中考数学复习知识、题型全攻略-2021中考数学知识专项训练:图表信息题
中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)

2019/3/9
请根据图中提供的信息,解答下列问题: (1) 在这次抽样调查中,共调查了___________名学生; (2) 补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的 度数; (3) 根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与” 的人数。
2019/3/9
各类情况条形统计图 人数 240 200 160 120 80 40 240
2019/3/9
a元,蓝色地砖每块b元, 解: (1)设红色地砖每块 4000a 6000b 0.9 86000,
答:红色地砖每块8元,蓝色地砖每块10元. (2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为 y元. 由题意知x≥(12000-x),得x≥4000,又x≤6000, ∴ 4000≤x≤6000. 当4000≤x<5000时,y=10x+8×0.8(12000-x),即y=76800+3.6x, ∴ x=4000时,y有最小值91200; 当5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. ∴ x=5000时,y有最小值89800. ∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,
2019/3/9
典例选讲
例1 实数a,b,c在数轴上的对应点的位置如图所示,则正确 的结论是 (B )
A. a>4
B.c-b>0
C.ac>0
D.a+c>0
2019/3/9
典例选讲
例2 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系 统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表 示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生 所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从 左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示 该生为5班学生.表示6班学生的识别图案是 ( B )
2021年冲刺中考数学之热点专题图表信息问题(解析版)

课程
平均数
中位数
众数
A
75.8
m
84.5
B
72.2
70
83
根据以上信息,回答下列问题:
(1)写出表中 m 的值;
(2)在此次测试中,某学生的 A 课程成绩为 76 分, B 课程成绩为 71 分,这名学生成绩排名更靠前的课程
是
(填“ A 参加此次测试,估计 A 课程成绩超过 75.8 分的人数.
50 答:该年级学生立定跳远成绩在 2.4 x < 2.8 范围内的学生有 200 人.
3.(2018•清城区实验中学一模)某年级共有 300 名学生.为了解该年级学生 A , B 两门课程的学习情况, 从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分
(1)求 n 的值; (2)请将条形统计图补充完整; (3)若该校共有 2000 名学生,请估计该校四大古典名著均已读完的人数.
【解析】(1)根据题意得: 30¸ 30% = 100 (人 ) , 则 n 的值为 100; (2)四大古典名著你读完了 2 部的人数为100 - (5 + 15 + 30 + 25) = 25 (人 ) , 补全条形统计图,如图所示:
故答案为:40,补全条形统计图如图所示:
(2) 4 ¸ 40 = 10% ,16 ¸ 40 = 40% , 360按 40% = 144 .
故答案为:10,40,144;
(3)设除小明以外的三个人记作 A 、 B 、 C ,从中任意选取 2 人,所有可能出现的情况如下:
共有 12 中可能出现的情况,其中小明被选中的有 6 种, 所以小明被选中参加区知识竞赛的概率为 6 = 1 .
中考数学知识点训练题(图表信息型题)

中考数学图表信息型题【复习要点】1、图表信息题的类型有:(1)图象信息型;(2)图形信息型;(3)统计信息型;(4)生活情境型。
2、方法与技巧:(1)观察图象,获取有用信息;(2)对获得信息加以整合,弄清各量之间的关系;(3)选择适当的数学工具;通过建模解决问题。
【实弹射击】1、二次函数2y ax bx c =++的图象如图1所示,点(,2)Q n一点,且AQBQ ⊥,则a 的值是( )A 、13-B 、12- C 、1- D 、2-2、如图2,惠州市某一天内的气温变化图,根据图,下列说法中错误的是( ) A 、这一天中最高气温是24℃.B 、这一天中最高气温与最低气温的差为16℃C 、这一天中2时至14时之间的气温在逐渐升高D 、这一天中只有14时至24时之间的气温在逐渐降低3、用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).(1) (2) (3)4、为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,6次测试成绩(每分钟输入汉字个数)及部分统计数据如下:则甲的方差 乙的方差,所以 的成绩比较稳定。
5、右边条形图描述了某班随机抽取的部分学生一周内阅读课外书籍的时间, 请找出这些学生阅读课外书籍所用时间的中位数是______________.6、七(1)班学生参加学校组织的智力竞赛,老师将学生的成绩按10分的组距分段,统计出每个分数段出现的频数,填入频数分布表,并绘制分布直方图,如图示:(1)频数分布表中 , 。
(2)把频数分布直方图补充完整。
(3)学校设定成绩在69.5分以上的学生获得一等奖或二等奖,一等奖奖励笔记本15本及奖金100元,二等奖奖励笔记本10本久奖金80元。
已知这部分学生共获得笔记本335本,请你求出他们共获的奖金。
7、扁记早茶店每天的利润y (元)与售出的早点x (份)之间的函数关系。
江苏版2021年中考数学热点专题冲刺3图表信息问题

热点专题3 图表信息问题考向1平均数、中位数、众数、方差的概念及计算1.(2019 江苏省常州市)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.【答案】(1)30,10(2)12;(3)7200【解析】(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).点评此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.2. (2019 江苏省南京市)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“方差等于差方的平均数”).解答解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【点评】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3. (2019 江苏省淮安市)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【解析】解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:(3)800×=160,4. (2019 江苏省连云港市)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5. (2019 江苏省泰州市) PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年7~12月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)(1)2018年7~12月PM2.5平均浓度的中位数为μg/m3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.【解析】(1)2018年7~12月PM2.5平均浓度的中位数为=μg/m3;故答案为:;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图,故答案为:折线统计图;(3)2018年7~12月与2017年同期相比PM2.5平均浓度下降了.点评本题考查了统计图的选择,利用统计图的特点选择是解题关键.6. (2019 江苏省无锡市)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.【解析】(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n个由题意得:80.0 ≤ 41.3×n×4%≤89.9所以 48<n<54又因为 4%n为整数所以n=50即优秀的学生有52%×50÷10%=260 人考向2统计图1. (2019 江苏省宿迁市)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【解析】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、统计表的应用,要熟练掌握.2. (2019 江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910月”对应扇形的圆心角度数;(2)补全条形统计图.【解析】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为112;积为偶数的概率为82123=,故答案为:112,23.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为21 126=,故答案为:16.点评此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3. (2019 江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数; (2)补全条形统计图.【解析】解:(1)全年的总电费为:24010%2400÷=元 910-月份所占比:7280240060÷=, ∴扇形统计图中“910-月”对应扇形的圆心角度数为:73604260︒⨯=︒ 答:扇形统计图中“910-月”对应扇形的圆心角度数是42︒(2)78-月份的电费为:2400300240350280330900-----=元, 补全的统计图如图:点评考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.4. (2019 江苏省盐城市)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表请根据以上信息,解决下列问题:(1)频数分布表中,a=、b=;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.【解析】解:(1)根据题意得:b=3÷0.06=50,a==0.26;故答案为:0.26;50;(2)根据题意得:m=50×0.46=23,补全频数分布图,如图所示:(3)根据题意得:400×(0.46+0.08)=216,则该季度被评为“优秀员工”的人数为216人.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布图,弄清题中的数据是解本题的关键.5. (2019 江苏省扬州市)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.根据以上信息,回答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.【解析】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.6. (2019 江苏省镇江市)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是;(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?【解析】解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D类,所以中位数是6分.故答案为6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98﹣48=50(人).设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.由题意,得,解得.答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.【点评】本题考查的是统计图表与条形图的综合运用.读懂统计图表,从统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数与平均数.。
中考数学第二轮复习:图表信息问题

1
专 题 解 读
2
考情透析 图表信息题是中考常考的一种新题型,它是通过图象、 图形及表格等形式给出信息,通过认真阅读、观察、 分析、加工、处理等手段解决的一类实际问题.主要 考查同学们的读图、识图、用图能力,以及分析问题、 解决问题的能力.图表信息问题往往和“方程(组)、不 等式(组)、函数、统计与概率”等知识结合考查.
11
二、表格信息题
以表格的形式给出数据信息是这类信息题的特征,分析表中的数据,能从表
格中发现两个量之间存在规律,归纳出相应的关系式是解决此类问题的关键.
12
【例题2】 (2012· 浙江台州)某汽车在刹车后行驶的距离s(单
位:米)与时间t(单位:秒)之间的关系的部分数据如下表:
时间t(秒) 行驶距离s(米)
4
专 题 突 破
5
一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数、反比例函数的 图象等)表示物体的变化规律(体现在两个变量之间的数量关系),考查
数形结合的思想和函数建模能力.解答时往往根据图象的形状、位置、 变化趋势等信息来判断、分析、解决问题.
6
【例题1】 (2012· 浙江义乌)周末,小明骑自行车从家里出
10
(3)设从家到乙地的路程为m km,
则点 E(x1,m),点 C(x2,m),分别代 入 y=60x-80,y=20x-10, m+80 m+10 得:x1= , x2 = . 60 20 10 1 ∵x2-x1= = , 60 6 m+10 m+80 1 ∴ - = , 20 60 6 解得:m=30. ∴从家到乙地的路程为 30 km.
14
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由 所给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求), 即可求得答案.
中考数学专题 三图表信息问题 复习课件

【自主解答】(1)设从甲厂调运饮用水x吨,从乙厂调运饮用 水y吨,根据题意得
2 x 0 y 1 2 x 1 2 0 1 4 1 5 y2 67 0 0 ,解 得 x y 7 5 0 0 . ∵50<80,70<90,∴符合条件. 故从甲、乙两水厂各调用了50吨、70吨饮用水.
∴乙今年3月月应纳税额y元满足: 9 000<y<21 000, 当9 000<y≤20 000时. ∴20%y-375=25%(y-1 000)-975. 解得y=17 000(元). 当20 000<y<21 000时, 25%y-1 375=25%(y-1 000)-975,无解. 17 000×20%-375=3 025(元) 答:乙今年3月所缴税款的具体数额为3 025元.
【例3】(2010·吉林中考)在课外活动期间,小英、小丽和小 敏在操场上画出A、B两个区域,一起玩投沙包游戏.沙包落在 A区域所得分值与落在B区域所得分值不同.当每人各投沙包四 次时,其落点和四次总分如图所示.请求出小敏的四次总分.
【思路点拨】
【自主解答】设沙包落在A区域得x分,落在B区域得y分. 根据题意,得 32xx y2y3432,解得xy 79. ∴x+3y=9+3×7=30. 答:小敏的四次总分为30分.
最省.
1.(2010·泉州中考)某蔬菜公司收购到一批蔬菜,计划用15 天加工后上市销售.该公司的加工能力是:每天可以精加工3 吨或者粗加工8吨,且每吨蔬菜精加工后的利润为2 000元, 粗加工后的利润为1 000元.已知公司售完这批加工后的蔬菜, 共获得利润100 000元.
请你根据以上信息解答下列问题: (1)如果精加工x天,粗加工y天,依题意填写下列表格:
(整理版)九年级数学专题复习三图表信息

分九年级数学专题复习三——图表信息一、题型特点图象信息题是指由图形、图象〔表〕及易懂的文字说明来提供问题情景的一类问题,它是近几年所展示的一种新的题型。
这类问题题型多样,取材广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图〞和“用图〞.解这类题的一般步骤是:〔1〕观察图象,获取有效信息;〔2〕对已获信息进行加工、整理,理清各变量之间的关系;〔3〕选择适当的数学工具,通过建模解决问题. 二、典型例题例1:2010年5月1日,举世瞩目的世界博览会在上海隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据上表给出的信息,分别求出一类门票和二类门票的单价.例2:因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援以下图是两水库的蓄水量y 〔万米3〕与时间x 〔天〕之间的函数图象.在时间内,甲水库的放水量与乙水库的进水量相同〔水在排放、接收以及输送过程中的损耗不计〕.通过分析图象答复以下问题: 〔1〕甲水库每天的放水量是多少万立方米?〔2〕在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? 〔3〕求直线AD 的解析式.例3:一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y 〔升〕与行驶时间x 〔时〕之间的关系:〔1〕请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;〔不要求写出自变量的取值范围〕〔2〕按照〔1〕中的变化规律,货车从A C 处,求此时油箱内余油多少升?〔3〕在〔2〕的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.〔货车在D 处加油过程中的时间和路程忽略不计〕例4:s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:〔1〕小王和李明第一次相遇时,距县城多少千米?请直接写出答案. 〔2〕小王从县城出发到返回县城所用的时间. 〔3〕李明从A 村到县城共用多长时间?随堂演练:1.某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V 与时间t 的函数图象〔不考虑图象端点情况〕大致为( )2..在一次自行车越野赛中,甲乙两名选手行驶的路程y 〔千米〕 随时间x 〔分〕变化的图象〔全程〕如图,根据图象判定以下结 论不正确的选项是.......( ) A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米 3.某移动通讯公司提供了A 、B 两种方案的通讯费用y(元)与通话 时间x(分)之间的关系,如下图,那么以下说法错误的选项是......〔 〕 A.假设通话时间少于120分,那么A 方案比B 方案廉价20元 B.假设通话时间超过200分,那么B 方案比A 方案廉价C.假设通讯费用为了60元,那么方案比A 方案的通话时间多D.假设两种方案通讯费用相差10元,那么通话时间是145分或185分4. 某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图是甲、乙两车间的距离y 〔千米〕与乙车出发x 〔时〕的函数的局部图像〔1〕A 、B 两地的距离是 千米,甲车出发 小时到达C 地;〔2〕求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图中补全函数图像;〔3〕乙车出发多长时间,两车相距150千米5.某企业在生产甲、乙两种节能产品时需用A 、B 两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m 〔万元〕与销售量n (吨)之间的函数关系如下图.该企业生产了甲种产品x 吨 和乙种产品y 吨,共用去A 原料200吨. 〔1〕写出x 与y 满足的关系式;〔2〕为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B 原料多少吨?6.国家决定对购置彩电的农户实行政府补贴.规定每购置一台彩电,政府补贴假设干元,经调查某商场销售彩电台数y 〔台〕与补贴款额x 〔元〕之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z 〔元〕会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.〔1〕在政府未出台补贴措施前,该商场 销售彩电的总收益额为多少元? 〔2〕在政府补贴政策实施后,分别求出该商场 销售彩电台数y 和每台家电的收益Z 与政府补 贴款额x 之间的函数关系式;〔3〕要使该商场销售彩电的总收益w 〔元〕最大, 政府应将每台补贴款额x 定为多少?并求出总收益 w 的最大值.〔第2题图〕 乙 甲 )图②。
九年级数学专题复习图表信息型问题

中考冲刺:图表信息型问题【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题例1.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.例2.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)举一反三:【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.类型二、图表信息题例3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.例4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A .计算机行业好于其他行业B .贸易行业好于化工行业C .机械行业好于营销行业D .建筑行业好于物流行业举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %; (2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格.类型三、从表格、数字中寻求规律例5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?举一反三:【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【巩固练习】一、选择题1.如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A.B.C.D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为FPS .当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为( ).3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( ).二、填空题4.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.第4题第5题5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是 .6.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是.三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m2,铺设客厅的费用为元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为 .(3)已知在小亮的预算中,铺设1 m2的瓷砖比铺设1m2的木质地板的工钱多5元;购买1m2的瓷砖是购买1m2木质地板费用的34.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. 如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h) 0 10 20 30 40 50 60 刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8(1)以车速为x轴,以车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60 6 4 1500乙公司50 8 2 1000丙公司100 10 3 700解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图表信息题
图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:
1、细读图表:(1)注重整体阅读。
先对材料或图表资料等有一个整体的了解,把握大体方向。
要通过整体阅读,搜索有效信息;(2)重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节。
图表中一些细节不能忽视,他往往起提示作用。
如图表下的“注”“数字单位”等。
2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢。
题目要求包往往括字数句数限制、比较对象、变化情况等。
3、准确表达解答图表题需要用简明的语言进行概括。
解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论。
在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制。
类型之一图形信息题
找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理能力。
在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。
1.(·沈阳市)观察下列图形的构成规律,根据此规律,第8个图形中有个圆.
2.(·聊城市)如下左图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个
3.(·桂林市)如上右图,矩形A1B1C1D1的面积为4,顺次连结各边中点得到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依此类推,求四边形AnBnCnDn,的面积是。
4(·襄樊市)如图,在锐角AOB
内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.
类型之二图象信息题
此类题目以图象的形式出现,有时用函数图象的形式出现,有时以统计图的形式出现,需要要把所给的图象信息进行分类、提取加工,再合成.
5.(•莆田市)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()
A.轮船的速度为20千米/小时
B.快艇的速度为40千米/小时
C.轮船比快艇先出发2小时
D.快艇不能赶上轮船
6.(•滨州市)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()
9
4x
y
O
P
D C
B
A.10
B.16
C.18
D.20
7.(·龙岩市)下表为抄录北京奥运会官方票务网公布的三种球类比赛
的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.
依据上列图、表,回答下列问题:
(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的%;
(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;
1,试求每张乒(3)若购买乒乓球门票的总款数占全部门票总款数的
8
乓球门票的价格.
类型之三从表格、数字中寻求规律
能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式.在探索规律的时候,如对于数字问题,可以把等式横向、纵向进行比较,找到其中的数字与其式子的序号之间的关系,然后找到其中的
变化规律.
8.(·内江市) 根据图中数字的规律,在最后一个图形中填空.
9.(·恩施自治州)将杨辉三角中的每一个数都换成分数,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)
1.那么(9,2)表示的分表示第m行,从左到右第n个数,如(4,3)表示分数
12
数是 .
10.(·茂名)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
第6课时 图表信息题 答案
1.【解析】观察图形,第1个图形中“○”的个数为2=1+1;第2个图形中“○”的个数为5=4+1=122+;第3个图形中“○”的个数为10=9+1=132+;第4个图形中“○”的个数为17=16+1=142+;…第n 个图形中“○”的个数为12+n .
【答案】65.
2.【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第n 层:(2n-1)×6,所以第8层中含有正三角形个数是102.
【答案】B
【解析】由中点四边形性质得:四边形A2B2C2D2,的面积是矩形A1B1C1D1的一半,四边形A3B3C3D3的面积是四边形A2B2C2D2的面积的一半,依此类推,得到四边形AnBnCnDn 的面积是
142n -。
【答案】14
2n -
4.【解析】按如图这样画n 条射线得到的锐角个数为(1)(2)2n n ++
【答案】66
5.【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.
【答案】D
6.【解析】由图可知点P 运动路程在4和9之间时三角形ABP 面积不
变,说明这时点P 在CD 边上,因此可知CD=5,BC=4,三角形ABC 面积为10
【答案】A
7.【解析】此题为统计与概率知识的综合题,由条形统计图可以判断出三种比赛项目的具体人数,就可以解决第一、二两问.第三问乒乓球门票的价格需要根据统计表中所示的各门票的价格与购买乒乓球门票的总款数占全部门票总款数的8
1,构造方程从而求出乒乓球门票的价格. 【答案】(12分)(1)30,20
(3)解法一:依题意,有x x 205080030100020+⨯+⨯= 1
8 . 解得x =500 .
经检验,x =500是原方程的解.
答:每张乒乓球门票的价格为500元.
解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯.
解得x =500 .
答:每张乒乓球门票的价格为500元.
8.【解析】寻求图形与图形之间数字蕴含的规律是解题的关键所在.图形的第一行的数是连续正奇数;第二行左边的数是连续正偶数;把每个图形第一行的数乘以第二行左边的数,再加上第一行的数,便得到第二行右边的数.
【答案】。