部分数学建模习题解答[1]
数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。
数学建模竞赛参考答案

数学建模竞赛参考答案数学建模竞赛参考答案数学建模竞赛是一项旨在培养学生综合运用数学知识和解决实际问题能力的竞赛活动。
参赛者需要通过分析问题、建立数学模型、求解问题等环节,最终给出合理的答案和解决方案。
在这篇文章中,我们将为大家提供一些数学建模竞赛的参考答案,希望能够给参赛者们提供一些启示和帮助。
第一题:某公司的销售额预测问题描述:某公司希望通过过去几年的销售数据,预测未来一年的销售额。
请根据给定的销售数据,建立合适的数学模型,并给出未来一年的销售额预测值。
解答思路:根据问题描述,我们可以将销售额看作是时间的函数,即销售额随时间变化。
可以使用回归分析的方法来建立数学模型。
首先,我们将销售额作为因变量,时间作为自变量,通过拟合曲线来预测未来一年的销售额。
我们可以选择多项式回归模型来拟合曲线。
通过将时间作为自变量,销售额作为因变量,进行多项式回归分析,可以得到一个多项式函数,该函数可以描述销售额随时间变化的趋势。
然后,我们可以使用该多项式函数来预测未来一年的销售额。
将未来一年的时间代入多项式函数中,即可得到未来一年的销售额预测值。
第二题:城市交通流量优化问题描述:某城市的交通流量问题日益突出,如何优化交通流量成为了当地政府亟待解决的难题。
请根据给定的交通数据和道路拓扑结构,建立合适的数学模型,并给出交通流量优化的方案。
解答思路:根据问题描述,我们可以将城市的交通流量看作是网络中的流量分配问题。
可以使用网络流模型来建立数学模型。
首先,我们需要将城市的道路网络抽象成一个有向图,节点表示交叉口,边表示道路,边上的权值表示道路的容量。
然后,我们可以使用最小费用最大流算法来求解交通流量优化的方案。
该算法可以通过调整道路上的流量分配,使得整个网络中的流量达到最大,同时满足道路容量的限制。
通过计算最小费用最大流,可以得到交通流量优化的方案。
最后,我们可以根据最小费用最大流算法的结果,对交通流量进行合理调控。
例如,可以调整信号灯的时长,优化交通信号控制系统,减少交通拥堵现象,提高交通效率。
数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模基础练习一及参考答案

数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。
二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。
6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。
三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。
10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。
11.试找出100以内的所有素数。
12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。
14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。
15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。
数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
建模习题答案

田佳王伊陈鹏《数学建模入门》练习题练习题1:发现新大陆!发现新大陆!人人都能做到,可是最终哥伦布做到了。
为什么哥伦布能做到呢?(参考答案:有兴趣、能想到、去做了、坚持到底。
)答: 1)从其主观条件分析:他具有一个优秀水手的素质:对大海的热爱,具有宝贵的航海经验,接触过航海所必不可少的宇宙学和数学,并且学会了绘制地图和使用各种航海工具。
更为重要的事,在航海强国葡萄牙,哥伦布在思想上为远航做好了准备。
他阅读了《马可·波罗游记》,对东方的富饶遐想无限,使他产生了到东方区的想法;他接触了学者托斯勘内里,接受了“地圆学说”,坚定了从海上到达东方的信念。
2)从客观条件分析:出于共同的对黄金的追求,哥伦布与西班牙王室达成了一致(签订《圣塔菲协定》),西班牙为其提供了自己的船队、自己的船员。
当时中国的指南针也已传到航海界,这一发明对其也有及其重要的作用练习题2:棋盘问题有一种棋盘有64个方格,去掉对角的两个格后剩下62个格(如下图),给你31块骨牌,每块是两个格的大小。
问能否用这些骨牌盖住这62个方格?答:这个问题涉及到数学上的一个典型排列:完美覆盖31张不重叠的多米诺牌则盖住31个白方格和31个黑方格。
因此,这副被剪过的棋盘没有完美覆盖,上述推理可总结为:31黑白 32黑+30白更一般地.可以将棋盘上的方格交替徐成黑色和自色,切除一些方格,得到一块切过的棋盘什么时候能有一个完美覆盖?为使完美覆盖存在,这块被切过的棋盘必须又有相等的黑方格数和白方格数但是,这个条件却不是充分的,最后是不能够用这些骨牌盖住其余方格的练习题3:硬币游戏如果你和你的对手准备依次轮流地将硬币放在一个长方形桌子上,使得这些硬币不重叠。
最后放上硬币的人为胜者,在开始时你有权决定先放还是后放。
为了能赢得这场比赛,你决定先放还是后放呢?答:决定先放。
首先将硬币放在长方形桌子的中心,然后根据对手所放的硬币,找一桌子中心为对称中心的位置,直至对手没有地方放硬币为止,由于长方形的对称性,只有中心不存在对称位置,故先放者赢。
[VIP专享]部分数学建模习题解答[1]
![[VIP专享]部分数学建模习题解答[1]](https://img.taocdn.com/s3/m/01092deea26925c52dc5bf4f.png)
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章第5题一个男孩和一个女孩分别在离家2km和1km且方向相反的两所学校里上学,每天同时放学后分别以2km/h和1km/h的速度步行回家。
一只小狗以6km/h的速度由男孩奔向女孩,又从女孩处跑向跑回男孩处,如此往返的奔跑,直至回到家中。
问小狗总共奔波了多少路程?解:由于男孩、女孩与小狗跑的时间一样,所以把时间设为t,则有2t+1t=3,得到t=1h。
所以小狗跑了6km/h*1h=6km。
第一章10题一位探险家必须穿过一片宽度为800 km的沙漠,他仅有的交通工具是一辆每升汽油可行驶10km的吉普车.吉普车的油箱可装10升汽油。
另外吉普车上可携带8个可装5升汽油的油桶,也就是说,吉普车最多可带50升汽油(最多能在沙漠中连续行驶500 km)。
现假定在探险家出发地的汽油是无限充足的.问这位保险家应怎样设计他的旅行才能通过此沙漠?他要通过沙漠所需的汽油最少是多少升?为了穿越这片800km宽的沙漠,他总共需要行驶多少公里路程。
总共要花费多少升的汽油?思路:1、若沙漠只有500公里或者更短,这时很简单,一次搞定。
2、若沙漠有550km,怎么办?需要保证的是:车到了离沙漠终点还有500km的地方,能恰恰加满油且不会有多余。
方案可为:600-550=50,从起点处加5*3(升)=15升油,开出50km,设一加油站,存下5升,剩下5升刚好使得汽车返回起点。
再在起点处加满50升油,到加油站时,只乘45升了,把存放在那儿的5升油加上。
则可跑出沙漠。
(这样共加油15+50=65,总路程为150+500=650km)3、再看2的情况,符合这种情况的沙漠的最大距离是多少呢:答案是500*(1+1/3)公里。
即在起点准备100升油,第一次装50升,跑了500/3公里后存放50*1/3升油,然后返回起点,这时车里的油也正好用完,然后再在起点处装50升,跑了550/3公里后,车内剩下(50*2/3)升油,再加上存放的50*1/3升油,恰好为50升油,则可跑出沙漠。
4。
当沙漠的距离超过了500*(1+1/3)km(但又超过得不多)又当如何?这时我们可以把前面的500*(1+1/3)km看成一段整体,需要保证的是:在距离沙漠终点500*(1+1/3)km 处恰恰有100升油(由3的分析可知)。
怎么来保证呢,我们假设沙漠的距离只比500*(1+1/3)多了1公里,因为汽车的容量是50升,所以100升油最少从起点运3次油才能满足。
除了3次装油,还有两次折回,所以往返正好有5次,这5次能保证的距离是500/5,所以这时我们又把沙漠的距离延伸到了:500*(1+1/3+1/5),起点应该储备150升油。
5。
当沙漠的距离超过了500*(1+1/3+1/5)km,要保证在距离沙漠终点500*(1+1/3+1/5)km的地方有150升油。
综上所述:总有某一个值k,使得fdis=500*(1+1/3+1/5+…+1/(2k-1))<800,但500*(1+1/3+1/5+…+1/(2k-1)+1/(2k+1))>800,应该在起点准备多少油呢?这时多了一小段出来,按情形2的分析,在起点准备的油应当是:((800 - fdis)/油耗)*往返次数+ k*50。
经计算:fdis=766.66,k=3,故应准备的油应为:((800 – 766.66)/10)*7 + 3*50=173.338。
第一章11题如果你有一个3L的桶和5L的桶,问如何才能准确地称出4L的水?如果你要的不是4L而是别的数量,你又该怎么办?解:准确称出4L水的方法:先把3L的桶装满水,倒入5L的桶中,再把3L的桶装满,又倒入5L的桶中直到倒满,此时3L的桶中还剩下1L;再将5L桶中的水倒掉,将3L桶中剩下的1L倒入5L桶中,再用3L桶装满水倒入5L桶中即可得到4L水。
y∈)表示要的任意L的水,a表示得到y L水所要用到3L桶的次数,b 设y([0,8]表示得到y L水所要用到5L桶的次数。
则可以得到如下模型:=+,a,b为整数。
35y a b例如1、y=1L时,a=2,b= -1,表示3L的桶用了两次装满,5L的桶用3L桶中的水装满一次并且倒掉。
2、y=2L时,a= -1,b=1。
3、y=3L时,a=1,b=0。
4、y=4L时,a=3,b= -1,表示3L的桶用了三次装满,5L的桶用3L桶中的水装满一次并且倒掉。
5、y=5L时,a=0,b=1。
6、y=6L时,a=2,b=0。
(注,此时5L的桶有用来中间存贮)7、y=7L时,a= -1,b=2。
8、y=8L时,a=1,b=1。
第一章第13题第二章1题第i 个前初的兔子对数为i f011,1f f ==,2012f f f =+=,3213f f f =+=,4235f f f =+= 5438f f f =+=,64513f f f =+=,76521f f f =+=,86734f f f =+=98755f f f =+=,108989f f f =+=,11109144f f f =+=(对)(理解:第i 个月的兔子=第i-1个月的兔子+第i-2个月的兔子,12i i i f f f --=+) 第二章2题这相当于一根棒的两端甲A ,乙B ,设初始位置甲A(0,0),棒长为R,乙的初始坐标为(D,0),顺时针运动,设甲的切向速度为v1,乙的径向速度为v2,则有转速w=v1/R,设x 轴正方向单位向量为i,y 正方向为j,则有乙的合速度为v1*(i*cos(wt)+j*sin(wt))+V2*(j*cos (wt )-isin(wt)),即有乙坐标的参数方程为x=D+[V1*cos(wt)-v2*sin (wt )]*t y=[V1*sin(wt)+v2*cos (wt )]*t, 这就是乙的运动路线了第二章3题 最小二乘法设y ax b =+,让总偏差最小,总偏差记为ε,()2161iii y ax b ε==-+⎡⎤⎣⎦∑,要求ε达到最小()()()161611220i i i i i i i i y ax b x y ax b x a ε==∂=-+⋅-=--+⋅=⎡⎤⎡⎤⎣⎦⎣⎦∂∑∑ ()16120i i i y ax b b ε=∂=-+=⎡⎤⎣⎦∂∑()16161611116161621111616i i i i i i i i i ii i i y x y x a x y x ======-=-∑∑∑∑∑∑,()()16161616211112161621116i i i i i i i i i i i i i x y x y x b x x ======-=⎛⎫- ⎪⎝⎭∑∑∑∑∑∑16112584123251284813377137081395014229146301488015288152991516815582158401620016728232566i ii y x==+++++++++++++++=∑()2161204492102521316216092220122500234092371624025243362464925281256002624426896378220ii x ==+++++++++++++=∑()216232566245815110.7194163782202458a ⨯-⨯==⨯-()22458232566378220151116.073245816378220b ⨯-⨯==--⨯0.719416.073y x =-数学建模2.10将一张四条腿的方桌放在不平的地面上,桌子四条腿的连线呈长方形,不允许将桌子移到别处,但允许其绕中心旋转,是否总能设法使其四条腿同时落地? 若桌子四条腿共圆,结果又如何? 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对于问题一和问题三我们都这样假设 (1)地面为连续曲面(2)方桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
问题一现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。
问题二现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以圆桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、C 的初始位置在y 轴上,而B 、D 则在y 轴上。
当方桌绕中心0旋转时,B 、D 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,我们令0'()f θ为A 、C 离地距离之和,'()g θ为B 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),0'()f θ,'()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故0'()f θ()g θ=0必成立(∀θ)。
不妨设'(0)0f =,'(0)0g >g (若'(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知0'()f θ,'()g θ均为θ的连续函数,'(0)0f =,'(0)0g >且对任意θ有00'()'()0f g θθ=,求证存在某一0θ,使00'()'()0f g θθ=。