数列求和合集例题与答案)

合集下载

数列求和专题,方法大全,7种方法(全面模型+精选例题+习题附答案)精编材料word版

数列求和专题,方法大全,7种方法(全面模型+精选例题+习题附答案)精编材料word版

七、数列求和专题1.公式法等差数列求和公式: 11()(1)22n n n a a n n S na d +-==+. 等比数列求和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩.常用求和公式:1123(1)2n n n ++++=+L22221123(1)(21)6n n n n ++++=++L333321123[(1)]2n n n ++++=+L2.分组求和法如果一个数列的通项可以写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差或等比数列或可转化为能够求和的数列,可采用分组求和法.3.错位相减法{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,采用错位相减法求解,在等式的两边同乘以{}n b 的公比,然后错位一项与{}n n a b ⋅的同次项对应相减,转化为特殊数列求和问题.需注意{}n b 共比为参数字母时,要对公比是否为1做讨论.它是等比数列前n 项和公式的推导方法.4.裂项相消法将数列每一项拆成两项或若干项,使得相加后有一些项可以相互抵消,从而求得其和.一般未被消去的项有前后对称的特点.常见裂项方法:①111(1)1n n n n=-++②1111()()n n k k n n k=-++③1111()(21)(21)22121n n n n=--+-+④1111[](1)(2)2(1)(1)(2)n n n n n n n=-+++++1k=⑥1log(1)log(1)logaa an nn+=+-注:(1)裂项常见公式没有必要死记硬背,例如对1(5)n n+裂项,可直接把分式从中间截断,变为115n n-+,再通分求得1155(5)n n n n-=++,与原式比较分母变为5倍,则把裂项后的结果115n n-+前面乘以15就变为与原式相等的裂项,即1111()(5)55n n n n=-++.(2)分母为根式相加形式的裂项,本质就是对分母有理化,即=1k=.(3)对数形式的裂项,考察的是对数的基本计算,利用对数性质巧妙构造相消项,如11log(1)log()log(1)loga a a ann nn n++==+-.5.倒序相加法一个数列中,与首末两项等距离的两项之和等于首末两项之和,那么把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.它是等差数列前n 项和公式的推导方法.6.并项求和法一个数列的前n 项和中,若项与项之间能两两结合求解,则称为并项求和.形如(1)()n n a f n =-的数列,可用此法.7.含有绝对值的求和关键找到正负转折项进行分类讨论.练习题:答案解析:1n=也适合上式,故3104na n=-+令31040na n=-+≥,解得34.7n≤即当34n≤时,0na>;当35n≥时,0na<(1)当34n≤时,12||||||n nT a a a=+++L12na a a=+++L2320522nS n n==-+(2)当35n≥时,12||||||n nT a a a=+++L12343536()()na a a a a a=+++-+++L L342nS S=-23205350222n n=-+综上:223205(34)2232053502(35)22nnn nTnn n⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩数学浪子整理制作,侵权必究。

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.数列{an }满足a1=1,且对任意的m,n∈N*,都有am+n=a m+a n+mn,则+++…+=()A.B.C.D.【答案】B【解析】令m=1得an+1=a n+n+1,即an+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),上述n-1个式子相加得an -a1=2+3+…+n,所以an=1+2+3+…+n=,当n=1时,a1=1满足上式,所以an= (n∈N*),因此==2(-),所以+++…+=2(1-+-+…+-)=2(1-)=2.函数f(x)对任意x∈R都有. (1)求和(n∈N*)的值;(2)数列{an }满足:,求an;(3)令,,,试比较Tn 和Sn的大小。

【答案】(1),;(2);(3).【解析】(1)由于函数f(x)对任意x∈R都有,则令可求的;再令求出;(2)利用倒序相加结合(1)的结论可求出;(3)由及第(2)问的结论求出,用放缩法变形(),用裂项相消法求,再与比较大小.(1)令=2,则;令得,(4分)(2)由,两式相加得:,∴,(8分)(3),(n≥2)∴.(12分)【考点】倒序相加、裂项相消法求数列的前项和.3.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和4.已知函数,且,则()A.0B.100C.5050D.10200【答案】C【解析】因为,所以,选C.5.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出.试题解析:(1)解法1:当时,,当时,.是等差数列,,得.又,,,、、成等比数列,,即,解得.解法2:设等差数列的公差为,则.,,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,②①②得. .解法2:由(1)得.,.,①由,两边对取导数得,.令,得. .【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导6.数列{an }满足an+1+(-1)n an=2n-1,则{an}的前60项和为____________.【答案】1830【解析】当时,;当时,;当时,.将与相减得:;将与相减得:.所以,,所以.【考点】数列.7.在数列{an }中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=.【答案】299【解析】设定值为M,则an +an+1+an+2=M,进而an+1+an+2+an+3=M,后式减去前式得an+3=an,即数列{an}是以3为周期的数列.由a7=2,可知a1=a4=a7=…=a100=2,共34项,其和为68;由a9=3,可得a 3=a6=…=a99=3,共33项,其和为99;由a98=4,可得a2=a5=…=a98=4,共33项,其和为132.故数列{an}的前100项的和S100=68+99+132=299.8..己知数列满足,则数列的前2016项的和的值是___________.【答案】1017072【解析】这个数列既不是等差数列也不是等比数列,因此我们要研究数列的各项之间有什么关系,与它们的和有什么联系?把已知条件具体化,有,,,,…,,,我们的目的是求,因此我们从上面2015个等式中寻找各项的和,可能首先想到把出现“+”的式子相加(即为偶数的式子相加),将会得到,好像离目标很近了,但少,而与分布在首尾两个式子中,那么能否把首尾两个式子相减呢?相减后得到,为了求,我们又不得不求,依次下去,发现此路可能较复杂或者就行不通,重新寻找思路,从头开始我们有,即,而,∴,因此,我们由开始的三个等式求出了,是不是还可用这种方法求出呢?下面舍去,考察,,,同样方法处理,,从而,于是,而,正好504组,看来此法可行,由此我们可得.【考点】分组求和.9.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图10.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。

数列求和专题训练(含参考答案)

数列求和专题训练(含参考答案)

数列求和基础巩固组1.数列112,314,518,7116,…,(2n-1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12n B.2n 2-n+1-12n C.n 2+1-12n -1D.n 2-n+1-12n2.在数列{a n }中,a 1=-60,a n+1=a n +3,则|a 1|+|a 2|+…+|a 30|=( ) A.-495 B.765 C.1 080 D.3 1053.已知数列{a n }的前n 项和S n 满足S n +S m =S n+m ,其中m ,n 为正整数,且a 1=1,则a 10等于( )A.1B.9C.10D.554.已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n+1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018等于( ) A.√2 018-1 B.√2 018+1 C.√2 019-1D.√2 019+15.已知数列{a n }中,a n =2n +1,则1a 2-a 1+1a 3-a 2+…+1a n+1-a n=( )A.1+12nB.1-2nC.1-12nD.1+2n〚6.设数列{a n }的前n 项和为S n ,a 1=2,若S n+1=n+2n S n ,则数列{1a n a n+1}的前2 018项和为 .7.已知等差数列{a n }满足:a 5=11,a 2+a 6=18. (1)求数列{a n }的通项公式;(2)若b n =a n +2n ,求数列{b n }的前n 项和S n .综合提升组8.如果数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n 项和S n >1 020,那么n 的最小值是( ) A.7B.8C.9D.109.(2017山东烟台模拟)已知数列{a n}中,a1=1,且a n+1=a n2a n+1,若b n=a n a n+1,则数列{b n}的前n项和S n为()A.2n2n+1B.n 2n+1C.2n 2n-1D.2n-12n+1〚10.(2017福建龙岩一模)已知S n为数列{a n}的前n项和,对n∈N*都有S n=1-a n,若b n=log2a n,则1b1b2+1 23+…+1n n+1=.11.(2017广西模拟)已知数列{a n}的前n项和为S n,且S n=32a n-1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2log3a n2+1,求1b1b2+1b2b3+…+1b n-1b n.创新应用组12.(2017全国Ⅰ,理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是() A.440 B.330 C.220 D.110 〚参考答案数列求和1.A该数列的通项公式为a n=(2n-1)+,则S n=[1+3+5+…+(2n-1)]+=n2+1-.2.B由a1=-60,a n+1=a n+3可得a n=3n-63,则a21=0,|a1|+|a2|+…+|a30|=-(a1+a2+…+a20)+(a21+…+a30)=S30-2S20=765,故选B.3.A∵S n+S m=S n+m,a1=1,∴S1=1.可令m=1,得S n+1=S n+1,∴S n+1-S n=1,即当n≥1时,a n+1=1,∴a10=1.4.C由f(4)=2,可得4a=2,解得a=,则f(x)=.∴a n=,S2 018=a1+a2+a3+…+a2 018=()+()+()+…+()=-1.5.C a n+1-a n=2n+1+1-(2n+1)=2n+1-2n=2n,所以+…++…+=1-=1-.6.∵S n+1=S n,∴.又a1=2,∴当n≥2时,S n=·…··S1=·…·×2=n(n+1).当n=1时也成立,∴S n=n(n+1).∴当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n.当n=1时,a1=2也成立,所以a n=2n.∴.则数列的前2 018项和=.7.解 (1)设{a n}的首项为a1,公差为d.由a5=11,a2+a6=18,得解得a1=3,d=2,所以a n=2n+1.(2)由a n=2n+1得b n=2n+1+2n,则S n=[3+5+7+…+(2n+1)]+(21+22+23+…+2n)=n2+2n+=n2+2n+2n+1-2.8.D a n=1+2+22+…+2n-1=2n-1.∴S n=(21-1)+(22-1)+…+(2n-1)=(21+22+…+2n)-n=2n+1-n-2,∴S9=1 013<1 020,S10=2 036>1 020,∴使S n>1 020的n的最小值是10.9.B由a n+1=,得+2,∴数列是以1为首项,2为公差的等差数列,∴=2n-1,又b n=a n a n+1,∴b n=,∴S n=,故选B.10.对n∈N*都有S n=1-a n,当n=1时,a1=1-a1,解得a1=.当n≥2时,a n=S n-S n-1=1-a n-(1-a n-1),化为a n=a n-1.∴数列{a n}是等比数列,公比为,首项为.∴a n=.∴b n=log2a n=-n.∴.则+…++…+=1-.11.解 (1)当n=1时,a1=a1-1,∴a1=2.当n≥2时,∵S n=a n-1,①S n-1=a n-1-1(n≥2),②∴①-②得a n=,即a n=3a n-1,∴数列{a n}是首项为2,公比为3的等比数列,∴a n=2·3n-1.(2)由(1)得b n=2log3+1=2n-1,∴+…++…+=+…+.12.A设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n组的项数为n,则前n组的项数和为.第n组的和为=2n-1,前n组总共的和为-n=2n+1-2-n.由题意,N>100,令>100,得n≥14且n∈N*,即N出现在第13组之后.若要使最小整数N满足:N>100且前N项和为2的整数幂,则S N-应与-2-n互为相反数,即2k-1=2+n(k∈N*,n≥14),所以k=log2(n+3),解得n=29,k=5.所以N=+5=440,故选A.。

数列求和习题及答案.docx

数列求和习题及答案.docx

§数列求和( : 45分 分: 100分)一、 ( 每小 7分,共 35 分 )*11.在等比数列 {a n } (n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前10 和 ()A . 2- 18B . 2- 192 2 C . 2-110D . 2-111222.若数列 {a n } 的通 公式a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ()n2 n + 12A . 2 + n -1B . 2 + n - 1C . 2n +1+ n 2- 2D . 2n + n - 23.已知等比数列 {an } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lga ,b = 18,b = 12,nnn36数列 {b n } 的前 n 和的最大 等于 ( )A . 126B . 130C . 132D . 1344.数列 {a } 的通 公式n - 1 ·(4 n - 3) , 它的前 100 之和 S等于 ()n a = ( - 1)n100A . 200B .- 200C . 400D .- 4005.数列 1·n , 2(n -1),3(n-2) ,⋯, n ·1的和 ( )n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3)n(n + 1)(n + 2)二、填空 ( 每小 6 分,共 24 分 )6.等比数列 {a } 的前 n 和 n2 22S =2 - 1, a+ a +⋯+ a= ________.n n12n7.已知数列 {a } 的通 a与前 n 和 S之 足关系式S = 2- 3a , a = __________.nnnnnn8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b} 足 b =log 3a , 数列的前 nnnnn1b bn + 1n 和 S = ________.n9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数a n ,数列 {a n } 的前 n 和S n , S 100 的 ________.三、解答 ( 共 41 分 )10. (13 分 ) 已知数列 nn和, 于任意的*{a } 的各 均 正数, S 其前 nn ∈N 足关系式2S n = 3a n -3. (1) 求数列 {a } 的通 公式;n(2) 数列 {b} 的通 公式是 b =1 ,前 n 和 T ,求 : 于任意的nnnlog 3a n ·log 3a n + 1正数 n , 有 T n <1.} 足 a + a + a = 28,且 a + 2 是 a , a 的等差11. (14 分) 已知 增的等比数列 {an23432 4中.(1)求数列 {a n} 的通公式;(2) 若 b n= a n log 1n+1成立的最小正整数n 的.a n,S n= b1+b2+⋯+b n,求使S n+ n·2 >50212. (14 分 ) 已知等差数列 {a} 的首 a = 1,公差 d>0,且第二、第五、第十四分n1是一个等比数列的第二、第三、第四.(1)求数列 {a n} 的通公式;n1*n n,是否存在最大的整数t ,使得任意(2)b=n(a n+3) (n ∈N) ,S = b1+b2+⋯+ bn t成立?若存在,求出t ;若不存在,明理由.的 n 均有 S >36答案1 n7.1 3 n-18.n1006. 3(4- 1) 2 4+ 1n2S= 3a-3,10. (1)n n( n≥2) .解由已知得n n- 32S-1= 3a-1故2(S n-S n-1) =2a n= 3a n- 3a n-1,即 a n= 3a n-1 (n ≥2) .故数列 {a n} 等比数列,且公比q= 3.又当 n= 1 , 2a1= 3a1- 3,∴ a1=3. ∴ a n= 3n.(2) 明1∵ b n=n( n+ 1)=1-1.n n+1∴ T n= b1+b2+⋯+ b n111+⋯+11= 1-+-3-n+122n1= 1-n+1<1.11 解 (1) 此等比数列a1,a1q, a1q2, a1q3,⋯,其中 a1≠0, q≠ 0.11213= 28,①由意知: a q+ a q + a qa1q+ a1q3= 2(a 1q2+ 2) .②②× 7-①得 6a 13121q -15a q+ 6a q=0,1即2q2- 5q+ 2= 0,解得 q= 2 或 q= .2∵等比数列 {a n} 增,∴ a1= 2, q=2,∴ a n= 2n.n(2) 由 (1) 得 b n=- n·2,2 n.∴ S = b +b +⋯+ b =- (1 ×2+2×2 +⋯+ n ·2)n 12nn2nT =1×2+2×2 +⋯+ n ·2,③23n + 12T n =1×2+2×2+⋯+ n ·2 . ④由③-④,得-n2 +⋯+ nn + 1T =1×2+1×21·2 - n ·2n +1n + 1n +1= 2 - 2- n ·2 = (1- n) ·2 - 2,∴- T n =- ( n -1) ·2n +1- 2.∴ S n =- ( n -1) ·2n +1- 2.n +1要使 S n +n ·2>50 成立,n + 1n +1>50,即 n即- (n -1) ·2 - 2+n ·22 >26.45x是 增函数,∵2= 16<26,2 = 32>26,且 y = 2 ∴ 足条件的 n 的最小 5.12 解 (1)由 意得 (a 1+ d)(a 1+ 13d) = (a 1 + 4d) 2,整理得 2a 1d = d 2.∵ a 1= 1,解得 d =2, d = 0( 舍 ) .∴ a n = 2n - 1 (n ∈N * ) .(2)b n =1= 1 = 1 1 1n ( a n +3) + 1) 2 n - n + 1 ,2n ( n∴ S = b +b +⋯+ b nn 1 21 1 1 111= 21- 2 + 2- 3+ n-n +111=2(n= 21-n + 1+ 1) .nt假 存在整数 t 足 S n >36 成立,n + 1 -2(n =2(1+ 1)>0,又 S n +1- S n = 2(n + 2)n + 1) n + 2)(n∴数列 {S n } 是 增的.1t 1∴ S 1= 4 S n 的最小 ,故 36<4,即 t<9.又∵ t ∈Z ,∴适合条件的 t 的最大 8.。

求数列通项公式与数列求和精选练习题(有答案)

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++ 数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n nn n n a n S a a S n nS nS a +++==== 数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.n n nn n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n +==++ 已知数列满足求练习1 练习2 练习3 练习4112{},,,.31n n n n n a a a a a n +==+ 已知数列满足求111511{},,().632n n n n n a a a a a ++==+ 已知数列中,求111{}:1,{}.31n n nn n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式练习8 等比数列{}n a 的前n 项和Sn=2n-1,则2232221na a a a ++++练习9 求和:5,55,555,5555,…,5(101)9n-,…;练习5 练习6练习7练习10 求和:1111447(32)(31)n n+++⨯⨯-⨯+练习11 求和:111112123123n ++++= +++++++练习12 设{}na是等差数列,{}nb是各项都为正数的等比数列,且111a b==,3521a b+=,5313a b+=(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab⎧⎫⎨⎬⎩⎭的前n项和n S.答案练习1答案:练习2 证明: (1)注意到:a(n+1)=S(n+1)-S(n)代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列 (2)由(1)知,{S(n)/n}是以1为首项,2为公比的等比数列。

数列求和常用方法(含答案)

数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。

数列求和(分组求和、并项法、错位相减、裂项相消)综合经典例题(收藏版)含答案详解

数列求和(分组求和、并项法、错位相减、裂项相消)综合经典例题(收藏版)含答案详解

数列求和综合(经典总结版)含答案详解包括四种题型:分组求和、并项法、错位相减、裂项相消一、分组求和例1.求和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S .例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.练1.求,,,,…,,…的前50项之和以及前项之和.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥(I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。

11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 21-2223-242(1)n n •-50S n n S练1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.若a 1-a 3=-32,求数列{n ·a n }的前n 项和T n .练2 设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .例2已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列;(Ⅱ)数列{}n n a 的前n 项和n S .练1 已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .练2、已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .例3 在等比数列{a n }中,a 2a 3=32,a 5=32.(1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n .例4.已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式a n ;(2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn ,求数列{c n }的前n 项和T n .四、裂项相消裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111(1)1n a n n n n ==-++ 1111()(2)22n a n n n n ==-++ ┈┈1111()()n a n n k k n n k ==-++2n p a An Bn C ⇒=++(分母可分解为n 的系数相同的两个因式)2. 1111()(21)(21)22121n a n n n n ==--+-+ 1111()(21)(23)22123n a n n n n ==-++++1111()(65)(61)66561n a n n n n ==--+-+3. 1111(1)(2)2(1)(1)(2)n a n n n n n n n ⎡⎤==-⎢⎥+++++⎣⎦4.)121121(211)12)(12()2(2+--+=+-n n n n n 5. 111211(21)(21)2121n n n n n n a ---==-++++ +1+1211(21)(21)2121nnn n n n a ==-++++122(1)111(1)2(1)22(1)2n n n n n n n n a n n n n n n -++-==⋅=-++⋅+6.=┈┈12=1k=- 例1.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .练1.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和.例2.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .例3.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .例4.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .练1、已知数列{}n a 是首相为1,公差为1的等差数列,21n n n b a a +=⋅,n S 为{}n b 的前n 项和,证明:1334n S ≤<.例5.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .例6. (无理型)设数列{}n a 满足01=a 且111111=---+nn a a ,(1)求{}n a 的通项公式;(2)设na b n n 11+-=,记∑==nk kn bS 1,证明:1<n S .例7.(指数型).已知数列{a n }的前n 项和为S n ,且a 2=8,S n =﹣n ﹣1.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .例8.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)设数列{S n }的前n 项和为T n (n ∈N *), (i )求T n ;(ii )证明=﹣2(n ∈N *)作业:1.设231()2222()n f n n N ++=++++∈,则()f n 等于( )A.21n -B.22n -C. 122n +-D. 222n +-2.满足*12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n 值是( )A .9B .10C .11D .123.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( A ) A .100101 B .99101 C .99100 D .1011004.求和2345672223242526272+⨯+⨯+⨯+⨯+⨯+⨯= . 5.定义在上的函数满足, 则6.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .7.已知数列{a n }为公差不为零的等差数列,a 1=1,各项均为正数的等比数列{b n }的第1项,第3项,第5项分别是a 1,a 3,a 21.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n b n }的前n 项和S n .8. 已知数列{an}的前n 项和Sn =-12n 2+kn(其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和Tn.R )(x f 2)21()21(=-++x f x f )83()82()81(f f f ++67()()_______88f f +++=数列求和综合答案详解版一、分组求和例1.求和. 【解析】(1+2+3+…+n)+ =【总结升华】1. 一般数列求和,先认真理解分析所给数列的特征规律,联系所学,考虑化归为等差、等比数列或常数列,然后用熟知的公式求解.2. 一般地,如果等差数列与等比数列的对应项相加而形成的数列都用分组求和的办法来求前项之和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S . 【解析】(1)232(164)2325p q p q p q p p +=⎧⎨+=+++⎩ 解得11q p =⎧⎨=⎩(2)12212(21)(22)+(2)n n S x x x n =+++=+++++………… =12(22+2)(123+n)n ++++++…………=1(1)222n n n ++-+ 例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ; (Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .【解答】解:(I )设等差数列{a n }的过程为d ,∵a 1=1,且a 1,a 2,a 4+2成等比数列. ∴=a 1•(a 4+2),即(1+d )2=1×(1+3d +2),化为:d 2﹣d ﹣2=0,解得d =2或﹣1.其中d =﹣1时,a 2=0,舍去.∴d =2.a n =1+2(n ﹣1)=2n ﹣1,S n ==n 2.(Ⅱ)设b n ==,∴n 为偶数时,==16,b 2=8;11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭11111232482n n S n ⎛⎫=+++⋅⋅⋅++= ⎪⎝⎭111242n ⎛⎫++⋅⋅⋅+ ⎪⎝⎭(1)1122n n n ++-{}n a {}n b {}n n a b +n n Sn 为奇数时,==,b 1=.∴数列{b n }的奇数项是首项为,公比为.数列{b n }的偶数项是首项为8,公比为16.∴数列{b n }的前2n 项和T 2n =+=.二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.【思路点拨】该数列{}n a 的特征:1(1)(43)n n a n -=--,既非等差亦非等比,但也有规律:所有奇数项构成以1为首项8为公差的等差数列,偶数项构成以-5为首项-8为公差的等差数列,因而可以对奇数项和偶数项分组求和;还有规律:1234561...4n n a a a a a a a a ++=+=+==+=-(n 为奇数),可以将相邻两项组合在一起. 【解析】(1)法1(分组)由可得,法2(并项)a1+a2=−4,a3+a4=−4(2)由∴当为奇数,时, ,Sn=( a1+a2)+ a3+a4……(a n-2-a n-1)+an=−4(n−12)+4n-3=2n-1当为偶数,时,,Sn=( a1+a2)+ a3+a4……(a n-1+an )=−4×n2=−2n 【总结升华】1.对通项公式中含有或的一类数列,在求时要注意讨论的奇偶情况.2. 对正负相间的项中的相邻两项进行恰当的组合,可能会有意料之结. 举一反三:【变式1】求,,,,…,,…的前50项之和以及前项之和.{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 1(1)(43)n n a n -=--158(157)7(553)[19...(4153)][513...(4143)]2922S ++=+++⨯--+++⨯-=-=2211(181)11(585)[19...(4213)][513...(4223)]4422S ++=+++⨯--+++⨯-=-=-1(1)(43)n n a n -=--n n N +∈1(43)(41)4n n a a n n ++=--+=-n n N +∈1(43)(41)4n n a a n n ++=--++=n )1(-1n )1(+-n S n 21-2223-242(1)n n •-50S n n S【解析】(1)设,则数列为等差数列,且是的前25项之和, 所以.(2)当为偶数即时,.当为奇数即时,.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式;(Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。

数列求和解答题50道(解析版)

数列求和解答题50道(解析版)

数列求和解答题50道1.已知各项均为正数的数列{a n }的前n 和S n 满足4S n =(a n +1)2(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =a n +2a n ,求数列{b n }的前n 项和T n .【解析】(1)∵4S n =(a n +1)2(n ∈N *),n ≥2时,4S n-1=(a n -1+1)2,相减可得:4a n =(a n +1)2-(a n -1+1)2,化为:(a n +a n -1)(a n -a n -1-2)=0,∵a n +a n -1>0,∴a n -a n -1-2=0,即a n -a n -1=2,∴数列{a n }是公差为2的等差数列,n =1时,4S 1=4a 1=(a 1+1)2,解得a 1=1.∴a n =1+2(n -1)=2n -1.(2)b n =a n +2a n =2n -1+22n -1=2n -1+12×4n .∴数列{b n }的前n 项和T n =n (1+2n -1)2+12×4(4n -1)4-1=n 2+2(4n -1)3.2.已知各项均为正数的数列{a n }的前n 项和S n 满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.(1)求{a n }的通项公式:(2)设数列{b n }满足b n =a n ,n 是奇数2n ,n 是偶数,并记T n 为{b n }的前n 项和,求T 2n .【解析】(1)由a 1=S 1=16(a 1+1)(a 1+2),整理可得:a 21-3a 1+2=0,结合a 1=S 1>1,解得a 1=2由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2)得(a n +1+a n )(a n +1-a n -3)=0,又a n >0,得a n +1-a n =3从而{a n }是首项为2公差为3的等差数列,故{a n }的通项公式为a n =3n -1.(2)T 2n =(a 1+a 3+⋅⋅⋅+a 2n -1)+(22+24+⋅⋅⋅+22n )=n (2+6n -4)2+4(1-4n )1-4=4n +1-43+3n 2-n . 3.已知数列{a n }满足a 1-12+a 2-122+⋯+a n -12n =n 2+n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{a n }的前n 项和S n .【解析】(Ⅰ)∵a 1-12+a 2-122+⋯+a n -12n =n 2+n ,(n ∈N +)①∴a 1-12+a 2-122+⋯+a n -1-12n -1=(n -1)2+n -1=n 2-n (n ≥2,n ∈N +),②由①-②得:a n -12n =2n ,∴a n =n •2n +1+1,n≥2,n ∈N +,③在①中,令n =1,得a 1=5,适合③式,∴a n =n •2n +1+1,n ∈N +.(Ⅱ)设b n =n •2n +1,其前n 项和为T n ,则:T n =1×22+2×23+⋯+n ×2n +1,①2T n =1×23+2×24+⋯+n ×2n +2,②②-①,得T n =-22-23-⋯-2n +1+n •2n +2=(n -1)•2n +2+4.∴S n =T n +n =(n -1)•2n +2+n +4.4.已知数列{a n }的前n 项和S n =-12n 2+kn (k ∈N ),且S n 的最大值为8(1)确定常数k ,求a n ;(2)设b n =1a n a n +1,若数列{b n }的前n 项和为T n ,T n >m 恒成立,求m 的取值范围.【解析】(1)数列{a n }的前n 项和S n =-12n 2+kn (k ∈N ),即为S n =-12(n -k )2+k 22,可得当n =k 时,取得最大值k 22,即有k 22=8,解得k =4;则S n =-12n 2+4n ,a 1=S 1=72,n ≥2时,a n =S n -S n -1=-12n 2+4n --12(n -1)2+4(n -1) =92-n ,上式对n =1也成立,则a n =92-n ;(2)b n =1a n a n +1=4(9-2n )(7-2n )=212n -9-12n -7,可得前n 项和为T n =21-7-1-5+1-5-1-3+⋯+12n -9-12n -7=21-7-12n -7 ,当n ≤3时,T n 增大;当n ≥4时,T n 增大,由T 1=435,T 4=-167,可得T n 的最小值为-167,∵T n >m 恒成立,可得m <-167.5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N +,且S n的最大值为8.(1)确定k 的值;并求数列{a n }的通项公式;(2)若数列9-2a n2n 的前n 项和T n .证明:T n <4.【解析】(1)∵S n =-12n 2+kn =-12(n -k )2+12k 2,又n ,k ∈N +,所以当n =k 时,(S n )max =12k 2,由题设12k 2=8,故k =4,可得S n =-12n 2+4n ;当n =1时,a 1=S 1=72;当n ≥2时,a n =S n -S n -1=-12n 2+4n --12(n -1)2+4(n -1) =92-n ,上式也满足n =1,即a n =92-n ,n ∈N +;(2)证明:a n =92-n ,9-2a n 2n =n 2n -1,故前n 项和T n =1•12 0+2•12 1+⋯+n •12 n -1,12T n =1•12 +2•12 2+⋯+n •12 n ,两式相减可得12T n =1+12+12 2+⋯+12 n -1-n •12 n =1-12n 1-12-n •12 n ,化简可得T n =4-(n +2)•12 n -1,则T n <4.6.已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(Ⅰ)确定常数k ,并求a n ;(Ⅱ)求数列9-2a n2n 的前n 项和T n .【解析】(Ⅰ)数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8,当n =k 时,S n 取得最大值,则12k 2=8,解得k =4,可得S n =-12n 2+4n ,a 1=S 1=4-12=72,n ≥2时,a n =S n -S n -1=-12n 2+4n +12(n -1)2-4(n -1)=92-n ,上式对n =1也成立,则a n =92-n ;(Ⅱ)数列9-2a n 2n ,即为数列n 2n -1 ,则前n 项和T n =1•12 0+2•12 1+3•122+⋯+n •12n -1,12T n =1•12 +2•12 2+3•123+⋯+n •12n,两式相减可得,12T n =1+12 1+122+⋯+12 n -1-n •12 n =1-12 n1-12-n •12 n,化简可得T n =4-(n +2)•12n -1.7.设S n 为等差数列{a n }的前n 项和.已知a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解析】(1)设等差数列{a n }的公差为d ,首项为a 1由题意可得a 1+2d =57a 1+7×62d =49,解得a 1=1d =2 ,所以{a n }的通项公式为a n =2n -1.(2)由(1)得b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,从而T n =121-13+13-15 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.8.设数列{a n }的前n 项和为S n ,且S n =2n -1.数列b 1=2,b n +1-2b n =8a n .(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,且S n =2n-1.当n =1时,解得a 1=1,当n ≥2时,S n -1=2n -1-1,所以a n =S n -S n -1=2n -1(首项符合通项),故a n =2n -1,数列b 1=2,b n +1-2b n =8a n =2n +2,所以b n +12n +1-b n 2n=2(常数),所以数列b n2n 是以b 121=1为首项,2为公差的等差数列.所以b n =(2n -1)⋅2n ,则T n =1⋅21+3⋅22+⋯+(2n -1)⋅2n ①,2T n =1⋅22+3⋅23+⋯+(2n -1)⋅2n +1②,①-②得-T n =2(2+22+⋯+2n )-2-(2n -1)⋅2n +1,解得T n =(2n -3)⋅2n +1+6.9.已知等差数列{a n }的前n 项和为S n ,且S l 5=225,a 3+a 6=16.(Ⅰ)证明:{S n }是等差数列;(Ⅱ)设b n =2n⋅a n ,求数列{b n }的前n 项和T n .【解析】(Ⅰ)设公差为d 的等差数列{a n }的前n 项和为S n ,且S l 5=225,a 3+a 6=16.则:S 15=225a 3+a 6=16 解得:a 1=1,d =2,所以:S n =1+3+⋯+(2n -1)=n 2,则:S n =n ,所以:S n -S n -1=n -n +1=1(常数).故:数列{S n }是等差数列;(Ⅱ)由已知条件b n =2n⋅a n =(2n -1)⋅2n,所以:T n =1⋅21+3⋅22+⋯+(2n -1)⋅2n①2T n =1⋅22+3⋅23+⋯+(2n -1)⋅2n +1②,①-②得:T n =(2n -3)⋅2n +1+6.10.已知数列{a n }是公差不为0的等差数列,a 1=3,a 1•a 4=a 22.(1)求{a n }的通项公式及a n 的前n 项和S n 的通项公式;(2)b n =1S 1+1S 2+⋯+1S n,求数列{b n }的通项公式,并判断b n 与23的大小.【解析】(1)设a 1=a ,公差为d ,则a (a +3d )=(a +d )2,解得d =a =3,所以a n =3n ,S n =3n (n +1)2.(2)1S n =23⋅1n (n +1)=231n -1n +1,从而b n =1S 1+1S 2+⋯+1S n=231-12+12-13+⋯+1n -1n +1 =231-1n +1 =23-23(n +1)<23,故b n <23.11.已知正项数列{a n }的前n 项和为S n ,若数列log 13a n是公差为-1的等差数列,且a 2+2是a 1,a 3的等差中项.(1)证明数列{a n }是等比数列,并求数列{a n }的通项公式;(2)若T n 是数列1a n的前n 项和,若T n <M 恒成立,求实数M 的取值范围.【解析】【解答】(1)证明:∵数列log 13a n 是公差为-1的等差数列,∴log 13a n =log 13a 1-(n -1),∴a na 1=3n -1.∴n ≥2时,a n a n -1=3n -13n -2=3,数列{a n }是以3为公比的等比数列.∴a 2=3a 1,a 3=9a 1.∵a 2+2是a 1,a 3的等差中项,∴2(a 2+2)=a 1+a 3,∴2(3a 1+2)=a 1+9a 1,解得a 1=1.∴数列{a n }是以3为公比,1为首项的等比数列.∴a n =3n -1.(2)解:1a n =13n -1.∴T n =1-13 n1-13=321-13 n.∵T n <M 恒成立,∴M ≥32.∴实数M 的取值范围是32,+∞ .12.已知等差数列{a n }的前n 项和为S n ,a 8=S 3,a 4=2a 2-2.(1)求数列{a n }的通项公式;(2)设b n =1S n +2,其前n 项和为T n ,证明:T n <12.【解析】(1)解:设等差数列{a n }的公差为d ,依题意得a 1+7d =3a 1+3da 1+3d =2(a 1+d )-2,解得:a 1=4d =2 ,∴a n =4+2(n -1)=2n +2;(2)证明:由(1)得:S n =(4+2n +2)n2=n 2+3n ,∴b n =1S n +2=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,∴T n =12-13 +13-14+⋯+1n +1-1n +2 =12-1n +2<12.13.已知数列{a n }的前n 项和为S n ,且满足2a n -S n =1(n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2(1+S n ),求数列1b n b n +1的前n 项和T n .【解析】(Ⅰ)∵2a n -S n =1,令n =1,解得a 1=1,n≥2,又2a n -1-S n -1=1,两式相减,得a n =2a n-1,∴{a n }是以a 1=1为首项,q =2为公比的等比数列,∴a n =2n -1;(Ⅱ)∵1+S n =2n ,∴b n =log 2(1+S n )=log 22n=n ,1b n b n +1=1n (n +1)=1n -1n +1∴T n =11×2+12×3+⋯+1n (n +1)=1-12 +12-13 +⋯+1n -1n +1=1-1n +1=nn +1.14.已知正项等比数列{a n }满足a 1=2,a 3a 7=322,数列b n 的前n 项和为S n ,b n =2n -2.(Ⅰ)求{a n }的通项公式与S n ;(Ⅱ)设c n =a n +1S n +1,求数列{c n }的前n 项和T n .【解析】(Ⅰ)根据题意,a 1=2,a 25=322,∴a 1=2,a 5=32,∴q =2,所以a n =2n ,因为b n =2n -2,数列{b n }为公差2,首项为0的等差数列,∴S n =n (0+2n -2)2=n 2-n ;(Ⅱ)根据题意,c n =a n +1S n +1=2n +1(n +1)n=2n +1n -1n +1所以T n =2(1-2n )1-2+1-12 +12-13 +⋯+1n -1n +1 =2n +1-1-1n +1.15.在等差数列{a n }中,a 1=-8,a 2=3a 4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =4n (12+a n )(n ∈N *),T n 为数列{b n }的前n项和,若T n =95,求n 的值.【解析】(Ⅰ)设等差数列{a n }的公差是d ,由a 1=-8,a 2=3a 4得:-8+d =3(-8+3d )解得d =2,所以a n =-10+2n ;(Ⅱ)由(Ⅰ)知a n =-10+2n ,∴b n =4n (12+a n )=4n (2n +2)=21n -1n +1 ,所以T n=211-12 +12-13 +⋯+1n -1n +1 =2n n +1,由T n =95解得n =9.16.等差数列{a n }中,公差d ≠0,a 5=14,a 23=a 1a 11.(1)求{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和S n .【解析】(1)∵{a n }是等差数列,公差d ≠0,a 5=14,a 23=a 1a 11,可得a 1+4d =14,(a 1+2d )2=a 1(a 1+10d ),解得a 1=2,d =3,所以{a n }的通项公式;a n =a 1+(n -1)d =3n -1;(2)bn=1a n a n +1=1(3n -1)(3n +2)=1313n -1-13n +2,数列{b n }的前n 项和S n =1312-15+15-18+⋯+13n -1-13n +2=1312-13n +2 =16-19n +6=n 6n +4.17.在等差数列{a n }中,已知a 2=3,a 7=8.(1)求数列{a n }的通项公式;(2)设数列1a n a n +1 的前n 项和为S n ,若S n =512,求n 的值.【解析】(1)设公差为d 的等差数列{a n }中,已知a 2=3,a 7=8.所以a 7-a 2=5d =5,解得d =1,由于a 2=a 1+d ,所以a 1=2.故a n =n +1.(2)由于a n =n +1,所以1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,则S n =12-13+13-14+⋯+1n +1-1n +2=512,整理得12-1n +2=512,解得n =10.18.已知公差不为0的等差数列{a n }满足a 3=9,a 2是a 1,a 7的等比中项.(1)求{a n }的通项公式;(2)设数列{b n }满足b n =1n (a n +7),求{b n }的前n 项和S n .【解析】(1)设等差数列{a n }的公差为d (d ≠0),则a 1+2d =9(a 1+d )2=a 1⋅(a 1+6d )解得d =4或d =0(舍去),a 1=1,∴a n =1+4(n -1)=4n -3.(2)∵b n =1n (a n +7)=141n -1n +1 ,∴Sn=b 1+b 2+b 3+⋯+b n =1411-12 +12-13 +⋯+1n -1n +1 =141-1n +1 =n 4n +4.19.已知数列{a n }的前n 项和为S n ,且2S n =3a n +4n -7.(1)证明:数列{a n -2}为等比数列;(2)若b n =a n -2(a n +1-1)(a n -1),求数列{b n }的前n 项和T n .【解析】【解答】证明:(1)数列{a n }的前n 项和为S n ,且2S n =3a n +4n -7①.当n =1时,解得:a 1=3,当n ≥2时,2S n -1=3a n -1+4n -11②.①-②得:a n =3a n -1-4,整理得:a n -2a n -1-2=3(常数)所以:数列{a 2-2}是以a 1-2=1为首项,3为公比的等比数列.(2)由于:数列{a 2-2}是以a 1-2=1为首项,3为公比的等比数列,故:a n -2=3n -1,所以:b n =a n -2(a n +1-1)(a n -1)=3n -1(3n +1)(3n -1+1)=1213n -1+1-13n +1,所以:Tn=12130+1-131+1+⋯+13n -1+1-13n +1=1212-13n +1.20.已知数列{a n }的前n 项和为S n ,点(a n ,S n )在直线y =2x -2上,n ∈N *(1)求{a n }的通项公式;(2)若b n =n +(a n -1)log 2a n ,求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,点(a n ,S n )在直线y =2x -2上,n ∈N *所以:S n =2a n -2①,当n =1时,a 1=2a 1-2,解得:a 1=2.当n ≥2时,S n -1=2a n -1-2②,①-②得:a n =2a n -2a n -1,整理得:an a n -1=2(常数),故:数列的通项公式为:a n =2⋅2n -1=2n (首项符合通项).故:a n =2n .(2)b n =n +(a n -1)log 2a n =n •2n,所以T n =1⋅21+2⋅22+⋯+n ⋅2n ①,2T n =1⋅22+2⋅23+⋯+n ⋅2n +1②,①-②得:-T n =21+22+⋯+2n -n ⋅2n +1,整理得:T n =(n -1)⋅2n +1+2.21.已知{a n }是等差数列,且lg a 1=0,lg a 4=1.(1)求数列{a n }的通项公式(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和.【解析】(1)数列{a n }是等差数列,设公差为d ,且lg a 1=0,lg a 4=1.则:a 1=1a 1+3d =10 ,解得:d =3所以:a n =1+3(n -1)=3n -2.(2)若a 1,a k ,a 6是等比数列{b n }的前3项,则:a 2k=a 1⋅a 6,整理得:a k =3k -2,解得:k =2;所以:等比数列{b n }的公比为q =4.所以:b n =4n -1.则a n +b n =3n -2+4n -1,故:S n =(1+1)+(4+41)+⋯+(3n -2+4n -1)=n (3n -1)2+4n -14-1=32n 2-12n +13(4n-1).22.已知数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =(n +1)a n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(a n +1)2S n,求数列{b n }的前n 项和T n .【解析】(Ⅰ)数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =(n +1)a n (n ∈N *).当n =2时,2S 2=3a 2,整理得a 1=2.所以2S n =(n +1)a n ,故2S n -1=(n +1-1)a n-1,两式相减得(n -1)a n =na n -1,所以a n =a na n -1⋅a n -1a n -2⋯a2a 1⋅a 1=2n (首项符合通项).故a n =2n .(Ⅱ)由于a n =2n ,所以b n =(a n +1)2S n=4n 2+4n +1n (n +1)=4+1n (n +1)=4+1n -1n +1.故T n =b 1+b 2+⋯+b n =4n +1-12+12-13+⋯+1n -1n +1 =4n +1-1n +1.23.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1)n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(Ⅰ)求q 的值和{a n }的通项公式;(Ⅱ)设b n =log 2a 2n -1a 2n,n ∈N *,求数列{b n }的前n 项和.【解析】(Ⅰ)数列{a n }满足a n +2=qa n (q 为实数,且q ≠1)n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列,所以(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3.所以a 2(q -1)=a 3(q -1),由于q ≠1,所以a 3=a 2=2,解得q =2.①当n =2k -1时,a n =a 2k -1=2n -12,②当n =2k 时,a n =a 2k =2n2.所以数列的通项公式为:an=2n -12(n 为奇数)2n 2(n 为偶数).(Ⅱ)由(Ⅰ)得:b n =log 2a 2n -1a 2n =n -12n,所以T n =021+122+⋯+n -12n ①,则12T n =022+123+⋯+n -12n +1,②①-②得12T n =141-12n -11-12-n -12n +1,整理得T n =1-n +12n .24.已知公差不为0的等差数列{a n }与等比数列{b n }满足a 1=b 1=1,a 2=b 2,a 4=b 3.(1)求数列{a n }、{b n }的通项公式;(2)设T n =a 1b n +a 2b n -1+⋯+a n b 1,求T n .【解析】(1)设公差为d 且不为0的等差数列{a n }与公比为q 的等比数列{b n }满足a 1=b 1=1,a 2=b 2,a 4=b 3.故a n =a 1+(n -1)d ,b n =b 1⋅q n -1,所以1+d =q 1+3d =q 2 ,解得d =1,q =2.故a n =n ,b n =2n -1.(2)由于a n =n ,b n =2n -1,所以T n =1⋅2n -1+2⋅2n -2+⋯+n ⋅20①,12T n =1⋅2n -2+2⋅2n -3+⋯+n ⋅20-1②①-②得:12T n =2n -1+2n -2+⋯+2+1-n2=2n -1-n2.所以T n =2n +1-(n +2).25.已知等比数列{a n }是首项为1的递减数列,且a 3+a 4=6a 5.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .【解析】(1)由a 3+a 4=6a 5,得6q 2-q -1=0,解得q=12或q =-13.∵数列{a n }为递减数列,且首项为1,∴q =12.∴a n =1×12 n -1=12n -1.(2)∵T n =1⋅12 0+2⋅12 1+3⋅122+⋯+n⋅12 n -1,∴12T n =1⋅12 1+2⋅12 2+3⋅12 3+⋯+n ⋅12 n .两式相减得12T n =12 0+12 1+12 2+⋯+12 n -1-n ⋅12n =1-12 n1-12-n 12 n =2-2⋅12 n -n ⋅12 n=2-n +22n,∴T n =4-n +22n -1.26.已知数列{a n }满足a 1+2a 2+3a 3+⋯+na n =n (n ∈N *).(1)求数列{a n }的通项公式a n ;(2)令b n =a n a n +2(n ∈N *),T n =b 1+b 2+⋯+b n ,求证:T n<34.【解析】(1)数列{a n }满足a 1+2a 2+3a 3+⋯+na n =n ①,当n ≥2时,a 1+2a 2+3a 3+⋯+(n -1)a n -1=n -1②,①-②得:a n =1n,当n =1时,a 1=1(首项符合通项),故:a n =1n.(2)由于:a n =1n,所以:b n =a n a n +2=1n (n +2)=121n -1n +2 ,所以:T n =121-13+12-14+⋯+1n -1n +2 =121+12-1n +1-1n +2 <34.27.已知公差不为0的等差数列{a n }的首项a 1=3,且a 1+1,a 2+1,a 4+1成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,n ∈N *,S n 是{b n }的前n 项和,求使S n <113成立的最大的正整数n .【解析】(1)公差不为0的等差数列{a n }的首项a 1=3,且a 1+1,a 2+1,a 4+1成等比数列.则:(a 2+1)2=(a 1+1)(a 4+1),解得:d =4或0(舍去),故:a n =3+4(n -1)=4n -1,(2)由于:a n =4n -1,所以:a n +1=4n +3,所以:b n =1a n a n +1=1(4n -1)(4n +3)=1414n -1-14n +3,故:S n =1413-17+17-111+⋯+14n -1-14n +3 =1413-14n +3 =n 12n +9,所以:要使S n <113成立整理得:1413-14n +3 <113,解得:n <9由于n 为自然数,所以:n 的最大值为8.28.已知数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)若数列{b n -a n }是等差数列,且b 1=2,b 3=14,求数列{b n }的前n 项和T n ⋅【解析】(1)数列{a n }的前n 项和为S n ,且2S n =3a n-1①.当n =1时,解得:a 1=1.当n ≥2时,2S n -1=3a n -1-1②,①-②得:a n =3a n -1,故:an a n -1=3(常数),所以:数列{a n }是以1为首项,3为公比的等比数列.所以:a n =3n -1(首项符合通项),故:a n =3n -1.(2)数列{b n -a n }是等差数列,且b 1=2,b 3=14,所以:设c n =b n -a n .c 1=b 1-a 1=1,c 3=b 3-a 3=14-9=5,则:公差d =c 3-c 12=5-12=2,所以:c n =2n -1.则:b n =a n +c n =3n -1+2n -1,故:T n =(30+31+⋯+3n -1)+(1+3+⋯+2n -1)=(3n -1)3-1+n (2n -1+1)2=3n -12+n 229.设数列{a n }满足a 1=2,a n +1=2a n ,数列{b n }的前n 项和S n =12(n 2+n ).(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n b n ,求数列{c n }的前n 项和T n .【解析】(1)数列{a n }满足a 1=2,a n +1=2a n ,则:a n +1a n=2(常数)所以:数列{a n }是以a 1=2为首项,2为公比的等比数列.故:a n =2⋅2n -1=2n ,由于:数列{b n }的前n 项和S n =12(n 2+n ).当n =1时,解得:b 1=1,当n ≥2时,b n =S n -S n -1=12(n 2+n )-12(n-1)2-12(n -1)=n .由于首项符合通项,故:a n =n .(2)由(1)得:c n =a n b n =n ⋅2n ,所以:T n =1⋅21+2⋅22+⋯+n ⋅2n ①,2T n =1⋅22+2⋅23+⋯+n ⋅2n +1②,①-②得:-T n =(21+22+⋯+2n )-n ⋅2n +1,解得:T n =(n -1)⋅2n +1+2.30.已知首项为1的等差数列{a n }的前n 项和为S n ,已知S 3为a 4与a 5的等差中项.数列{b n }满足b n =2S n +n2n.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n •b n }的前n 项和为T n .【解析】(1)设公差为d ,首项为1的等差数列{a n }的前n 项和为S n ,已知S 3为a 4与a 5的等差中项.则:2(3+3d )=1+3d +(1+4d ),解得:d =4,故:a n =1+4(n -1)=4n -3,所以:S n +n 2n =n (1+4n -3)2+n 2n =n .故:数列{b n }满足b n =2S n +n2n=2n .(2)根据已知条件:a n ⋅b n =(4n -3)⋅2n ,则:T n =1⋅21+5⋅22+⋯+(4n -3)⋅2n ①,2T n =1⋅22+5⋅23+⋯+(4n -3)⋅2n +1②,①-②得:T n =(4n -3)⋅2n -4(22+23+⋯+2n )-2,整理得:T n =(4n -7)•2n +1+14.31.设数列{a n }的前n 项和为S n ,已知S n =2a n -1.(1)求数列{a n }的通项公式;(2)若b n =a n +1(a n +1-1)(a n +2-1),求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,已知S n =2a n -1.①当n =1时,解得:a 1=1.当n ≥2时,S n -1=2a n -1-1.②①-②得:a n =2a n -2a n -1,整理得:a n =2a n -1,故:an a n -1=2(常数),所以:数列{a n }是以1为首项,2为公比的等比数列.故:a n =1⋅2n -1=2n -1(首项符合通项).故:a n =2n -1,(2)由于b n =a n +1(a n +1-1)(a n +2-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以:T n =121-1-122-1+⋯+12n -1-12n +1-1=1-12n +1-1.32.已知等差数列{a n }的前n 项和为S n ,a 3=4,S 6=27.(1)求{a n }的通项公式;(2)设b n =2a n ,记T n 为数列{b n }的前n 项和.若T m =124,求m .【解析】【解答】(本小题满分12分)解:(1)设{a n }的首项为a 1,公差为d ,由已知得a 1+2d =46a 1+15d =27,解得a 1=2d =1.所以a n =a 1+(n -1)d =n +1.(2)由(1)可得b n =2n +1,∴{b n }是首项为4,公比为2的等比数列,则T n =4(1-2n)1-2=4(2n -1).由T m =124,得4(2m -1)=124,解得m =5.33.已知数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =a n +1S n ⋅S n +1,求数列{b n }的前n 项和T n .【解析】(Ⅰ)数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .当n =1时,解得:a 1=2.当n ≥2时,2a n =2+S n ,①2a n -1=2+S n -1,②①-②得:a n =2a n -1,整理得:a n a n -1=2(常数),所以:a n =2⋅2n -1=2n ,(Ⅱ)由于S n =2(2n -1)2-1=2⋅(2n -1),b n =a n +1S n ⋅S n +1=2n +12(2n -1)(2n +1-1)=1212n -1-12n +1-1,所以:T n =121-13 +⋯+12n-1-12n +1-1=121-12n +1-134.已知{a n }是公差不为0的等差数列,且满足a 1=2,a 1,a 3,a 7成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a n +2a n ,求数列{b n }的前n 项和S n .【解析】(Ⅰ)设{a n }的公差为d ,因为a 1,a 3,a 7成等比数列,所以a 23=a 1a 7.所以(a 1+2d )2=a 1(a 1+6d ).所以4d 2-2a 1d =0.由d ≠0,a 1=2得d =1,所以a n =n +1.(Ⅱ)由(Ⅰ)知,b n =a n +2a n =n +1+2n +1,所以S n =[2+3+4+⋯+(n +1)]+(22+23+24+⋯+2n +1)=n (n +3)2+4(1-2n)1-2=2n +2+n 2+3n -82.35.在数列{a n }中,已知a n >0,a 1=1,a n +21-a n 2-a n +1-a n =0.(1)求证:数列{a n }是等差数列;(2)设数列{a n }的前n 项和为S n ,b n =1S n,求数列{b n }的前n 项和T n .【解析】【解答】证明:(1)由a 2n +1-a 2n -a n +1-a n =0,得(a n +1-a n -1)(a n +1+a n )=0,因为a n >0,所以a n +1-a n =1,又因为a 1=1,所以数列{a n }是首项为a 1=1,公差为1的等差数列.解:(2)由(1)可得,S n =na 1+12n (n -1)d =n +12n (n -1)=n (n +1)2.∴b n =1S n =2n (n +1)=21n -1n +1 .∴T n =b 1+b 2+⋯+b n =211-12+12-13+⋯++1n -1n +1=21-1n +1 =2nn +1.36.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n(4n 2-1)2n.(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和S n =2n +1-2,当n =1时,a 1=S 1=2,当n ≥2时,则:a =S n -S n -1=2n +1-2-2n +2=2n .由于n =1时,符合通项,故:a n =2n .(2)由于:a n =2n ,故:bn=a n (4n 2-1)2n =14n 2-1=1(2n +1)(2n -1)=1212n -1-12n +1 .所以:T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.37.已知数列{a n }的前n 项和是S n ,若a n +1=a n +1(n ∈N *),S 3=12.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解析】(Ⅰ)因为a n +1=a n +1(n ∈N *),所以数列{a n }是公差为1的等差数列.又因为S 3=12,则a 1=3,所以,a n =a 1+(n -1)d =n +2(n ∈N *).(Ⅱ)由(Ⅰ)知,b n =1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,则T n =b 1+b 2+b 3+⋯+b n =13-14+14-15+15-16+⋯+1n +2-1n +3=13-1n +3=n 3n +9(n ∈N *)38.设数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =n ,n 为奇数1a n,n 为偶数,求数列{b n }的前n 项和S n .【解析】(1)数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -1a n =n3①,当n ≥2时,数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -2a n -1=n -13②,①-②得:3n -1a n =13,所以:a n =13n ,当n =1时,a 1=13(符合通项),故:a n =13n .(2)由于b n =n ,n 为奇数1a n,n 为偶数,所以:b n =n ,n 为奇数3n ,n 为偶数,①当n 为奇数时:S n =1+32+3+34+⋯+3n -1+n=(n +1)2⋅(1+n )2+99n -12-1 9-1=n 2+2n +14+9(3n -1-1)8.②当n 为偶数时,S n =1+32+3+34+⋯+(n -1)+3n=n 2⋅(1+n -1)2+99n 2-1 9-1=n 24+9(3n -1)8.39.在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *).(1)求证:数列{a n +n }是等比数列,并求{a n }的通项公式;(2)求数列{a n }的与前n 项和S n .【解析】(1)证明:∵a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *).∴a n +n =2(a n -1+n -1),∴数列{a n +n }是等比数列,首项为4,公比为2.∴a n =4×2n -1-n =2n +1-n .(2)解:数列{a n }的与前n 项和S n =(22+23+⋯+2n +1)-(1+2+⋯+n )=4(2n -1)2-1-n (1+n )2=2n +2-4-n 2+n 2.40.设等差数列{a n }的前n 项和为S n ,且a 3=6,S 6=42.(Ⅰ)求数列{a n }的通项公式(Ⅱ)设b n =a n ,n 为奇数2a n2,n 为偶数,求数列{b n }的前2n 项和.【解析】(Ⅰ)设首项为a 1,公差为d 的等差数列{a n}的前n 项和为S n ,由a 3=6,S 6=42得a 1+2d =66a 1+6×52d =42,解得a 1=2d =2 ,所以a n =2+2(n -1)=2n .(Ⅱ)由于a n =2n ,所以设b n =a n ,n 为奇数2a n2,n 为偶数=2n (n 为奇数)2n(n 为偶数) ,所以T n =[2+6+10+14+⋯+2(2n -1)]+(22+24+⋯+22n )=2n 2+434n -141.已知数列{a n }的前n 项和为S n ,且S nn是等差数列,a 1=2,a 2=4.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1(a n -1)(2n +1),求数列{b n }的前n 项和T n .【解析】(1)由题意得S 11=1,S22=3,设等差数列S nn 的公差为d ,则d =S 22-S 11=1.∴Sn n=2+(n -1)×1=n +1,∴S n =n (n +1),当n ≥2时,a n =S n -S n -1=2n ,经检验a 1=2也满足上式,∴a n =2n (n ∈N *),(2)b n =1(a n -1)(2n +1)=1(2n -1)(2n +1)=1212n -1-12n +1,∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1 =121-12n +1,∴T n =n2n +1.42.已知正项等差数列{a n }满足:S n 2=a 31+a 32+⋅⋅⋅+a n 3,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)令b n =(-1)n 4n(2a n -1)(2a n +1)(n ∈N *),数列{b n }的前n 项和为T n ,求T 2n .【解析】(1)正项等差数列{a n }满足:S n 2=a 31+a 32+⋅⋅⋅+a n 3,①,当n =1时,解得a 1=1;当n =2时,S 22=a 31+a 32,整理得a 22-a 2-2=0,解得a 2=2或-1(负值舍去),故公差d =a 2-a 1=1,故a n =n .(2)由(1)得:b n =(-1)n4n(2a n -1)(2a n +1)=(-1)n4n(2n -1)(2n +1)=(-1)n12n -1+12n +1 ,所以T 2n =-1-13+13+15+...+14n -1+14n +1=14n +1-1=-4n4n +143.已知数列{a n }满足:a 1=12,数列1a n 的前n 项和S n =3n 2+n2.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a n a n +1,求数列{b n }的前n 项和T n .【解析】(1)当n ≥2时,S n -1=3(n -1)2+(n -1)2=3n 2-5n +22,则1a n =S n -S n -1=3n 2+n 2-3n 2-5n +22=3n -1.又当n =1时,1a 1=2满足上式,所以1a n =3n -1,则a n =13n -1.(2)又(1)可知b n =a n a n +1=1(3n -1)(3n +2)=1313n -1-13n +2,所以T n =b 1+b 2+b 3+⋯+b n -1+b n =1312-15+15-18+18-111+⋯+13n -4-13n -1+13n -1-13n +2 =1312-13n +2 =n 6n +4.所以数列{b n }的前n 项和T n =n 6n +4.44.已知等比数列{a n }的前n 项和为S n ,且a n +1=2S n +1(n ∈N +).(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =3b n-1,求数列b n a n 的前n 项和T n .【解析】(1)当n =1时,a 2=2a 1+1,当n ≥2时,a n +1-a n =2S n -2S n -1=2a n ,即a n +1=3a n ,∴等比数列{a n }的公比是3,∴a 2=3a 1,即2a 1+1=3a 1,故a 1=1,故数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1;(2)由(1)知,a n =3n -1,又a n =3b n -1,∴b n -1=n -1,故b n =n ,∴b n a n =n3n -1,则T n =130+231+332+⋅⋅⋅+n -23n -3+n -13n -2+n 3n -1,①,13T n =131+232+333+⋅⋅⋅+n -23n -2+n -13n -1+n 3n,②两式相减得:23T n =130+131+132+⋅⋅⋅+13n -3+13n -2+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n,∴T n =94-2n +34×3n -1.45.已知数列{a n }的前n 项和为S n ,且对任意正整数n 均满足S 12+S 222+S 323+⋅⋅⋅+S n 2n =n -1+12n .(1)求数列{a n }的通项公式;(2)记b n =2n S n S n +1,数列{b n }的前n 项和为T n ,求满足T n ≥20212022的最小正整数n 的值.【解析】(1)当n =1时,S 12=12,得S 1=1.当n ≥2时,由S 12+S 222+S 323+⋅⋅⋅+S n2n =n -1+12n ①,得S 12+S 222+S 323+⋅⋅⋅+S n -12n -1=(n -1)-1+12n -1②,①-②得S n 2n =1-12n (n ≥2),∴S n =2n -1(n ≥2),当n =1时,得a 1=S 1=1;当n ≥2时,由a n =S n -S n -1=2n -1-2n -1+1=2n -1.又a 1=1也满足上式,所以a n =2n -1.(2)由(1)得b n=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,所以S n=12-1-122-1+122-1-123-1+⋯+12n-1-1 2n+1-1=1-12n+1-1,由1-12n+1-1≥20212022得2n+1-1≥2022,即2n+1≥2023,因为210<2023<211,所以n+1≥11,即n≥10,故满足T n≥20212022的最小正整数为10.46.已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=a n+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.【解析】(1)由2a n-S n=1(n∈N*),可得2a1-S1= 2a1-a1=1,即a1=1,当n≥2时,2a n-1-S n-1=1,又2a n-S n=1,相减可得2a n-2a n-1=a n,即a n=2a n-1,则a n=2n-1;(2)证明:b n=a n+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,T n=1-13+13-17+17-115+...+12n-1-1 2n+1-1=1-12n+1-1,由{T n}是递增数列,可得T n≥T1=23,且T n<1.所以23≤T n<1.47.已知公差不为零的等差数列{a n}的前n项和为S n,且S4=16,a22=a1a5.(1)求数列{a n}的通项公式a n和S n;(2)若b n=1a n a n+1,数列{b n}的前n项和T n满足T n≥48101,求n的最小值.【解析】(1)设数列{a n}的公差为d,由题意知4a1+6d=16,(a1+d)2=a1(a1+4d),解得a1=1,d=2,所以a n=1+(n-1)×2=2n-1,S n=n(1+2n-1)2=n2.(2)由(1)得,b n=1(2n-1)(2n+1)=1212n-1-12n+1,所以T n=121-13+13-15+⋅⋅⋅+12n-1-12n+1=121-12n+1=n2n+1,令n2n+1≥48101,得n≥485,又n∈N*,所以n的最小值为10.48.公差不为0的等差数列{a n}的前n项和为S n,且a1,a2,a6成等比数列,S6=51.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1(n∈N*),数列{b n}的前n项和记为T n,求证:T n<13.【解析】(1)设{a n}公差为d,∵a1,a2,a6成等比数列,S6=51,∴a1⋅a6=a22a1+a2+a3+a4+a5+a6=51,即a1(a1+5d)=(a1+d)26a1+6×52d=51,解得a1=1,d=3,∴a n=3n-2,(2)证明:b n=1a n a n+1=1(3n-2)(3n+1)=1313n-2-13n+1,∴T n=131-14+14-17+⋅⋅⋅+13n-2-13n+1=131-13n+1=13-133n+1<13,∴T n<13.49.已知数列{a n}的前n项和为S n,且满足2a n=S n+n-1.(1)求证:{a n+1}为等比数列;(2)设b n=2n(a n+2)(a n+1+2),数列{b n}的前n项和为T n,求证:T n<1.【解析】【解答】证明:(1)当n=1时,2a1=a1+1-1,解得a1=0,当n≥2时,2a n-2a n-1=S n+n-1-(S n-1+n-2),化为:a n=2a n-1+1.变形为:a n+1=2(a n-1+1),a1+1=1,∴{a n+1}为等比数列,首项为1,公比为2.(2)由(1)可得:a n+1=2n-1,∴a n=2n-1-1.∴b n=2n(a n+2)(a n+1+2)=2n(2n-1+1)(2n+1)=212n-1+1-12n+1,∴数列{b n}的前n项和为T n=2120+1-121+1++⋯⋯+12n-1+1-12n+1=212-12n+1<1,∴T n<1.50.已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*).(1)证明:数列{a n+1}是等比数列;(2)设b n=2na n a n+1,求数列{b n}的前n项和T n.【解析】(1)当n=1时,a1+1=2a1得a1=1.当n≥2时,S n+n=2a nS n-1+n-1=2a n-1,两式相减得a n=2a n-1+1(n≥2),即a n+1=2(a n-1+1)(n≥2),所以数列{a n+1}是以2为公比,以2为首项的等比数列,(2)由(1)知a n+1=2n(n∈N*),即a n=2n-1(n∈N*).∵b n=2na n a n+1=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,则T n=b1+b2+⋯+b n=1-13+13-17+⋯+12n-1-12n+1-1=1-12n+1-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和合集例题与答案)————————————————————————————————作者:————————————————————————————————日期:23 数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 例1、已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32(利用常用公式) =x x x n--1)1(=211)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+的和。

解:2222222212345699100-+-+-+--+L()()()()2222222221436510099=-+-+-++-L ()()()()()()()()2121434365651009910099=-++-++-++-+L3711199=+++L +由等差数列的求和公式得()50503199S 50502+== 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+4 练习:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n n S 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n n S ………………………………②(设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S (错位相减) 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例3求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得 οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x ο①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴S =44.52、 求和:222222222222222101109293832921101++++++++++Λ四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122Λ()1,1,0≠≠≠y x x 解:原式=()n x x x x ++++Λ32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112Λ5 =()yy y x x x n n1111111-⎪⎪⎭⎫ ⎝⎛-+-- =nn n n y y y x x x --+--++1111 练习:求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n 将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n +(分组求和) 当1≠a 时,2)13(1111n n a a S n n -+--==2)13(11n n a a a n -+--- 练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。

解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+•••+++++•••+++=++•••+++= 五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如: 例5求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和. 解:设n n n n a n -+=++=111(裂项) 则11321211+++⋅⋅⋅++++=n n S n (裂项求和) =)1()23()12(n n -++⋅⋅⋅+-+- =11-+n练习:求13,115,135,163之和。

6 解:94)911(21)9171()7151()5131()311(21)9171(21)7151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a=5练习:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和) =)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.例7、求5,55,555,…,的前n 项和。

解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)7 =59[(10+102+103+……+10n )-n] =(10n +1-9n-10) 练习:求数列:1,,,的前n 项和。

解:=8=9。

相关文档
最新文档