锐角三角函数练习题
锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)
一、选择题
1. 设角A为锐角,且sin(A) = 0.6,那么A的近似值是多少?- A)36.87°
- B)45°
- C)53.13°
- D)64.04°
答案:C)53.13°
2. 三角函数tan(A)的值是斜边长与________的比值。
- A)对边长
- B)邻边长
- C)斜边长
- D)角A的弧度
答案:B)邻边长
3. 三角函数cot(A)的值是邻边长与________的比值。
- A)对边长
- B)斜边长
- C)角A的弧度
- D)斜边长的倒数
答案:A)对边长
二、填空题
4. 已知角B是锐角,且cos(B) = 0.8,那么角B的近似值是________度。
答案:37°
5. 已知角C是锐角,且tan(C) = 0.5,那么角C的近似值是________度。
答案:26.57°
三、计算题
6. 已知三角形的两边分别为5和12,夹角为60°,求第三边的长度。
答案:13
7. 已知一个角的弧度为π/3,求sin和cos的值。
答案:sin(π/3) = (√3) / 2, cos(π/3) = 1 / 2
四、证明题
请证明:sin^2(A) + cos^2(A) = 1,其中A是任意角。
证明:
由三角恒等式sin^2(A) + cos^2(A) = 1可得:
sin^2(A) + cos^2(A) = (1 - cos^2(A)) + cos^2(A) = 1
证毕。
锐角三角函数专项练习题

锐角三角函数专项练习题一. 选择题1. 在锐角三角形ABC中,已知∠A=30°,∠B=60°,则∠C 等于:a) 30°b) 60°c) 90°d) 120°2. 在锐角三角形ABC中,已知a=3,b=4,则∠C等于:a) 30°b) 45°c) 60°d) 90°3. 已知在锐角三角形ABC中,a=5,c=13,则∠C等于:a) 30°b) 45°c) 60°d) 90°4. 在锐角三角形ABC中,已知a=8,b=15,则sinC等于:a) 8/17b) 15/17c) 17/8d) 17/155. 在锐角三角形ABC中,已知a=7,b=24,则cosC等于:a) 7/24b) 24/7c) 7/25d) 24/25二. 填空题1. 在锐角三角形ABC中,已知a=4,b=5,则c=____。
2. 在锐角三角形ABC中,已知a=7,c=10,则b=____。
3. 在锐角三角形ABC中,已知b=9,c=15,则a=____。
4. 已知sinA=3/5,∠A为锐角,则cosA=____。
5. 已知cosA=4/5,∠A为锐角,则sinA=____。
三. 计算题1. 在锐角三角形ABC中,已知a=6,b=8,求c。
解:利用勾股定理,c=sqrt(a^2+b^2)c=sqrt(6^2+8^2)=sqrt(36+64)=sqrt(100)=102. 在锐角三角形ABC中,已知a=5,c=13,求∠A。
解:利用余弦定理,cosA=(b^2+c^2-a^2)/(2bc)cosA=(5^2+13^2-5^2)/(2*5*13)= (25+169-25)/(130)=169/130然后,∠A=arccos(169/130)=22.62°3. 在锐角三角形ABC中,已知b=7,c=10,求∠B。
锐角三角函数练习题

锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数定义练习题

锐角三角函数定义练习1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为A .12 B . C D2.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( ).A .12 B .22 C .32 D .333.在Rt △ABC 中,∠C = 900,tanA = 13,则SinB = .A、23 C 、724D 4.在Rt △ABC 中,∠C = 900,sinA = 1213,则sinB = . 5.在△ABC 中,∠C =90°,如果125tan =A ,那么sinB 的值等于( ). A .135 B .1312 C .125 D .512 6.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43B.45C.54D.34 7.若∠A 为锐角,132tan tan =⋅ A ,则∠A 等于…………………………【 】A 、 32B 、 58C 、 )321( D 、 )581( 8. 若∠A +∠B = ︒90,且5736.0cos =B ,则__________sin =A ;9.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )。
A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 10.在Rt △ABC 中,∠C =90°,则sinA+cosA 的值( )A 大于1B 等于1C 小于1D 无法确定11.一个锐角α满足sin25°=cos α,则α=( )12.若锐角α满足cos α=0.55,则sin(90°—α)= 。
13.若锐角α满足tan α=0.342,则cot (90°—α)= 。
14.已知sin35°=0.5736,则cos55°= 。
15.已知cos47°6′=0.6807,则sin42°54′=16.如果a 为锐角,且cos (90°-a )=2/3,则sina= 。
锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
锐角三角函数练习题(含答案)

锐角三角函数练习题一、选择题(本大题共10小题,每小题3分,共30分)1.一段公路的坡度为1︰3,某人沿这段公路路面前进100米,那么他上升的最大高度是(D)A.30米B.10米C. 米D. 米2.如图,坡角为的斜坡上两树间的水平距离AC为,则两树间的坡面距离AB为(C)A.B.C.D.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是(A)A.250mB.mC.mD.m4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是(C)A.2 3 B. 3 2 C. 3 4 D. 4 3(第2题)(第3题)(第4题)5.如果∠A是锐角,且,那么∠A=(B)A. 30°B. 45°C. 60°D. 90°6. 等腰三角形的一腰长为,底边长为,则其底角为(A)A. B. C. D.7.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是(B)A.150 B.C.9 D.78.在△ABC中,∠C=90°,BC=2,,则边AC的长是(A)A.B.3 C.D.9.如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( A )A. (m2)B. (m2)C.1600sinα(m2)D.1600cosα(m2)10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=,则tanA =(C)A.1B.C.D.(第9题)(第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.已知为锐角, sin( )=0.625, 则cos =___ 0.625 。
12.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC= ,则梯子长AB = 4 米。
锐角三角函数的经典测试题含答案

CE平行于AB,BC的坡度为i 1: 0.75,坡长0.64,cos40BC 140米,则AB的长为( )(精确0.77,tan40 0.84 )A.78.6米【答案】CB.78.7 米C.78.8 米D.78.9 米锐角三角函数的经典测试题含答案一、选择题1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点 A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高解析】【分析】在Rt△ABD和Rt△ABC中,由三角函数得出BC=atan α,BD=atan β,得出CD=BC+BD=atan α +atan即β可.【详解】∴BC=atan α,BD=atan β,∴CD=BC+BD=atan α+atan β,故选C.点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD 是解题的关键.2.在课外实践中,小明为了测量江中信号塔A离河边的距离AB ,采取了如下措施:如图在江边D处,测得信号塔A的俯角为40 ,若DE 55米,DE CE,CE 36米,acos α +acos βC.atan α +atan βaD.tanatan在Rt△ABD 和Rt△ABC中,AB= a ,BC BDtan α=,tan β=AB ABB.答案】CA.533B.C.222D.【分析】如下图,先在Rt△CBF中求得BF、CF的长,再利用Rt△ADG 求AG的长,进而得到AB的长度【详解】如下图,过点C作AB的垂线,交AB延长线于点F,延长DE交AB延长线于点G∵BC 的坡度为1:0.75∴设CF为xm,则BF 为0.75xm ∵BC=140m∴在Rt△BCF中,x20.75x 21402,解得:x=112 ∴CF=112m,BF=84m∵DE⊥CE,CE∥AB,∴DG⊥AB,∴△ ADG 是直角三角形∵ DE=55m,CE=FG=36m∴DG=167m,BG=120m 设AB=ym ∵∠ DAB=40°DG 167 ∴tan40 °= 0.84AG y 120 解得:y=78.8 故选: C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值3.如图,在等腰直角△ABC中,∠ C=90°,D为BC的中点,将△ABC折叠,使点A与点D 重合,EF为折痕,则sin∠ BED的值是()35解析】分析】先根据翻折变换的性质得到DEF AEF ,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ,设CD 1,CF x,则CA CB 2 ,再根据勾股定理即可求解.【详解】解:∵△ DEF是△AEF翻折而成,∴△ DEF≌△ AEF,∠ A=∠ EDF,∵△ ABC是等腰直角三角形,∴∠ EDF=45°,由三角形外角性质得∠ CDF+45°=∠ BED+45°,∴∠ BED=∠ CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,3解得:x 3,4CFsin BED sin CDFDF故选:B.点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.4.直角三角形纸片的两直角边长分别为6,8,现将VABC如图那样折叠,使点A与点B 重合,折痕为DE ,则tan CBE 的值是()71 C.D.7 3 24 3 【答案】 C【解析】试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,25 25 7解得x= 25,故CE=8-25 = ,4 4 4CE 7∴tan ∠CBE= .CB 24故选 C. 考点:锐角三角函数.5.如图,从点A看一山坡上的电线杆PQ ,观测点P的仰角是45 ,向前走6m到达B 点,测得顶端点P和杆底端点Q的仰角分别是60 和30°,则该电线杆PQ 的高度()A.24B.7A.6 2 3 B.6 3 C.10 3 D.8 3【答案】A【解析】【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x 表示出AE和BE,列出方程求得x 的值,再在直角△BQE中利用三角函数求得QE的长,则问题求解.【详解】解:延长PQ 交直线AB于点E,设PE=x.在直角△APE中,∠ A=45°,AE=PE=x;∵∠ PBE=60°∴∠ BPE=30°在直角△BPE中,BE= 3 PE= 3 x,33∵AB=AE-BE=6米,则x- x=6,3解得:x=9+3 3.则BE=3 3 +3 .在直角△BEQ中,QE= 3 BE= 3(3 3 +3)=3+ 3.33∴PQ=PE-QE=9+3 3-(3+ 3 )=6+2 3.答:电线杆PQ的高度是(6+2 3 )米.故选:A.【点睛】本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题6.如图,在x轴的上方,直角∠ BOA绕原点O按顺时针方向旋转.若∠ BOA的两边分别与12函数y 、y 的图象交于B、A 两点,则∠ OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D 【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OE ;1设 B 为(a,), A 为OF AF a2 1 2(b,),得到OE=-a,EB= ,OF=b,AF= ,进而得到a2b22 ,此为解决问题的关 b a b2键性结论;运用三角函数的定义证明知tan∠ OAB= 2为定值,即可解决问题.2【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△ OFA,∴BE OE∴OF AF ,12设点 B 为(a,),A 为(b,2),a b12则OE=-a,EB= ,OF=b,AF= 2,a b2可代入比例式求得 a 2b 2 2 ,即 a 2 2 , b 2该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问 题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判 定等知识点来分析、判断、推理或解答.7.如图,要测量小河两岸相对的两点 P ,A 的距离,可以在小河边取 PA 的垂线 PB 上的一解析】 分析】根据正切函数可求小河宽 PA 的长度. 【详解】∵PA ⊥ PB ,PC=100米,∠ PCA=35°,根据勾股定理可得: OB= OE 2EB 2a 212,OA= OF 2 AF 2∴tan ∠OAB=OBOA1 b 22 2 (b 2 b 2) = 2 b b2 b 42 = 22∴∠ OAB 大小是一个定值,因此∠ 故选 DOAB 的大小保持不变 .D . 100tan55 米°a 2a 122 b2b b 42 b 2 b 42点睛】PA 等于( )C . 100tan35米°∴小河宽PA=PCtan∠ PCA=100tan35°米.故选:C.【点睛】此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:① 将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).② 根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.8.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB 自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12 米,CD=8 米,∠ D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1 米,参考数据:tan36 °≈0,.7c3os36 °≈0,.8s1in36 °≈)0.59A.5.6 B. 6.9 C.11.4 D.13.9【答案】C【解析】【分析】根据勾股定理,可得CE,BE的长,根据正切函数,可得AE 的长,再根据线段的和差,可得答案.【详解】解:如图,延长DC、AB 交于点E,由斜坡轨道BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=xm,CE=2xm.在Rt △BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12 )2,解得x=12,BE=12m,CE=24m ,DE =DC+CE =8+24=32m , 由 tan36 °≈ 0.,73得=0.73,解得 AB =0.73 ×3=2 23.36m . 由线段的和差,得AB =AE ﹣BE =23.36﹣12= 11.36 ≈ 11m.4, 故选: C .【点睛】 本题考查解直角三角形的应用,利用勾股定理得出 切函数,线段的和差.9.如图,对折矩形纸片 ABCD ,使 AD 与 BC 重合,得到折痕 EF ,把纸片展平,再一次折叠 纸片,使点 A 落在 EF 上的点 A ′处,并使折痕经过点 B ,得到折痕 BM ,若矩形纸片的宽 AB=4,则折痕 BM 的长为 ( )1BE= AB ,A ′B=AB=,4∠BA ′M=∠A=90°,∠ ABM=∠MBA ′,可得∠2EA ′B=30°,根据直角三角形两锐角互余可得∠ E BA ′=60 °,进而可得∠ ABM=30°,在Rt △ABM中,利用∠ ABM 的余弦求出 BM 的长即可 .【详解】 ∵对折矩形纸片 ABCD ,使 AD 与 BC 重合, AB=4,1∴BE= AB=2,∠ BEF=90°,2∵把纸片展平,再一次折叠纸片,使点 A 落在 EF 上的点 A '处,并使折痕经过点 B , ∴A ′B=AB=4,∠ BA ′M= ∠ A=90°,∠ ABM=∠ MBA ′, ∴∠ EA ′B=30°, ∴∠ EBA ′=60°, ∴∠ ABM=3°0 ,∴在 Rt △ABM 中, AB=BM cos ∠ ABM ,即 4=BM cos30 °,CE ,BE 的长是解题关键,又利用了正A . 8 33【答案】 A 【解析】 【分析】B . 4 33C .8D . 8 3根据折叠性质可得解得: BM= 8 3 ,3故选 A.【点睛】 本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角 三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻 边;余切是角的邻边比对边;熟练掌握相关知识是解题关键 .故选 B .【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质, 线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图 1,在△ABC 中,∠ B =90°,∠ C = 30°,动点 P 从点 B 开始沿边 BA 、AC 向点 C 以 恒定的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以恒定的速度移动,两点同时到达点 C ,设△BPQ 的面积为 y (cm 2).运动时间为 x ( s ), y 与 x 之间关系如图 2所示,当点 P 恰好为 AC 的中点时, PQ 的长为( )10. 如图,菱形 ABCD 中, AC 交 BD 于点 O ,DE ⊥BC 于点 E ,连接 OE ,∠ DOE =120°,DE A . 33【答案】 B 【解析】 【分析】证明 △OBE 是等边三角形,然后解直角三角形即可. 【详解】∵四边形 ABCD 是菱形,∴ OD=OB ,CD=BC . ∵DE ⊥BC ,∴∠ DEB=90°,∴OE=OD=OB . ∵∠ DOE=120°,∴∠ BOE=60°,∴△ OBE是等边三角形,∴∠ ∵∠ DEB=90°,∴ BD= DE 2 3 .sin60 3B .23 3D . 3 3DBC=60°直角三角形斜边的中3,解:设 AB =a ,∠ C = 30°,则 AC =2a ,BC = 3 a , 设 P 、 Q 同时到达的时间为 T ,则点 P 的速度为 3a ,点 Q 的速度为 3a ,故点 P 、 Q 的速度比为 3: 3, TT 故设点 P 、 Q 的速度分别为: 3v 、 3 v ,由图 2 知,当 x =2 时,y =6 3,此时点 P 到达点 A 的位置,即 AB =2×3v =6v , BQ = 2×3 v = 2 3 v ,11y =AB ×BQ =6v ×2 3 v = 6 3 ,解得: v =1,22故点 P 、Q 的速度分别为: 3, 3,AB =6v =6=a , 则 AC =12,BC =6 3 ,如图当点 P 在 AC 的中点时, PC =6,此时点 P 运动的距离为 AB+AP =12,需要的时间为 12÷3=4, 则 BQ =3 x =4 3 , CQ = BC﹣ BQ =6 3 ﹣4 3 =2 3 , 过点 P 作 PH ⊥BC 于点 H ,PC = 6,则 PH = PCsinC = 6×1 =3,同理 CH =3 3 ,则 HQ = CH ﹣ CQ = 3 3 ﹣2 3 =2PQ = PH 2 HQ 2 = 3 9 =2 3,D . 4 3【答案】【解析】【分析】 点 P 、 Q 的速度比为【详解】3: 3 ,根据 x =2,y =6 3 ,确定 P 、Q 运动的速度,即可求解.C故选: C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关 系,进而求解.12.一艘轮船从港口 O 出发,以 15海里 /时的速度沿北偏东 60°的方向航行 4小时后到达 A 处,此时观测到其正西方向 50 海里处有一座小岛 B .若以港口 O 为坐标原点,正东方向为 x 轴的正方向,正北方向为 y 轴的正方向, 1 海里为 1 个单位长度建立平面直角坐标系(如解析】分析】 【详解】解: OA=15×4=60海里,∵∠ AOC=60°,∴∠ CAO=30°,∵sin30°= OCAO 2∴CO=30 海里, ∴AC=30 3 海里, ∴BC=(30 3 -50)海里, ∴B ( 30 3 -50, 30) 故选 A点睛】 本题考查掌握锐角三角函数的应用.13.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测 角仪,去测量学校内一座假山的高度 CD .如图,嘉淇与假山的水平距离 BD 为 6m ,他的D .(30,30 3 )C .(30 3 ,30)眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA和假山的最高点C ,此时,铅垂线OE经过量角器的60 刻度线,则假山的高度CD 为()A.2 3 1.6 m B.2 2 1.6 m C.4 3 1.6 m D.2 3m【答案】A【解析】【分析】CK CK根据已知得出AK=BD=6m,再利用tan30 °= ,进而得出CD 的长.AK 6【详解】解:如图,过点 A 作AK CD 于点K∵BD=6 米,李明的眼睛高AB=1.6米,∠ AOE=6°0 ,∴DB=AK,AB=KD=1.6米,∠ CAK=30°,CK CK∴tan30 °= ,AK 6解得:CK=2 3即CD=CK+DK=2 3 +1.6=( 2 3 +1.6)m .故选:A.【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.14.如图,△ABC的顶点是正方形网格的格点,则cosA ()答案】 B 【解析】【分析】构造全等三角形,证明 △ABD 是等腰直角三角形,进行作答【详解】过 A 作 AE ⊥ BE ,连接 BD ,过 D 作 DF ⊥BF 于 F. ∵AE=BF ,∠ AEB=∠ DFB ,BE=DF ,∴△ AEB ≌△ BFD ,∴AB=DB.∠ABD=90°,∴△ ABD 是等腰直角三角形,∴cos ∠ DAB= 22 答案选 B.【点睛】 本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题 解题关键 .15. 如图,矩形 ABCD 的对角线 AC 、 BD 相交于点 O ,AB :BC =2:1,且 BE ∥ AC , CE ∥答案】 B解析】分析】DC 交线段 DC 延长线于点 F ,连接 OE 交BC 于点 G .根据邻边相等的平行四边形是菱形即可判断四边形 OBEC 是菱形,则 OE 与 BC 垂直平分,易得 EF=1 x , 2 1 A . 2B . 2 2C . 3 2D . 55C . 62 3D . 10过点 E 作 EF ⊥直线 B . A .4CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD 相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点 E 作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=1 AD=1 x,OE∥ AB,22∴四边形AOEB是平行四边形,∴OE=AB=2x,1∴CF=OE=x.2本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.16.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m 千米∴tan ∠EDC=EFDF2x xA.m cotcot千米B.cot cot千米C.tan tan千米D.tan tan故选:B.点睛】m m m【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O,由锐角三角函数知,AO=PO cotBO=PO cot m,又AB=m=AO-BO= PO cot - PO cot = . 所以答案选 A. cot cot【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键17.如图,在边长为8的菱形ABCD中,∠ DAB=60°,以点D为圆心,菱形的高画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是解析】分析】由菱形的性质得出AD=AB=8,∠ ADC=12°0 ,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠ DAB=60°,∴AD=AB=8,∠ ADC=18°0 -60°=120 °,∵DF是菱形的高,∴DF⊥ AB,∴DF=AD?sin60 °=834 3,2∴图中阴影部分的面积=菱形ABCD 的面积- 扇形DEFG的面积=8 4 3120 (4 3)32 3 16.360故选: C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.DF 为半径C.32 3 16 D.18 3 答案】C18.如图,一艘轮船从位于灯塔 C 的北偏东 60°方向,距离灯塔 60 nmile 的小岛 A 出发, 沿正南方向航行一段时间后,到达位于灯塔小岛 A 的距离是 ( AB 的长.【详解】 CDcos ∠ ACD= ,AC∴CD=AC?cos ∠ACD=6×0 3 30 3 .2在 Rt △DCB 中,∵∠ BCD=∠ B=45°,∴CD=BD=30 3 ,∴AB=AD+BD=30+30 3 .答:此时轮船所在的 B 处与灯塔 P 的距离是( 30+30 3 )nmile .故选 D .【点睛】此题主要考查了解直角三角形的应用 -方向角问题,求三角形的边或高的问题一般可以转化 C 的南偏东 45°方向上的 B 处,这时轮船 B 与A . 30 3 n mile 【答案】 D【解析】【分析】过点 C 作 CD ⊥AB , B . 60 n mile C .120 nmile D . (30 30 3) n mile则在 Rt △ACD 中易得A D 的长,再在直角 △BCD 中求出 BD ,相加可得 在 Rt △ACD中, AC=60.为解直角三角形的问题,解决的方法就是作高线.19.已知 B 港口位于 A 观测点北偏东 45°方向,且其到 A 观测点正北风向的距离 BM 的长 为 10 2 km ,一艘货轮从 B 港口沿如图所示的 BC 方向航行 4 7 km 到达 C 处,测得 C 处 位于 A 观测点北偏东 75°方向,则此时货轮与 A 观测点之间的距离 【答案】 A【解析】【分析】【详解】解:∵∠ MAB=4°5 , BM=10 2 ,∴AB= BM 2 MA 2 = (10 2)2 (10 2)2 =20km , 过点 B 作 BD ⊥AC ,交 AC 的延长线于 D , 在 Rt △ADB 中,∠ BAD=∠MAC ﹣∠ MAB=7°5 ﹣45°=30°, BDtan ∠ BAD=AD∴AD= 3 BD , BD 2 +AD 2 =AB 2,即BD 2+( 3 BD )2=202,∴ BD=10,∴ AD=10 3 ,在 Rt △BCD 中, BD 2+CD 2=BC 2, BC=4 3 ,∴ CD=2 3 , ∴AC=AD ﹣ CD=10 3 ﹣ 2 3 =8 3 km ,答:此时货轮与 A 观测点之间的距离 AC 的长为 8 3 km . 故选 A .【考点】解直角三角形的应用 -方向角问题.AC 的长为( )B . 9 3C . 6 3D . 7 320.如图,一艘轮船位于灯塔 P 的北偏东 60°方向,与灯塔 P 的距离为 30 海里的 A 处,轮 船沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东 30°方向上的 B 处,则此时轮船 所在位置 B 与灯塔 P 之间的距离为 ( )【答案】 D【解析】 【分析】 根据题意得出:∠ B=30°,AP=30 海里,∠ 案.【详解】 解:由题意可得:∠ B=30°, AP=30海里,∠ APB=90°, 故AB=2AP=60(海里),则此时轮船所在位置 B 处与灯塔 P 之间的距离为: BP= AB 2 AP 2 故选:D .【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. B . 45 海里 C .20 3 海里 D .30 3 海里APB=90°,再利用勾股定理得出 BP 的长,求出答 30 3 (海里)。
锐角三角函数及其应用(共60题)(学生版)

锐角三角函数及其应用(60题)一、解答题1(2023·河南·统考中考真题)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF= 11m,BH=20cm.求树EG的高度(结果精确到0.1m).2(2023·四川宜宾·统考中考真题)渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD,如图2.在桥面上点A处,测得A到左桥墩D的距离AD=200米,左桥墩所在塔顶B的仰角∠BAD=45°,左桥墩底C的俯角∠CAD=15°,求CD的长度.(结果精确到1米.参考数据:2≈1.41,3≈1.73)3(2023·辽宁·统考中考真题)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B.D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE;(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)4(2023·甘肃兰州·统考中考真题)如图1是我国第一个以“龙”为主题的主题公园--“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得∠BAC=38°、∠BAD=53°,AB=18m.求“龙”字雕塑CD的高度.(B,C,D三点共线,BD⊥AB.结果精确到0.1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)5(2023·内蒙古通辽·统考中考真题)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B 处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.)6(2023·湖北·统考中考真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)7(2023·湖南张家界·统考中考真题)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P 点,测得奇楼顶端A的俯角为15°,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为45°,求奇楼AB的高度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)8(2023·辽宁大连·统考中考真题)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC ⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)9(2023·广东·统考中考真题)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂AC=BC= 10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)10(2023·湖南·统考中考真题)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹中国空间站应用与发展阶段首次载人发射任务取得圆满成功,如图(九),有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°.9s,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°.求火箭从P 到Q处的平均速度(结果精确到1m/s).(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)11(2023·浙江绍兴·统考中考真题)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筺EF与支架DE在同一直线上,OA=2.5米,AD=0.8米,∠AGC=32°.(1)求∠GAC的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)12(2023·浙江台州·统考中考真题)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图像高度AB抽象成如图所示的△ABC,∠BAC=90°.黑板上投影图像的高度AB=120cm,CB 与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)13(2023·湖南怀化·统考中考真题)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(3≈1.732,结果保留一位小数)14(2023·新疆·统考中考真题)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A处,测得烽燧BC的顶部C处的俯角为50°,测得烽燧BC的底部B处的俯角为65°,试根据提供的数据计算烽燧BC的高度.(参数据:sin50°≈0.8,cos50°≈0.6,tan50≈1.2,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15(2023·四川遂宁·统考中考真题)某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:实践探究活动记录表活动内容 测量湖边A、B两处的距离成员 组长:××× 组员:××××××××××××测量工具 测角仪,皮尺等测量示意图说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得∠A、∠B、∠C的度数.测量数据角的度数∠A=30°∠B=45°∠C=105°边的长度BC=40.0米AC=56.4米数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.已知:如图,在△ABC中,∠A=30°,∠B=45°..(从记录表中再选一个条件填入横线)求:线段AB的长.(为减小结果的误差,若有需要,2取1.41,3取1.73,6取2.45进行计算,最后结果保留整数.)16(2023·四川成都·统考中考真题)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)18(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=43;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)19(2023·山东东营·统考中考真题)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为多少km?20(2023·四川凉山·统考中考真题)超速容易造成交通事故.高速公路管理部门在某隧道内的C、E 两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A、D、B、F在同一直线上.点C、点E到AB的距离分别为CD、EF,且CD=EF=7m,CE=895m,在C处测得A点的俯角为30°,在E处测得B点的俯角为45°,小型汽车从点A行驶到点B所用时间为45s.(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速80千米/小时,判断小型汽车从点A行驶到点B是否超速?并通过计算说明理由.(参考数据:2≈1.4,3≈1.7)21(2023·内蒙古·统考中考真题)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).22(2023·湖南常德·统考中考真题)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)23(2023·山东·统考中考真题)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号)24(2023·重庆·统考中考真题)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品,经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2≈1.414,3≈1.732)25(2023·山东聊城·统考中考真题)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤BC的距离(结果精确到1m).(参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)26(2023·四川·统考中考真题)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120°,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角∠OED =45°,风叶OA 的视角∠OEA =30°.(1)已知α,β两角和的余弦公式为:cos α+β =cos αcos β-sin αsin β,请利用公式计算cos75°;(2)求风叶OA 的长度.27(2023·湖北宜昌·统考中考真题)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约330km 的圆形轨道上,当运行到地球表面P 点的正上方F 点时,从中直接看到地球表面一个最远的点是点Q .在Rt △OQF 中,OP =OQ ≈6400km .(参考数据:cos16°≈0.96,cos18°≈0.95,cos20°≈0.94,cos22°≈0.93,π≈3.14)(1)求cos α的值(精确到0.01);(2)在⊙O 中,求PQ的长(结果取整数).28(2023·四川泸州·统考中考真题)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:3的斜坡AB前进207m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,计算结果用根号表示,不取近似值).29(2023·山西·统考中考真题)2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC 和AB 的长度(结果精确到0.1m .参考数据:3≈1.73,2≈1.41).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A ,B ,C ,D ,E 在同一竖直平面内,AE 与CD 均与地面平行,岸墙AB ⊥AE 于点A ,∠BCD =135°,∠EDC =60°,ED =6m ,AE =1.5m ,CD =3.5m计算结果交流展示30(2023·湖南·统考中考真题)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”一辆车从被山峰POQ遮挡的道路②上的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中tanα=35,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A处的货车)31(2023·四川内江·统考中考真题)某中学依山而建,校门A处有一坡角α=30°的斜坡AB,长度为30米,在坡顶B处测得教学楼CF的楼顶C的仰角∠CBF=45°,离B点4米远的E处有一个花台,在E 处测得C的仰角∠CEF=60°,CF的延长线交水平线AM于点D,求DC的长(结果保留根号).32(2023·湖北随州·统考中考真题)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)(1)求点D到地面BC的距离;(2)求该建筑物的高度AB.33(2023·天津·统考中考真题)综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m).①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,3取1.7,结果取整数).34(2023·山东临沂·统考中考真题)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625;sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)35(2023·湖南永州·统考中考真题)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示),寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB代表陈树湘雕像,一参观者在水平地面BN上D处为陈树湘雕拍照,相机支架CD高0.9米,在相机C处观测雕像顶端A的仰角为45°,然后将相机架移到MN处拍照,在相机M处观测雕像顶端A的仰角为30°,求D、N两点间的距离(结果精确到0.1米,参考数据:3≈1.732)36(2023·重庆·统考中考真题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图;①A-D-C-B;②A-E-B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B 的南偏西60°方向.(参考数据:2≈1.41,3≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?37(2023·江苏苏州·统考中考真题)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)38(2023·湖南·统考中考真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部243米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以43米/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线EB.39(2023·山东烟台·统考中考真题)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45°,利用无人机在点A的正上方53米的点B处测得P点的俯角为18°,求该风力发电机塔杆PD的高度.(参考数据:sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)40(2023·甘肃武威·统考中考真题)如图1,某人的一器官后面A处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)41(2023·四川达州·统考中考真题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cos26°≈0.9,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)42(2023·江西·统考中考真题)如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)43(2023·浙江宁波·统考中考真题)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)44(2023·江苏连云港·统考中考真题)渔湾是国家“AAAA”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A处出发,沿着坡角为48°的山坡向上走了92m到达B处的三龙潭瀑布,再沿坡角为37°的山坡向上走了30m到达C处的二龙潭瀑布.求小卓从A处的九孔桥到C处的二龙潭瀑布上升的高度DC为多少米?(结果精确到0.1m)(参考数据:sin48°≈0.74,cos48°≈0.67,sin37°≈0.60,cos37°≈0.80)45(2023·四川广安·统考中考真题)为了美化环境,提高民众的生活质量,市政府在三角形花园ABC 边上修建一个四边形人工湖泊ABDE,并沿湖泊修建了人行步道.如图,点C在点A的正东方向170米处,点E在点A的正北方向,点B、D都在点C的正北方向,BD长为100米,点B在点A的北偏东30°方向,点D在点E的北偏东58°方向.(1)求步道DE的长度.(2)点D处有一个小商店,某人从点A出发沿人行步道去商店购物,可以经点B到达点D,也可以经点E到达点D,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,3≈1.73)46(2023·浙江嘉兴·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)47(2023·安徽·统考中考真题)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.48(2023·浙江·统考中考真题)如图,某工厂为了提升生产过程中所产生废气的净化效率,需在气体净化设备上增加一条管道A -D -C ,已知DC ⊥BC ,AB ⊥BC ,∠A =60°,AB =11m ,CD =4m ,求管道A -D -C的总长.49(2023·浙江温州·统考中考真题)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1).他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度.问题解决任务1分析规划选择两个观测位置:点_________和点_________获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN.任务3换算高度楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm.50(2023·四川自贡·统考中考真题)为测量学校后山高度,数学兴趣小组活动过程如下:(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT≈5cm,TS≈2cm.求山高DF.(2≈1.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 .B C .03.等腰直角三角形一个锐角的余弦为( ) A 、12 B C .l 4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3cosA+b 3cosB 等于( ) A .abc B .(a+b )c3C .c3D ().abc a b c+5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(); ); ) .()2222A B C D -- 6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+ cosA 的值为( )B C D7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )sin(90°-B ),则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 8.sin35°·cos55°十cos35°·sin55°=_______9. 已知0°<a <4510.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 60--+o 1||451)2O O -- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)6033π-O +÷-+- ()012sin 60-︒+-(结果保留根号......)____= 1tan 60|2|2-+-+o sin 30tan 45sin 60-o o o13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
17如图1-1-34所示,在菱形ABCD 中,AE ⊥BC 于 E 点,EC=1,∠B=30°,求菱形ABCD 的周长.18先化简,再求其值,213(2)22x x x x x +÷-++-+其中x=tan45-cos30°19如图1-l -8,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC =45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明.20雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C 处(C 与塔底B 在同一水平线上),用高米的测角仪CD 测得塔项A 的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到米). (参考数据:tan43°≈,cot43°≈)A BC D α21.某月松花江哈尔滨段水位不断下降,一条船在松花江某水段自西向东沿直线航行,在A 处测得航标C 在北偏东 60°方向上,前进100m 到达B 处,又测得航标C 在北偏东45°方向,(如图1-1-36),以航标C 为圆心,120m 长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险三、针对性训练:1、202020cos 30sin 301sin 60-+-2、200020sin 45cos30cos60cos 45-++000000000020000000000000003 4sin 605cos 603(1sin 30)14.cos 30452sin 30cos 3045260452sin 30cos 60sin 906.sin 30cos 45cos 457.cos 60cos 30cos 30sin 30sin 308.tan 60cot 459.2sin 30cot 60ta -++-+---+--++、00000020000003200000n 45sin 60cot 4510.tan 602tan 4511.2sin 304cos 3013.2sin 30cot 45(2tan 60)sin 90114.sin 30230tan 60cos 45cot 30---+-+--⎛⎫⎪⎝⎭+-+二、经典考题剖析: 【考题3-1】计算:sin 248○+ sin 242○-tan44○×tan45○×tan 46○解:原式=cos 242○+sin 242○-cot46○×tan46○×1= l - 1=0. 点拨:cos48○-cos (90○-42○)=sin42○,tan44°=cot46°【考题3-2】(2004、昆明,3分)在 △ABC 中,已知∠C =90°,sinB=,则cosA 的值是( ) 3443. . . .4355A B C D解:D 点拨:因为△ABC 中,∠C =90°,所以∠A+∠B =90°. SinB=cosA=35 .【考题3-3】(2004、潍坊模拟,5分)已知,α为锐角,且tan α的值。
解:原式|sin cos |cos a a a -然后化简再代入即可得原式=1 三、针对性训练:1.下列等式中正确的是() A .sin20○+ sin40○=sin60○B .cos20○+ cos40○=cos60, C .sin (90○-40○)=cos40○D .cos (90○-30○)=sin60○2.2020sin 24cos 24+等于()A .sin48○+cos48○B .2sin 224°C .1D .2(sin24o+cos24o)3.已知sin75○cos15°等于( )4、α是锐角,且sin cos a a +=m ,则sin cos a a =g ( )A .12 (m 2+l ) B .12 (m -l ) C .12 (m +l ) D .12(m 2-1)5.已知α为锐角,且tan α×tan20○=1,则锐角α为()A .20*B .IM )UC .700D .IM )06.△ABC 中,∠C =90°,cosA= 23,则tanB 为()A .B .7.cos 255○+ cos 235○=_______8.cos 2α+sin 242○=1,则锐角α=______.9、已知α为锐角,且sin α-cos α=12,则sin α·cos α=___________10 计算:⑴已知sin α·cos α= 18 ,求sin α+cos α.11化简:(()221sin 121cos a a --12.已知sin 2cos tan cot 3,2cos sin a aa a a a-+=+求的值.考点4:三角函数的大小比较一、考点讲解:(一)同名三角函数的大小比较 1.正弦、正切是增函数.正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小. 2.余弦、余切是减函数.”余弦、余切是减函数,三角函数值随角的增大而减小,随角的减小而增大。
(二)异名三角函数的大小比较1.tanA >SinA ,由定义,知tanA= a b ,sinA=a c因为b <c ,所以tanA >sinA2.cotA >cosA .由定义,知cosA= b c ,cotA= ba 因为 a <c ,所以cotA >cosA .3.若0○<A <45○,则cosA >sinA ,cotA >tanA ;若45○<A <90○,则cosA <sinA ,cotA <tanA ; 二、经典考题剖析:【考题4-1】(2004、临沂模拟,3分)比较大小: (1)sin41○_____sin40○;(2)sin42○____cos55○. 解:(1)>(2)>点拨:正弦函数值随角的增大而增大.【考题4-2】(2004、安丘模拟,3分)∠A 为锐角,且sinA=25 ,则∠A 所在的范围是( )A .0○<∠A <30○B .30○<∠A <45○C .45○<∠A <60○D .60○<∠A <90○解:A 点拨:sin30○ =12 = 510 >25 =410 ,正弦函数值随角的增大而增大,所以∠A= 30○.故选A .【考题4-3】(2004、潜江,3分)当45○<θ<90○时,下列各式中正确的是( )A .tan θ>cos θ>sin θB .sin θ>cos θ>tan θC .tan θ> sin θ>cos θD .cot θ>sin θ>cos θ解:C 点拨:可以用符合条件的特殊角的三角函数值验证,如θ=60°,也可根据增减性判断. 三、针对性训练:( 45分钟) (答案:265 )1.已知α为锐角,下列结论:①sin α+cos α=1;②如果α>45°,那么sin α>cos α;③如果cos α>12那么a <60°;-sina .正确的有( )A .1个B .2个C .3个D .4个 2.已知∠A 为锐角,且cosA ≤12 ,那么( )A .0°<∠A ≤60°B .60°≤∠A <90°C .0°<∠A ≤30°D .30°≤∠A <90° 3.已知cotA= 23 ,则锐角A 的取值范围是( )A .0○<∠A <30○B .45○<∠A <60○C .30○<∠A <45○D .60○<∠A <90○4.如果∠A 是锐角,且cosA=14 ,那么∠A 的范围是( )A .0○<∠A ≤30○B .30○<∠A <45○C .45○<∠A <60○D .60○<∠A <90○5.下列不等式中正确的是() A .cos42○>cos40○B .cos20○>cos70○C .sin70○>sin20○D .sin42○>sin40○6.若0<cosA .0<α<30○B 、α≥30○C .30○≤α≤60○D .30○≤α≤90○7.在下列不等式中,错误的是( ) A .sin45○>sin30○B .cos60○<oos30○C .tan45○>tan30○D .cot30○<cot60○8.∠A 为锐角,tanA < 3 时,∠A ( ) A .小于30○B .大于30○C .小于60○D 大于60○9.以下各式中,小于0的是()A .tan42○-tan41○B .cot41○-cot42○C .tan42○-cot41○D .cot41○-tan42○10 如果sina >sin30°,则锐角α的取值范围是_____11 比较大小(在空格处填写“<”或“>”或“=”)若α=45○,则sin α________cos α;若α<45○,则 sin α____cos α;若α>45°,则 sin α____cos α.12 利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小. sin10○、 cos30○、 sin 50○、 cos 70○13 ⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.考点5:解直角三角形的应用一、考点讲解:1.直角三角形边角关系.(1)三边关系:勾股定理:222a b c +=(2)三角关系:∠A+∠B+∠C=180°,∠A+∠B =∠C=90°.⑶边角关系tanA= a b ,sinA=a c cosA= b c ,cotA= ba2.解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形. 3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决 二、经典考题剖析:【考题5-1】(2004、北碚,10分)如图1-l -8,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC =45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明. 解:不会穿过森林公园.因为0tan 451AHBH==,所以 BH=AH .又∵AH HC + 3 AH=( 3 +1)AH ,以∵BC =1000,所以( 3 +1)AH =1000.所以AH=500( 3 -1),而 500( 3 -1)>300,故此公路不会穿过森林公园.【考题5-2】(2004、海口,7分)雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C 处(C 与塔底B 在同一水平线上),用高米的测角仪CD 测得塔项A 的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到米). (参考数据:tan43°≈,cot43°≈)解:过点D 作DE⊥AB 于E ,则在Rt△ADE 中,∠α=43°,DE=CB=139米. ∵αtan =DEAE∴AE=DE•tanα=139•tan43°=139×≈ ∴AB=AE+EB=+≈米.点拨:解本题时要注意塔高AB =AE+EB=AE+DC .【考题5-3】(2004、青岛,6分)在一次实践活动中,某课题学习小且用测倾器、皮尺测量旗杆的高度,他们设计如下方案如图1-1-11①所示;(1)在测点A 处安置测倾器,测得旗杆顶部M 的角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离A N =m ;(3)量出测倾器的高度AC=h ,根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请你仿照上述过程,设计一个测量某小山高度(如图1-1-11)的方案;⑴在图1-1-11②中,画出你测量小山高度MN 的示意图(标上适当的字母);写出你的设计方案. 解:(1)如图1-1-12;(1)正确画出示意图.(2)①在测点A 处安置测倾器,测得此时M 的仰角MCE α∠=;②在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角MDE β∠=;③量出测倾器的高度AC =BD =h ,以及测点A 、B 之间的距离AB =m .根据上述测量数据,即可求出小山的高度MN.点拨:这是一道实验操作题,只有亲自动手操作实验,才能掌握其测量方法.三、针对性训练:( 45分钟) (答案:266 ) 如图――ABCDα1.如图1-1-13,为测一河两岸相对两电线杆A 、B间的距离,在距A 点15米处的C 点(AC ⊥BA )测得∠A =50°,则A 、B 间的距离应为( ) A .15sin50°米 B 、15cos50°米 C .15tan50°米 D 、15tan50米2.如图1-1-14,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为山则重叠部分的面积为( ) 11.. .sin sin cos A B C a a aD .1 3.如图1-1-15,在山坡上种树,要求株距(相邻两树间的水平距离)是a ,测得斜坡的倾角为α,则斜坡上相邻两树间的坡面距离是( ) A.a sin .cos ..sin cos a aa B a a C D a a4.如图1-1-16,铁路路基横断面为一个等腰梯形,若腰的坡度为2:3,顶宽为3米,路基高为4米,则路基的下底宽是( ) A .15米 B .12米 C .9米 D .7米5.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45°,若他的双眼离地面1.3米,则旗杆高度为_________米。