色的球,放入n 个不同的盒子中,要求每个盒子中至少有一个球,则不同的放法有( )A .()1!n +种B .()1!n n ⋅+种C .()11!2n +种 D .()11!2n n ⋅+种 【解析】将两个颜色的球捆绑在一起,再全排列得21!(1)!2n n C n n +=+ 选D巩固6 将4个大小相同,颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )种. A .7B .10C .14D .20【解析】根据题意,每个盒子里的球的个数不小于该盒子的编号, 分析可得,1号盒子至少放一个,最多放2个小球,分情况讨论: ①1号盒子中放1个球,其余3个放入2号盒子,有C 41=4种方法;②1号盒子中放2个球,其余2个放入2号盒子,有C 42=6种方法;则不同的放球方法有4+6=10种,选B . (八)回归原始的方法例题8 某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场, 乙和丙必须排在相邻的顺序出场,请问不同的演出顺序共有( ) A .24种B .144种C .48种D .96种【解析】第一步,先安排甲有12A 种方案;第二步,安排乙和丙有2124A A 种方案;第三步,安排剩余的三个演员有33A 种方案,根据分步计数原理可得共有1213224396A A A A =种方案.故选D.巩固7 如图,下有七张卡片,现这样组成一个三位数:甲从这七张卡片中随机抽出一张,把卡片上的数字写在百位,然后把卡片放回;乙再从这七张卡片中随机抽出一张,把卡片上的数字写在十位,然后把卡片放回;丙又从这七张卡片中随机抽出一张,把卡片上的数字写在个位,然后把卡片放回。

高考数学最新题型归纳——排列组合12种题型汇总(值得学习)

高考数学最新题型归纳——排列组合12种题型汇总(值得学习)

⾼考数学最新题型归纳——排列组合12种题型汇总(值得学习)【题型⼀】⼈坐座位模型1:捆绑与插空
【题型⼆】⼈坐座位模型2:染⾊(平⾯)
【题型三】⼈坐座位模型3:染⾊(⽴体空间)
【题型四】书架插书模型:定序
【题型五】球放盒⼦模型1:球不同,盒⼦也不同
【题型六】球放盒⼦模型2:球相同,盒⼦不同
【题型七】相同元素排列模型1:数字化法
【题型⼋】相同元素排列模型2:空车位停车等
【题型九】相同元素排列模型3:上楼梯等
【题型⼗】多事件限制重叠型题
【题型⼗⼀】多重限制分类讨论型
【题型⼗⼆】综合应⽤
⾼考⼀般只考⼀个选择题,难度不⼤,把这些题型吃透,基本没有问题,同学们加油。

(完整版)排列组合典型类型题总结

(完整版)排列组合典型类型题总结

2.基本的分配的问题(1)定向分配问题例5 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?(1)甲两本、乙两本、丙两本.(2)甲一本、乙两本、丙三本.(3)甲四本、乙一本、丙一本.(2)不定向分配问题例6六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?(1)每人两本.(2) 一人一本、一人两本、一人三本.(3) 一人四本、一人一本、一人一本.例7 六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?3.分配问题的变形问题例9有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有多少种?例10设集合A={1,2,3,4},B={6,7,8},A为定义域,B为值域,则从集合A到集合B 的不同的函数有多少个?五.相同元素隔板法及应用:情形1:将n件相同的物品或(名额)分配给m个(或位置),允许若干个人或(位置)为空。

将n件物品和m-1个隔板排成一排,占n+m-1个位置,从n+m-1个位置选m-1位置放隔板,有种。

m1-C1-nm情形2:将n件相同的物品或(名额)分配给m个(或位置),每个位置必须有物品,有种。

1-mC1-n把20个相同的球放入4个不同的盒子,每个盒子至少有3个小球,有多少种不同方法?把20个相同的球放入编号为2,3,4,5的4个盒子,每个盒子的小球数不少于编号数,有多少种不同方法?把20个相同的球放入4个不同的盒子,盒子可以空,有多少种不同方法?1.指标分配问题。

例12、某校召开学生会议,要将10个学生代表名额,分配到某年级的6个班中,若每班至少1个名额,又有多少种不同分法?2.求n 项展开式的项数。

例13、求展开式中共有多少项?10521)(x x x +⋅⋅⋅++例14、求方程++…+=7的正整数解的个数。

1x 2x 5x五至多,至少问题排除法例15.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有A、140种B、80种C、70种D、35种例16.(1)以正方体的顶点为顶点的四面体共有A、70种B、64种C、58种D、52种(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有A、150种B、147种C、144种D、141种6.综合问题先选后排例17.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?七 .对等问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例19.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的,,,,A B C D E B A ,A B 排法种数是A 、24种B 、60种C 、90种D 、120种十.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.例20.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是A 、36种B 、120种C 、720种D 、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?e i rb ei n 为海上四个岛,。

排列组合经典题型及解析

排列组合经典题型及解析

排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列组合12种题型归纳(解析版)

 排列组合12种题型归纳(解析版)

第30讲 排列组合12类【题型一】 人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,22423245C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。

主要典型题:1.捆绑法;2.插空法;3.染色。

出现两个实践重叠,必要时候,可以使用容斥原理来等价处理:容斥原理()n A B ⋃=()()()n A n B n A B +-⋂【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为 A .30 B .36 C .60 D .72【答案】C【分析】记事件:A 2位男生连着出场,事件:B 女生甲排在第一个,利用容斥原理可知所求出场顺序的排法种数为()()()()5555A n A B A n A n B n A B ⎡⎤-⋃=-+-⋂⎣⎦,再利用排列组合可求出答案.【详解】记事件:A 2位男生连着出场,即将2位男生捆绑,与其他3位女生形成4个元素,所以,事件A 的排法种数为()242448n A A A ==,记事件:B 女生甲排在第一个,即将甲排在第一个,其他四个任意排列,所以,事件B 的排法种数为()4424n B A ==,事件:A B ⋂女生甲排在第一位,且2位男生连着,那么只需考虑其他四个人,将2位男生与其他2个女生形成三个元素,所以,事件A B 的排法种数为232312A A =种,因此,出场顺序的排法种数()()()()5555A n A B A n A n B n A B ⎡⎤-⋃=-+-⋂⎣⎦()12048241260=-+-=种,故选C .2.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.48【答案】B【分析】先求出只有3个歌舞类节目不相邻的方法,然后求出3个歌舞类节目不相邻且2个小品类节目相邻的排法,相减可得.【详解】先考虑只有3个歌舞类节目不相邻,排法有3334144A A=种,再考虑3个歌舞类节目不相邻,2个小品类节目相邻的排法有:22322324A A A=,因此同类节目不相邻的排法种数是14424120-=.故选:B.3.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【答案】B【分析】由题意,对高校甲排在第二或第三个进行分类讨论,接着考虑乙和丙的排法,最后考虑其他两所高校的排法,综合利用分类和分步计数原理进行分析即可.【详解】根据题意:分成以下两种情况进行分类讨论高校甲排在第二个时,高校丁必排在第三个,当乙或丙排在第一个时共有132312C A=种排法,当乙或丙不排在第一个时,乙和丙只能排在第四个和第六个,此时共有22224A A=种排法,所以高校甲排在第二个时共有16种排法;高校甲排在第三个时,高校丁必排在第四个,乙或丙只能一个排在第一二个,一个排在第五六个,则共有1112 222216C C C A=种排法;综上:共有32种排法满足题意.故选:B.【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7 答案:D55315232553555351235125122404==4207;(2)4----+++2A C C A C C C C C ----⨯⨯涂色法:(1)用了几种颜色;(2)尽量先图相邻多的“三角形”:本题先把ABE 作为“三角形”1、用了5色:A 、用了4色:(1)先涂ABE:A 用第色:(3)D 用第4种:(相同)3、用了3色:同先涂ABE:A 结束。

排列组合难题题型总结(含答案)

排列组合难题题型总结(含答案)

排列组合难题题型总结(含答案)一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重复排列问题求幂策略(住店法)解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例5.把6名实习生(元素)分配到7个车间(位置)实习,共有多少种不同的分法练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有(即有且只有!!)两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? (注意有9个空隙,6个隔板!) 练习题:10个相同的球装5个盒中,每盒至少一有多少装法? 2 .100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安 排2名,则不同的安排方案种数为______ 十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法? 练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120) 十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除练习:正方体的8个顶点可连成多少对异面直线十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 十九.树图策略例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i )的不同坐法有多少种? 二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法参考答案例1.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C54321BA然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:解:分两步完成.第一步选两葵花之外的花占据两端和中间的位置有A53=60种排法 第二步排其余的位置:有A44=24种排法 所以共有60×24=1440种排法. 二.相邻元素捆绑策略例2. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

微考点7-3 排列组合11种常见题型总结分析(11大题型)(原卷版)

微考点7-3 排列组合11种常见题型总结分析(11大题型)(原卷版)

微考点7-3 排列组合11种常见题型总结分析(11大题型)题型一:特殊元素与特殊位置优待法解题思路:对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

【精选例题】【例1】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)280种(B)240种(C)180种(D)96种【题型专练】1.某校从8名教师中选派4名教师到4个边远地区支教(每地1人),要求甲、乙不同去,甲、丙只能同去或同不去,则不同的选派方案有______种.3.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为()A.288B.336C.368D.412题型二:分类讨论思想解题思路:遇到情况比较复杂,我们可以通过分类讨论,分出几种情况,再用分类加法原理进行计算【精选例题】【例1】(2023全国卷乙卷真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有()【例3】在8张奖券中有一、二、三等奖各1张,其余5张无奖,将这8张奖券分配给4个人,每人2张,不同的获奖情况数( )A.60B.40C.30D.80【题型专练】1.甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有()A.20种B.16种C.12种D.8种2.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有___种.题型三:插空法(不相邻问题)解题思路:对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可【例1】黄金分割最早见于古希腊和古埃及.黄金分割又称黄金率、中外比,即把一条线段分成长短不等的a ,b 两段,使得长线段a 与原线段a b +的比等于短线段b 与长线段a 的比,即()::a a b b a +=,其比值约为0.618339….小王酷爱数学,他选了其中的6,1,8,3,3,9这六个数字组成了手机开机密码,如果两个3不相邻,则小王可以设置的不同密码个数为( )A .180B .210C .240D .360【例2】把5件不同产品A ,B ,C ,D ,E 摆成一排,则( )A .A 与B 相邻有48种摆法B .A 与C 相邻有48种摆法C .A ,B 相邻又A ,C 相邻,有12种摆法D .A 与B 相邻,且A 与C 不相邻有24种摆法【例3】有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .12B .48C .72D .96【题型专练】1.有互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,则共有摆放方法( )A .120种B .32种C .24种D .16种题型四:捆绑法(相邻问题)解题思路:对于某几个元素相邻的排列问题,可先将相邻的元素捆绑,再将它与其它元素在一起排列,注意捆绑部分的内部顺序。

高中数学排列组合典型题大全含答案

高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合典型类型题总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
排列组合
一.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有
A 、60种
B 、48种
C 、36种
D 、24种
二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是
A 、1440种
B 、3600种
C 、4820种
D 、4800种
元素相同问题隔板策略
例3 某校召开学生会议,要将10个学生代表名额,分配到某年级的6个班中,若每班至少1个名额,又有多少种不同分法?
例4把20个相同的球全部装入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不小于其编号数,则共有 种不同的放法。

将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C --
三.特殊元素或特殊位置优限法:优先解决带限制条件的元素或位置,或说“先解决特殊元素或特殊位置”
例5.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?
四.分组分配:
1基本的分组的问题
例4 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?
(1)每组两本.
(2)一组一本,一组二本,一组三本.
(3)一组四本,另外两组各一本.
2.基本的分配的问题
(1)定向分配问题
例5 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?
(1)甲两本、乙两本、丙两本.
(2)甲一本、乙两本、丙三本.
(3)甲四本、乙一本、丙一本.
(2)不定向分配问题
例6六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?
(1)每人两本.
(2) 一人一本、一人两本、一人三本.
(3) 一人四本、一人一本、一人一本.
例7 六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?
3.分配问题的变形问题
例8 四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种?
例9有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有多少种?
例10设集合A={1,2,3,4},B={6,7,8},A为定义域,B为值域,则从集合A到集合B 的不同的函数有多少个?
五.相同元素隔板法及应用:
情形1:将n件相同的物品或(名额)分配给m个(或位置),允许若干个人或(位置)为空。

将n件物品和m-1个隔板排成一排,占n+m-1个位置,从n+m-1个位置选m-1位置放隔板,有1-m
C种。

m
n
1-
情形2:将n件相同的物品或(名额)分配给m个(或位置),每个位置必须有物品,有1-m
C
1-n 种。

例11. 把20个相同的球放入4个不同的盒子,每个盒子都不空,有多少种不同方法?
把20个相同的球放入4个不同的盒子,每个盒子至少有3个小球,有多少种不同方法?
把20个相同的球放入编号为2,3,4,5的4个盒子,每个盒子的小球数不少于编号数,有多少种不同方法?
把20个相同的球放入4个不同的盒子,盒子可以空,有多少种不同方法?
1.指标分配问题。

例12、某校召开学生会议,要将10个学生代表名额,分配到某年级的6个班中,若每班至少1个名额,又有多少种不同分法?
2.求n 项展开式的项数。

例13、求10521)(x x x +⋅⋅⋅++展开式中共有多少项?
例14、求方程1x +2x +…+5x =7的正整数解的个数。

五 至多,至少问题排除法
例15.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有
A 、140种
B 、80种
C 、70种
D 、35种
例16.(1)以正方体的顶点为顶点的四面体共有
A 、70种
B 、64种
C 、58种
D 、52种
(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有
A 、150种
B 、147种
C 、144种
D 、141种
六.综合问题先选后排
例17.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?
七 .对等问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例19.,,,,
A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法种数是
A、24种
B、60种
C、90种
D、120种
十.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.
例20.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是
A、36种
B、120种
C、720种
D、1440种
(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?
复杂的排列组合问题
例23 上一个有10级台阶的楼梯,每步可上一级或两级,共有多少种上台阶的方法?
例24 如图1中A,B,C,D为海上四个岛,
要建三座桥,将这四个小岛连接起来,
则不同的建桥方案共有()
A.8种
B.12种
C.16种
D.20种
例25 把20个相同的球全部装入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不小于其编号数,则共有种不同的放法。

例27.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个?。

相关文档
最新文档