幂函数与二次函数(一轮复习课件))

合集下载

湘教版高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 幂函数与二次函数

湘教版高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 幂函数与二次函数

求二次函数解析式,一般运用待定系数法,选择规律如下:
考点三
二次函数的图象与性质(多考向探究预测)
考向1二次函数的图象
例题(多选)(2023·湖南岳阳高三检测)如图,二次函数y=ax2+bx+c(a≠0)的图
象与x轴交于A,B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0),
则下列结论正确的是(
= 7.
= 8,
4
故 f(x)=-4x2+4x+7.
(方法 2 利用二次函数的顶点式)设 f(x)=a(x-m)2+n(a≠0).
2+(-1)
因为 f(2)=f(-1),所以二次函数 f(x)图象的对称轴为直线 x= 2
又根据题意函数有最大值 8,所以 n=8,
所以 y=f(x)=a
1 2
x- +8.
( 1 )-( 2 )
x1≠x2,都有 - >1,不妨令 x1>x2,则
1 2
( 1 )-( 2 )
2
>1⇔f(x
1)-x1>f(x2)-x2,令 g(x)=f(x)-x=ax -2x+1,则函数 g(x)在[1,+∞)上
所以a<0,且f(x)max=f(-1)=-a=8,所以a=-8,
所以f(x)=-8x(x+2)=-8x2-16x.
引申探究2将本例中条件变为二次函数f(x)的图象经过点(4,3),在x轴上截得
的线段长为2,且∀x∈R,都有f(2+x)=f(2-x),试确定f(x)的解析式.
解 因为f(2+x)=f(2-x)对任意的x∈R恒成立,所以f(x)的对称轴为直线x=2.

高考数学一轮复习第二章函数6幂函数与二次函数课件新人教A版2

高考数学一轮复习第二章函数6幂函数与二次函数课件新人教A版2
因此
解析
关闭
答案
-25考点1
考点2
考点3
(2)(2020福建厦门一模)已知函数f(x)的定义域为R,满足f(x)+f(-x)
=2,且当x>0时,f(x)=-x2-2x+1.若f(2m-3)≤4,则实数m的取值范围
是 [1,+∞)
.
解析:(2)设x<0,则-x>0,则f(-x)=-x2+2x+1.因为f(x)+f(-x)=2,所以
-
∴α=-2,∴f(x)= .
关闭
1
由 f(x)的图象可知,f(x)的减区间是(0,+∞).
y= 2 (0,+∞)
解析
答案
-12考点1
考点2
考点3
考点 1
幂函数的图象和性质
例1(1)若幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是
( C )
(2)已知幂函数f(x)=(n2+2n-2)·
双基自测
1
2
3
4
5
1
3.(2020福建漳州一模)当α∈ -1, ,1,3
时,幂函数y=xα的图象不可能
2
经过的象限是(
)D
A.第二象限 B.第三象限
C.第四象限 D.第二、四象限
-10知识梳理
1
双基自测
2
3
4
5
4.(2020四川成都模拟)某社团小组需要自制实验器材,要把一段
长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个
思考如何求二次函数在闭区间上的最值?
-27考点1
考点2
考点3

2.4幂函数与二次函数课件高三数学一轮复习

2.4幂函数与二次函数课件高三数学一轮复习

单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
【解析】
∵y=x
2 3
(x>0)是增函数,∴a=12
2 3
>b=15
2 3
.∵y=12x 是减函数,
∴a=12
2 3
<c=12
1 3
,∴b<a<c.故选
D.
考点二 求二次函数的解析式
【例 1】 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确 定此二次函数的解析式.
【思路探索】 根据 f(2),f(-1)可设一般式;根据 f(x)的最大值为 8,可设顶点式; 根据隐含的 f(2)+1=0,f(-1)+1=0 可考虑零点式.
【解】 解法一(利用一般式): 设 f(x)=ax2+bx+c(a≠0),
4a+2b+c=-1, 由题意得4aa-c4-ba+b2c==8-,1,
上单调
在x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba 对称
提醒:二次函数系数的特征 (1)二次函数 y=ax2+bx+c(a≠0)中,系数 a 的正负决定图象的开口方向及开口大小. (2)-2ba的值决定图象对称轴的位置. (3)c 的取值决定图象与 y 轴的交点. (4)b2-4ac 的正负决定图象与 x 轴的交点个数.

(完整版)高考数学第一轮复习幂函数与二次函数

(完整版)高考数学第一轮复习幂函数与二次函数

∴2m=0,∴m=0.
则f(x)=-x2+3在(-5,-3)上是增函数.
3.图中C1,C2,C3为三个幂函数y=xk在第一象限内的图象,则解
析式中指数k的值依次可以是( )
(A) 1, 1 ,3
2
(C) 1 , 1,3
2
(B) 1,3, 1
2
(D) 1 ,3, 1
2
【解析】选A.设C1,C2,C3对应的k值分别为k1,k2,k3,则
k1<0,0<k2<1,k3>1,故选A.
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数 a的取值范围是______. 【解析】二次函数f(x)的对称轴是x=1-a, 由题意知1-a≥3,∴a≤-2. 答案:(-∞,-2]
5.设函数f(x)=mx2-mx-1,若f(x)<0的解集为R,则实数m的取
(A)a>0,4a+b=0
(B)a<0,4a+b=0
(C)a>0,2a+b=0
(D)a<0,2a+b=0
(2)已知函数f(x)=x2+2ax+3,x∈[-4,6]. ①当a=-2时,求f(x)的最值; ②求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数; ③当a=-1时,求f(|x|)的单调区间.
【解析】设f(x)=xn,则 3 ( 3 )n ,
3

3
1n
32
,
1
n
1, n
2,f
x
x 2 .
2
2.函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-5,-3)

二次函数与幂函数一轮复习课件(共21张PPT)

二次函数与幂函数一轮复习课件(共21张PPT)
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,

高考数学(理)一轮复习课件:第二章第四节 幂函数与二次函数(广东专用)

高考数学(理)一轮复习课件:第二章第四节 幂函数与二次函数(广东专用)

一轮复习 ·新课标 ·数学(理)(广东专用)
综上可知,当 0<λ≤2 时,函数 g(x)在[-1+2 λ,+∞)上 是增函数.
因此 g(x)在(0,1) 上是增函数, 又 g(0)=-1<0,g(1)=2-|λ-1|>0, 故函数 g(x)在区间(0,1)上只有唯一的零点.
一轮复习 ·新课标 ·数学(理)(广东专用)
已知关于 x 的二次函数 f(x)=x2+(2t-1)x+1-2t. (1)求证:对于任意 t∈R,方程 f(x)=1 必有实数根; (2)若12<t<34,求证:方程 f(x)=0 在区间(-1,0)及(0,12) 上各有一个实根.
【证明】 (1)由于 f(x)=x2+(2t-1)x+1-2t. ∴f(x)=1⇔(x+2t)(x-1)=0,(*) ∴x=1 是方程(*)的根,即 f(1)=1. 因此 x=1 是 f(x)=1 的实根,即 f(x)必有实根. (2)当12<t<34时,f(-1)=3-4t>0.
A.m=-2
B.m=2
C.m=-1
D.m=1
【解析】 ∵f(x)=x2+mx+1 的对称轴方程为 x=-m2 . ∴-m2 =1,∴m=-2.
【答案】 A
一轮复习 ·新课标 ·数学(理)(广东专用)
3.(2011·陕西高考)函数 y=x31的图象是( )
【解析】 因为当 x>1 时,x>x13,当 x=1 时,x=x31(广东专用)
(2)设二次函数f(x)=ax2+bx+c(a≠0), 由f(0)=1可知c=1. 又f(x+1)-f(x)=[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2ax +a+b, 由f(x+1)-f(x)=2x,可得2a=2,a+b=0. 因而a=1,b=-1.所以f(x)=x2-x+1.

人教a版高考数学(理)一轮课件:2.6二次函数、幂函数

人教a版高考数学(理)一轮课件:2.6二次函数、幂函数

[0,+∞) [0,+∞) 非奇非偶
定点
(0,0),(1,1)
(1)幂函数因幂指数不同而性质各异,图象更是多样,应熟 悉其图象的分布,着重掌握图象在第一象限的部分,抓住特殊点(1,1),并注意 把 y=x 和 y=x-1 进行比较,掌握它们的变化规律.关于幂函数 f(x)=xα 中的 α 可限定在集合 1,2,3, ,-1 中进行比较. (2)在区间(0,1)上,幂函数的指数越大,函数图象越靠近 x 轴(简记为指大 图低),在(1,+∞)上,幂函数的指数越大,函数图象越远离 x 轴.
1 2
)
【答案】B 【解析】设 f(x)=x ,则 3 3 = 故 α=-3,f(x)=x-3.
α
3 3
α
3 ,即32
=3
-
α 2.
5.(2012·湖北武汉模拟)若函数 f(x)=(x+a)(bx+2a)(常数 a,b∈R)是偶函数, 且它的值域为(-∞,4],则该函数的解析式为 f(x)= . 【答案】 -2x2+4 【解析】 由于 f(x)=bx2+(ab+2a)x+2a2,结合已知条件可得 ab+2a=0,又函数 f(x) a ≠ 0, 的值域为(-∞,4],则 b = -2, 因此 f(x)=-2x2+4. 2a2 = 4.
1 2
(3)幂函数 y=xα(α∈R)的图象主要分为以下几类: ①当 α=0 时,图象是过(1,1)点的平行于 x 轴但抠去(0,1)点的一条“断” 直线; ②当 α 为正偶数时,幂函数为偶函数,图象过第一、二象限及原点; ③当 α 为正奇数时,幂函数为奇函数,图象过第一、三象限及原点; ④当 α 为负偶数时,幂函数为偶函数,图象在第一、 二象限,且不过原点; ⑤当 α 为负奇数时,幂函数为奇函数,图象在第一、 三象限,且不过原点.

高考数学总复习(一轮)(人教A)教学课件第二章 函 数第4节 幂函数与二次函数

高考数学总复习(一轮)(人教A)教学课件第二章 函 数第4节 幂函数与二次函数



[课程标准要求]


2
3

1.通过具体实例,结合 y=x,y= ,y=x ,y= ,y=x 的图象,理解它

们的变化规律,了解幂函数.2.理解二次函数的图象和性质,能
用二次函数、方程、不等式之间的关系解决简单问题.
积累·必备知识
回顾教材,夯实四基
1.幂函数
(1)幂函数的定义
一般地,函数y=xα叫做幂函数,其中x是 自变量 ,α是常数.

2
2
所以 f(x)=a(x- ) +8.因为 f(2)=-1,所以 a(2- ) +8=-1,


2
2
解得 a=-4,所以 f(x)=-4(x- ) +8=-4x +4x+7.

法三
(利用“零点式”解题)
由已知f(x)+1=0的两根为x1=2,x2=-1,
故可设f(x)+1=a(x-2)(x+1)(a≠0),


2
即 y= x -x-4.

(2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离
等于2,则二次函数的解析式为
2
Hale Waihona Puke 2y= x +x- 或 y=- x -x+




.
解析:(2)因为二次函数的图象过点(-3,0),(1,0),
所以可设二次函数为y=a(x+3)(x-1)(a≠0),
位置.
(3)三看特殊点:看函数图象上的一些特殊点,如函数图象与y轴
的交点、与x轴的交点、函数图象的最高点或最低点等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)试比较a=1.2
1 2
,b=0.9-
1 2
,c=1.1
1 2
的大小关系
________.
(2)正整数p使函数f(x)=xp-2在(0,+∞)上是减函数,则
p=________,函数的单调递减区间________.
第二章 第4讲
第8页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
第二章 第4讲
第6页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
4. 常用幂函数的性质
函数
特征 y=x
性质
定义域 R
值域
R
奇偶性 奇
单调性 增
特殊点
(1,1) (0,0)
y=x2
R [0,+∞)
偶 x∈[0,+∞)
时,__ x∈(-∞,0]
时,__
(1,1) (0,0)
第二章 第4讲
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
第4讲 幂函数与二次函数
泰安二中数学2020年3月25日星期三
第二章 第4讲
第1页
金版课教前程自·高主三导数学学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
1. 二次函数的定义
形如:f(x)=____________的函数叫做二次函数.
第3页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
(1) 函 数 f(x) = ax2 + ax + 1 在 x 轴 的 上 方 则 a 的 取 值 范 围 ________.
(2)f(x) = x2 - 2x + 2 的 定 义 域 , 值 域 均 为 [1 , b] , 则 b = ________.
第二章 第4讲
第5页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
设 f(x) = (m - 1)xm2 - 2. 如 果 f(x) 是 正 比 例 函 数 , 则 m = ________,如果f(x)是反比例函数,则m=________,如果f(x)是 幂函数,则m=________.
第12页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
[审题视点] 先利用幂函数的定义确定出m的取值范围,再 利用f(x)在(0,+∞)上是增函数确定m的具体值.
[解] ∵f(x)是幂函数, ∴m2-m-1=1, ∴m=-1或m=2, 当m=-1时,m2+m-3=-3, 当m=2时,m2+m-3=3, ∴f(x)=x-3或f(x)=x3,
y=x3
R R 奇

(1,1) (0,0)
1 y=x2
y=x-1
[0,+∞) (-∞,0)∪(0,+∞)
[0,+∞) (-∞,0)∪(0,+∞)
非奇非偶

x∈(0,+∞) 时,__ 增
x∈(-∞,0) 时,__
(1,1) (0,0)
(1,1)
第二章 第4讲
第7页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
2. 二次函数的图象与性质
函数
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
图象
定义域 值域
单调性
最值
顶点
对称轴
R
R
__________
__________
在__________上递减,在_________上递 增.
在______上递增,在______上递减.
当x=-2ba时,函数有最小值________
3. 幂函数的概念 形 如 ________ 的 函 数 叫 做 幂 函 数 , 其 中 ________ 是 自 变 量,________是常数.
第二章 第4讲
第4页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
幂函数与指数函数有何不同?y=(x+1)3,y=x3-1,y = x是幂函数吗?
当x=-2ba时,函数有最大值________
(-2ba,4ac4-a b2)
函数的
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
4ac4-a b2一定是函数y=ax2+bx+c(a≠0)的最值吗?
第二章 第4讲
第二章 第4讲
第11页
金版教程 ·高三数学
核心要点研究 课前自主导学
核心要点研究
课课精彩无限
经典演练提能
限时规范特训
例1 [2013·苏州调研]已知函数f(x)=(m2-m-1)xm2+
m-3是幂函数,且x∈(0,+∞)时,f(x)是增函数,则m的
值为( )
A.-1
B.2
C.-1或2
D.3
第二章 第4讲
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
1 个必会代表 函数 y=x,y=x2,y=x3,y=x12 ,y=x-1 可做为研究和学习 幂函数图象和性质的代表.
2 种必会方法 1. 函数 y=f(x)对称轴的判断方法 对于二次函数 y=f(x)对定义域内所有 x,若有 f(x1)=f(x2), 那么函数 y=f(x)的图象关于 x=x1+2 x2对称. 2. 对于二次函数 y=f(x)对定义域内所有 x,都有 f(a+x)=f(a -x)成立的充要条件是函数 y=f(x)的图象关于直线 x=a 对 称(a 为常数).
1. 理解并掌握二次函数的定义、图象及性质. 2. 会求二次函数在闭区间上的最值. 3. 能用二次函数、一元二次方程及一元二次不等式之间的 联系去解决有关问题.
4. 了解幂函数的概念;结合函数y=x,y=x2,y=x3,y =1x,y=x21 的图象,了解它们的变化情况.
第二章 第4讲
第9页
金版教程 ·高三数学
第二章 第4讲
第10页
金版教程 ·高三数学
课前自主导学 核心要点研究 课课精彩无限 经典演练提能 限时规范特训
3个熟知规律 1. 在研究一元二次方程根的分布问题时,常借助于二次函 数的图象数形结合来解,一般从四个方面分析:①开口方向; ②对称轴位置;③判别式;④端点函数值符号. 2. 在研究一元二次不等式的有关问题时,一般需借助于二 次函数的图象、性质求解. 3. 研究二次函数图象要结合二次函数对应方程的根及对应 二次不等式的解集来确定图象形状.
相关文档
最新文档