考研信号与系统公式分类与汇总(最实用版)

合集下载

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统 典型公式

信号与系统 典型公式
(八) 直流信号 (二)对称性

( t )e

j t
dt 1
F [1] 2 ( )
若f (t ) F ( )则F (t ) 2f ( )即F F (t ) 2 f ( )
(四)尺度变换特性
1 F [ f (at )] F( ) a a


t2
t1
f1 ( t ) f 2 ( t )dt 0 (p326式(6-53))
则称f1(t)与f2(t)在区间(t1,t2)上(相互)正交。 对复值函数f1(t),f2(t)(p329)
f1 ( t ), f 2 ( t )正交 f1 ( t ) f *2 ( t )dt 0
更一般的三角函数形式傅里叶级数(FS)
f (t ) a 0 [a n cos( n 1 t ) b n sin( n 1 t )]
n 1

f (t) c0 cn cos( n1t n ) d 0 d n sin( n1t n )
n 1 n 1
f(t)的直流分量=其任意周期的直流分量
f(t)=fD(t)+fA(t),
f(t)的功率=fD(t)的功率+fA(t)功率 三、偶分量与奇分量分解
f(t)=fe(t)+fo(t)
f(t)的功率=fe(t)功率+fo(t)功率 且
f (t ) f ( t ) f(t) e 2
f (t ) f ( t ) f(t) o 2
时域卷积定理 若
F[ f1 (t )] F1 ( )
F[ f2 (t )] F2 ()

F[ f1 (t )* f2 (t )] F1 () F2 ()

信号与系统常用变换与知识点汇总

信号与系统常用变换与知识点汇总

常用傅里叶变换对双边拉普拉斯变换与Z变换性质基本函数的(双边)拉普拉斯变换和(双边)z变换拉普拉斯变换与z变换的收敛域、因果性、稳定性收敛域ROC:对于来说,使得的傅里叶变换收敛;或者的拉普拉斯变换收敛!因果性:如果一个系统在任何时刻的输出只取决于现在的输入及过去的输入,该系统称因果系统。

稳定性:若输入是有界的,则系统的输出也必须是有界的(输出不能发散)。

单边拉普拉斯变换和z变换性质卷积的性质与卷积对:1、微分性质: , 是微分器。

推广: 。

2、积分特性:,是积分器。

3、求和特性:4、卷积的时不变:区分的筛选特性:;取样特性:;5、常用卷积对:常用公式及概念:1、欧拉公式:(a); (b); (c)2、复数的表示方法:其中:实部;虚部③其中:的模;相角3、洛必达法则若函数和满足下列条件:(1)或者 ;(2)在点的某去心邻域内两者都可导,且;(3),(可为实数,也可为),则有4、等比数列求和等比数列通式:等比数列求和公式:,()5、有理函数与有理数有理函数:通过多项式的加减乘除得到的函数。

有理数:有理数是一个整数a和一个非零整数b的比。

(有理数是整数和分数的集合,有理数的小数部分是有限或为无限循环的数。

不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

)6、系统的因果性:系统的响应不应出现在激励之前。

系统的响应与未来值有关。

对于线性系统,若是因果系统则满足:时。

一个线性系统的因果性就等效与初始松弛条件。

7、系统的记忆性:系统的响应与过去的输入有关。

如果一个线性时不变系统的单位冲激响应或单位脉冲响应,在或时有或,则该系统是无记忆的。

8、系统的可逆性:对于一个系统,当且仅当存在一个逆系统与原系统级联后所产生的输出等于第一个系统的输入时,这个系统是可逆的。

对于线性时不变系统若是可逆的则必须满足,或。

9、系统的稳定性:对于每一个有界的输入,其输出是有界的。

对于LTI系统稳定的充要条件是:单位脉冲响应是绝对可和或单位冲激响应是绝对可积的。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统-公式总结

信号与系统-公式总结

信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。

信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。

1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。

4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。

5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。

信号与系统公式大全

信号与系统公式大全

信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。

在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。

同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。

如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。

(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)

(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)

信号与系统复习书中最重要的三大变换几乎都有。

第一章信号与系统1、信号的分类①连续信号和离散信号②周期信号和非周期信号连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。

③能量信号和功率信号④因果信号和反因果信号2、信号的基本运算(+ - ×÷)2.1信号的(+ - ×÷)2.2信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t) δ(t) = f(0) δ(t) , f(t) δ(t –a) = f(a) δ(t –a)例:3.2序列δ(k)和ε(k)f(k)δ(k) = f(0)δ(k) f(k)δ(k –k0) = f(k0)δ(k –k0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质T [af (·)] = a T [ f (·)](齐次性)T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统:y (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x(0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t) + f 2(t) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性))0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n ft t f t -=⎰∞∞-δ4)2(2])2[(d dd )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t aa at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00at t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δT[{0},{ax 1(0) +bx 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t - t d )] = y f (t - t d )(时不变性质) 直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

信号与系统公式总结

信号与系统公式总结

信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。

下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。

一、基本概念公式总结。

1. 信号的分类:连续时间信号,x(t)。

离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。

1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。

1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。

离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。

2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。

时移性质,x(t-t0)对应X(ω)e^(-jωt0)。

频移性质,x(t)e^(jω0t)对应X(ω-ω0)。

四、系统分析公式总结。

1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。

时不变性,y(t) = x(t-t0)对应h(t-t0)。

2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。

3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。

五、采样定理公式总结。

1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。

重建滤波器,h(t) = Tsinc(πt/T)。

六、傅里叶级数公式总结。

1. 傅里叶级数:周期信号的傅里叶级数展开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S域 微分 时域 积分 S域 积分
tf (t) (−t)n f (t) ↔ − F ′(s) d n F (s) ds n
∫t f (x)dx ↔ F (s) + f (−1) (0− )
−∞
s
s
∫ f (t) ↔

F (η)dη
t
s
频移
尺度 变换 反转 时域 卷积
时域 差分
Z域 微分 部分 求和 Z域 积分
频域 卷积 时域 差分 频域 微分 时域 累加
∫ f1 (k )
f 2 (k )

1 2π
2π F1(e jψ )F2 (e j(ψ −θ ) )dψ
f (k) − f (k −1) ↔ (1− e jθ )F (e jθ )
kf (k) ↔ j dF (e jθ ) dθ
∑ ∑ ∞ f (k)
k =−∞
af1 (k) + bf 2 (k) ↔ aF1 (z) + bF2 (z)
时移
f (t ± t0 ) ↔ e±st0 F (s)
时移
f (k ± m) ↔ z ±m F (z) (双边)
离散傅里叶变换

∑ F (e jθ ) = f (k)e− jθk k =−∞
∫ f (k) = 1 F (e jθ )e jθkdθ
连续傅里叶变换
∫ F ( jω) = ∞ f (t)e − jωt dt −∞
∫ f (t) = 1 ∞ F ( jω)e jωt dω 2π −∞
线性 时移
af1(t) + bf2 (t) ↔ aF1( jω) + bF2 ( jω) f (t ± t0 ) ↔ e± jωt0 F ( jω)
信号与系统公式性质一览表
−∞
2π −∞
初值
f
(0
+
)
=
lim
s→∞
sF
(
s),
F
(s)
为真分式
初值
终值
f (∞) = lim sF (s), s = 0 在收敛域内
s→0
终值
f (M ) = lim z M F (z) (右边信号), f (M + 1) = lim [z M +1F (z) − zf (M )
z→∞
z→∞
tf (t) (− jt)n f (t) ↔ j dF ( jω) d n F ( jω)

dω n
∫t f (x)dx, f (−∞) = 0 ↔ F ( jω) + πF (0)δ (ω)
−∞

∫ πf (0)t +
f (t)

ω
F ( jτ )dτ , F (−∞) = 0
(− jt) −∞
1 2πδ (ω)
δ ′(t) δ (n) (t)
jω ( jω)n
ε (t)
tε (t)
e−αtε (t) te−αtε (t),α > 0 cos(ω0t) sin(ω0t) 1 t
|t |
1 + πδ (ω) jω
连续拉普拉斯变换(单边)
∫ F (s) = ∞ f (t)e−st dt 0−
∫ f (t) = 1
σ
+
j∞
F
(s)e
st
ds
2πj σ − j∞
离散 Z 变换(单边)

∑ F (z) = f (k)z −k k =0
∫ f (k) = 1 F (z)z k−1dz, k ≥ 0
2πj L
线性 af1(t) + bf 2 (t) ↔ aF1(s) + bF2 (s) 线性
2π 2π
线性
af1(k) + bf2 (k) ↔ aF1(e jθ ) + bF2(e jθ )
时移
f (k ± m) ↔ e± jθmF (e jθ )
频移
尺度 变换 反转 时域 卷积 频域 卷积 时域 微分 频域 微分 时域 积分 频域 积分
e± jω0t f (t) ↔ F ( j(ω ∓ ω0 ))
频移
尺度 变换 反转 时域 卷积
e±s0t f (t) ↔ F (s ∓ s0 )
f (at + b) ↔
1
e
b a
s
F
(
s
)
|a|
a
f (−t) ↔ F (−s)
f1(t) * f2 (t) ↔ F1(s)F2 (s)
时域 微分
f ′(t) ↔ sF (s) − f (0− ) f ′′(t) ↔ s 2 F (s) − sy(0− ) − y′(0− )
kf (k) ↔ −z dF (z) dz
∑ f (k) *ε (k) =
k
f (i) ↔
z
i = −∞
z −1
∫ f (k)
k+m
↔ zm
∞ z
F (η ) η m+1

尺度 变换 反转 时域 卷积
f
(n)
(k
)
=
⎧f ⎩⎨0
(k
/
n)

F
(e
jnθ
)
f (−k) ↔ F (e− jθ )
f1(k) * f2 (k) ↔ F1(e jθ )F2 (e jθ )
f (∞) = lim(z −1)F (z) (右边信号)
z→1
帕斯 瓦尔
∑ ∫ ∞ | f (k) |2 = 1 | F (e jθ ) |2 dθ
k = −∞
2π 2π
连续傅里叶变换对
∫ F ( jω) = ∞ f (t)e− jωt dt −∞
函数
f (t)
傅里叶变换 F ( jω)
δ (t) 1
e± jω0k f (k) ↔ F (e∓ jω0 z) (尺度变换) 频移
e± jkθ0 f (k ) ↔ F (e j(θ ∓θ0 ) )
ak f (k) ↔ F( z ) a
f (−k) ↔ F (z−1) (仅限双边)
f1(t) * f2(t) ↔ F1(z)F2(z)
f (k −1) ↔ z−1F (z) + f (−1) f (k − 2) ↔ z−2F (z) + z−1 f (−1) + f (−2) f (k + 1) ↔ zF (z) − zf (0) f (k + 2) ↔ z2F (z) − z2 f (0) − zf (1)

F (e jθ ) 1 − e jθ

+ πF (e j0 ) δ (θ
k =−∞
− 2πk)
f (0) = lim F (z) , f (1) = lim [zF (z) − zf (0)]
z→∞
z→∞Βιβλιοθήκη 对称帕斯 瓦尔F ( jt) ↔ 2πf (−ω)
∫ ∫ E = ∞ | f (t) |2dt = 1 ∞ | F ( jω) |2 dω
f (at + b) ↔
1
e
j
bω a
F
(
j
ω
)
|a|
a
f (−t) ↔ F (− jω)
f1(t) * f2 (t) ↔ F1( jω)F2 ( jω)
f1(t) f2 (t)

1 2π
F1 (
jω) * F2 (
jω)
f ′(t) f (n) (t) ↔ jωF ( jω) ( jω)n F ( jω)
相关文档
最新文档