地质吸附剂对萘的吸附与解吸行为研究

合集下载

新型生物炭对废水中难降解有机污染物去除的研究进展

新型生物炭对废水中难降解有机污染物去除的研究进展

第29卷第6期江苏理工学院学报JOURNAL OF JIANGSU UNIVERSITY OF TECHNOLOGY Vo l.29,No.6 Dec.,20232023年12月随着工业的发展,含有难降解的、持久性有机污染物(POPs)的工业废水越来越多,传统的混凝反应沉淀等方法,已不能去除这类有机污染物。

采用操作简便、能耗低、环境友好的新型生物炭材料通过吸附-催化等作用降解有机污染物,是近年来新出现的处理技术[1-4]。

采用固体废弃物制备的新型生物炭具有成本低、孔隙率高、比表面积大、官能团丰富和电导率高等优点,具有较强的吸附和催化能力。

新型生物炭的制备原料通常是废弃物,这些原料特点是易得、成本低、可持续供给,能实现废弃生物质的资源化利用,从而降低废水处理成本。

与商业活性炭相比,采用废弃物做原料制备的新型生物炭材料不仅成本低,且对某些有机物,如氟喹诺酮、聚乙烯醇、苯酚、吡虫啉等的去除具有特异性[5]。

本文介绍了以污泥、厌氧发酵的沼渣、农林废弃物、食品废弃物、家禽粪污、含金属废弃物等固体废弃物为原料,制备得到的污泥基生物炭、沼渣生物炭、生物质基生物炭、铁负载生物炭等新型材料,对新型生物炭的制备工艺、结构和理化性质、吸附-催化应用等方面进行概述和总结,最后提出展望。

1制备生物炭的原料1.1污泥基生物炭污泥基生物炭是以生化污泥或工业污泥为原料制备的生物炭。

生化污泥是城镇污水厂的副产物,含有机物多,以及无机盐和少量重金属等,含氮量显著高于其他类型污泥[6]。

由于有机物含量多,因此以生化污泥为原料制备的生物炭通常为具有较大比表面积的多孔材料。

生化污泥中含有Fe、Ca、Al等多种金属元素,制备成的生物炭具有金属相结构和多种催化活性位点[7],可作为催化剂新型生物炭对废水中难降解有机污染物去除的研究进展耿子韬1,戴雅2,唐悦1,程洁红1(1.江苏理工学院资源与环境工程学院,江苏常州213001;2.杭州上拓环境科技股份有限公司,浙江杭州311100)摘要:利用固体废弃物制备的新型生物炭比表面积大、孔隙结构好,具有吸附和催化能力,可用在废水处理中,尤其是可去除难降解的有机污染物。

分子筛吸附分离2_6_二甲基萘_孙绪江

分子筛吸附分离2_6_二甲基萘_孙绪江

分子筛吸附分离2,6二甲基萘孙绪江 张 军 齐彦伟(天津石化公司研究所,300271)以C10重芳烃为原料,通过分离得到2,6二甲基萘馏分,再经吸附分离的方法从甲基萘异构体中分离提纯2,6二甲基萘。

关键词:2,6二甲基萘 吸附分离 C10重芳烃 C10重芳烃是石油化工中的副产品,我国产量为20万t/a左右。

目前只有少部分得到开发利用,分成萘、均四甲苯和高芳溶剂等。

许多高附加值组分如甲基萘、2,6二甲基萘(2,6DMN)等都没有得到开发应用。

尤其是2,6DM N,它是制备高性能工程塑料聚萘二甲酸乙二醇酯(PEN)最直接的原料,PEN的耐热性、机械性、光学性等都优于目前普遍使用的聚对苯二甲酸乙二醇酯[1,2],已引起了人们的广泛重视,因此如何廉价地获得2,6DMN已成为目前重要的课题。

2,6DM N的提纯精制是比较困难,到目前为止国内很少有人从事这方面的研究[3],而国外已有多家公司从事此项研究,有的已工业化。

本文利用吸附分离与结晶相结合的工艺分离精制2,6 DM N,得到纯度>99.0%的产品。

1 实 验1.1 精 馏C10重芳烃中除2,6DM N外,还含有其异构体,它们的物理特性见表1。

表1 原料组分的物理特性序 号组 分沸点/℃熔点/℃12,6DM N262.011222,7DM N262.39832,3DM N269.210541,7DM N262.7-1451,3DM N264.8-4.261,6DM N265.7-1671,4DM N265.0 6.081,5DM N269.18291,2DM N271.4-3.5 由表1可见,2,6DM N及其异构体之间熔点差小,沸点差更小[4],而且2,6DM N与其异构体易形成低共熔混合物,它不能用精馏或结晶法来分离,因此在含有42%2,6DM N;58%2,7DMN低共熔物沉淀之前,在此体系内只有少量2,6DMN结晶出来[2,5]。

根据2,6DMN及其异构体组成及特性,本文采用精密(高效)精馏分离C10重芳烃,得到255~275℃富DM N馏分,作为吸附分离的原料。

污染环境中萘的修复技术研究进展

污染环境中萘的修复技术研究进展

污染环境中萘的修复技术研究进展钱翌;谢晓梅【摘要】综述了污染环境中萘的物理修复、化学修复、植物修复和微生物修复技术,并阐述了各修复技术的原理、效能、影响因素及优缺点,重点论述了微生物修复技术的降解机理和影响因素,并展望了萘修复技术的发展方向。

%The remediation technologies of naphthalene in contaminated environment have been comprehen-sively summarized,including physical remediation,chemical remediation,phytoremediation,and microbial reme-diation.In allusion to various technologies,the principle,efficacy,effect factors,merits and demerits are intro-duced,especially the degradation mechanism and effect factors of microbial remediation technologies.An outlook on developing trend of naphthalene remediation technologies is also proposed.【期刊名称】《化学与生物工程》【年(卷),期】2015(000)002【总页数】7页(P1-7)【关键词】萘;污染环境;物理修复;化学修复;植物修复;微生物修复【作者】钱翌;谢晓梅【作者单位】青岛科技大学环境与安全工程学院,山东青岛 266042;青岛科技大学环境与安全工程学院,山东青岛 266042【正文语种】中文【中图分类】X131.3萘[1]是简单多环芳烃的代表物,具有“三致”效应,广泛存在于环境中,主要分布在大气、土壤、水体和动植物中。

吸收解吸实验

吸收解吸实验

化工原理课程实验报告L K —以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。

若气液相平衡关系遵循享利定律:A A Hp C =,则:l g G HK k K 111+= lg L k k H K 11+= (3-24)C A1,F L图3-10 双膜模型的浓度分布图 图3-11 填料塔的物料衡算图 当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。

本实验采用转子流量计测得CO2、空气和水的流量。

根据实验条件(温度和压力)折算为实际流量,最后按有关公式换算成CO2、空气和水的摩尔流量。

填料塔物料衡算如图3-11所示。

气体校正公式:v =√ρ₀ρ (3-26)式中:V 。

——流量计读数;V ——被测流体实际流量;ρ₀,ρ——标定流体和被测流体在标定状态(T 。

,p 。

)下的密度。

测定塔顶和塔底液相组成C A1和C A2,利用滴定法测定吸收液浓度,根据吸收液消耗盐酸体积量可计算塔底吸收液浓度:C A1=2C Ba(OH)2V Ba(OH)2−C HCl V HCl2V 溶液(3-27)吸收剂(水)中含有少量的二氧化碳,根据吸收剂(水)滴定消耗盐酸体积量可计算出塔顶吸收剂(水)中CO ,浓度为:dh相 界 面距离液 膜气膜浓度图1 二氧化碳吸收与解吸实验装置流程示意图1-CO2钢瓶;2-减压阀;3-CO2流量计;4-吸收风机;5-吸收塔空气流量计;6-吸收水泵;7-吸收塔水流量计;8-吸收尾气传感器;9-吸收塔;10、15-液封;11-解吸液罐;12-解吸尾气传感器;13-吸收液罐;14-解吸塔;16-压差计;17-解吸水泵;18-解吸塔水流量计;19-解吸风机;20-解吸塔空气流量计; 21-空气旁路调节阀;22-π型管。

萘和p,p′-DDE在典型包气带介质上的吸附动力学及吸附-解吸特征

萘和p,p′-DDE在典型包气带介质上的吸附动力学及吸附-解吸特征

增大由 44 %降至 1 6 .9 . %。两者解吸率都 和 呈负相关关 系。 0
关键词 : ; ,'D E 吸附 ; 萘 P p- D ; 解吸 ; 土壤 ; 包气带 中图分类号 : 1 3 X3- 1 文献标志码 : A 文章编号 :6 2 24 ( 1 】 — 2 5 0 17 — 0 32 0 1 7— 8 sa or i n n tc nd r to De o pton Cha a t r sis o So p i n- s r i r c e itc fNap ha e nd P, ht l ne a P -DDE n t pia i he Ty c l M e i fVa s ne d a o do eZo
e h t h r r e e a r c s e v le n t e s r t n T e n n l e rs r t n- e o p in p o e s so a hh ln n , DDE d t a e ewe e s v r p o e s si ov d i o p i . t l n h o h o - i a o p i d s r t r c se fn p t ae ea d P P 一 n o o c u db e c b d b e F e n l h mo e n e r o p in p o e s sw r o l e e sb e Du ed f r n ei y r p o ii , h o l ed s r e yt r u d i d l dt i r t r c s e e en t u l r v ri l . et t i ee c h d h b c t t e i h c a h s o f y oh n o y
cnrtn. h rt nknt s f a h a n n , - D ol o b rpr t db y re(5 kn t q ao , hc d a— et i sT e o i ie c p t l e dP D Ecud t e o elft y n dr< ) ieceut n w i i i t ao sp o i on h e a P n p y ie a o i i hn c

吸附分离技术研究进展

吸附分离技术研究进展

吸附分离技术研究进展吸附分离技术是指将流动相(气体或液体)与具有较大表面积的多孔固体颗粒相接触,流动相的一种或多种组分选择地吸附或持留于顺粒微孔内,从而达到分离目的的方法。

为了回收该组分和吸附剂的净制,作为吸附剂的固体颗粒需要再生,吸附和再生构成吸附分离的循环操作。

常用的吸附剂包括硅胶、氧化铝、活性炭、碳分子筛、沸石分子筛等[1]。

吸附是一表面现象,在流体(气或液)与固体表面(吸附剂)相接触时,流固之间的分子作用引起流体分子(吸附质)浓缩在表面。

对一流体混合物,其中某些组分因流固作用力不同而优先得到浓缩,产生选择吸附,实现分离。

吸附分离过程依据流体中待分离组分浓度的高低可分为净化和组分分离,一般以质量浓度10%界限[2],小于此值的称为吸附净化。

吸附是自发过程,发生吸附时放出热量,它的逆过程(脱附)是吸热的,需要提供热量才能脱除吸附在表面的吸附分子。

吸附时放出热量的大小与吸附的类型有关:发生物理吸附时,吸附质吸附剂之间的相互作用较弱,吸附选择性不好,吸附热通常是在吸附质蒸发潜热的2~3倍范围内,吸附量随温度升高而降低;而发生化学吸附时,吸附质吸附剂之间的相互作用强,吸附选择性好且发生在活性位上,吸附热常大于吸附质蒸发潜热的2~3倍。

在吸附分离技术的实际应用中,吸附剂要重复使用,吸附与脱附是吸附分离过程的必要步骤。

吸附剂脱附再生的实现方式主要有两种:提高吸附剂温度和用低吸附质浓度的流体。

吸附剂的性能决定着吸附分离技术的应用,因此吸附剂的开发一直是吸附分离技术的研发重点。

从含CO和N2的气体混合物中分离出CO,或从烯烃和烷烃气体混合物中分离出烯烃,用一般的吸附剂无法实现,因这些待分的物质性质相近,在吸附剂上有着相近的吸附容量,选择性差。

如果利用CO和烯烃分子都有л键和络合吸附具有化学吸附的专一性的特性,就可能开发出具有选择性吸附CO 和烯烃的专用吸附剂,多年来在这方面的研究开发取得了不少的结果[3-6]。

EDTA-LDH

第43卷第1期2024年1月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.1January,2024EDTA-LDH /zeolite 制备及其对重金属离子的吸附谢修鑫1,2,廖立兵1,2,雷馨宇1,2,王丽娟1,2,唐晓尉1,2(1.中国地质大学(北京)材料科学与工程学院,非金属矿物与固废资源材料化利用北京市重点实验室,北京㊀100083;2.中国地质大学(北京)材料科学与工程学院,地质碳储与资源低碳利用教育部工程研究中心,北京㊀100083)摘要:用水热法和焙烧还原法两步合成了乙二胺四乙酸-水滑石/沸石(EDTA-LDH /zeolite)复合材料,并将其用于去除水溶液中的Cd 2+㊁Pb 2+㊁Cu 2+,系统研究不同条件下EDTA-LDH /zeolite 对单一及混合重金属离子溶液中Cd 2+㊁Pb 2+㊁Cu 2+的吸附效果与吸附机制㊂结果表明,当EDTA-LDH /zeolite 投加量为0.05g㊁重金属离子浓度为1500mg /L㊁pH 值为6.5㊁吸附时间为24h 时,EDTA-LDH /zeolite 吸附性能最佳㊂重金属离子间存在竞争吸附,EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+的最大吸附容量分别为65.33㊁98.35和108.51mg /g㊂去除过程中沉淀作用㊁表面络合㊁螯合反应等多种机制协同作用,去除行为均符合Langmuir 等温模型与拟二阶动力学模型㊂关键词:LDH;沸石;EDTA;重金属离子;吸附性能中图分类号:O647.3㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)01-0370-13Preparation of EDTA-LDH /Zeolite and Its Adsorption of Heavy Metal IonsXIE Xiuxin 1,2,LIAO Libing 1,2,LEI Xinyu 1,2,WANG Lijuan 1,2,TANG Xiaowei 1,2(1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes,School of Materials Science and Technology,China University of Geosciences (Beijing),Beijing 100083,China;2.Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources,School of Materials Science and Technology,China University of Geosciences (Beijing),Beijing 100083,China)Abstract :EDTA-LDH /zeolite composite material was synthesized in two steps by hydrothermal and reconstruction method and used for the removal of Cd 2+,Pb 2+,and Cu 2+from aqueous solution.The adsorption effect and mechanism of EDTA-LDH /zeolite on Cd 2+,Pb 2+and Cu 2+in single and mixed heavy metal ion solutions under different conditions were systematically investigated.The results show that the best adsorption performance of EDTA-LDH /zeolite is achieved when the dosage of EDTA-LDH /zeolite is 0.05g,the concentration of heavy metal ions is 1500mg /L,the pH value is 6.5,and the adsorption time is peting adsorption between heavy metal ions,the maximum adsorption capacities of EDTA-LDH /zeolite for Cd 2+,Pb 2+,and Cu 2+are 65.33,98.35,and 108.51mg /g,respectively.During the removal process,various mechanisms such as precipitation,surface complexation,and chelation work synergistically.The removal behavior of EDTA-LDH /zeolite are all consistent with Langmuir isotherm model and pseudo second-order kinetic model.Key words :LDH;zeolite;EDTA;heavy metal ion;adsorption performance 收稿日期:2023-07-24;修订日期:2023-09-10基金项目:国家自然科学基金重点项目(41831288)作者简介:谢修鑫(1998 ),男,硕士研究生㊂主要从事黏土矿物的研究㊂E-mail:xiexiuxin19@通信作者:廖立兵,博士,教授㊂E-mail:clayl@㊂0㊀引㊀言水体中的重金属污染问题一直受到广泛的关注,重金属具有生物累积性和毒性,不仅会对水体环境造成严重破坏[1],还会危害人体健康㊂其中,镉㊁铅㊁铜污染程度较重,对环境影响更大,通过多种途径被人体摄入后,轻则引起关节痛等症状,重则引起肝肾功能异常㊁癌症㊁精神疾病等[2-4]㊂重金属污染已成为严重的环境问题㊂去除水体中重金属的方法主要包括化学沉淀㊁离子交换㊁膜过滤㊁电化学方法㊁吸附法等[5]㊂化学沉淀法会消耗大量化学试剂,后续处理成本高昂[5];离子交换法无法应用于高浓度的污水,离子交换材料容易污㊀第1期谢修鑫等:EDTA-LDH/zeolite制备及其对重金属离子的吸附371染溶液[6];膜过滤方法需定期维护更换过滤膜,并且过滤膜造价较高,易受污染[7];电化学方法能耗较高,不适用于大规模废水处理㊂吸附法具有多功能性㊁高效性㊁操作简单和成本低廉的优点,因而被广泛应用[8]㊂常用的吸附剂有天然材料及其衍生物㊁碳吸附剂㊁介孔硅基材料等[9]㊂由于吸附场景的复杂性,许多吸附剂的吸附能力㊁生产成本等方面不能满足需求,因此需要开发新型吸附材料,以满足不同的需求㊂水滑石类材料是一类阴离子型层状化合物,也被称为层状双金属氢氧化物(layered double hydroxide, LDH),由带负电荷的层间阴离子和带正电荷的金属氢氧化物层板构成[10]㊂LDH的结构式为[M2+1-x㊃M3+x㊃(OH)x-2(A n-)x/n]㊃m H2O,其中M2+为二价金属阳离子,M3+为三价金属阳离子,A n-表示层间阴离子,x表示M3+/(M2++M3+)的摩尔比,范围为0.17<x<0.33,m表示层间水分子数㊂化合物中的M2+和M3+可以被其他具有相同价态和相似半径的金属阳离子取代,形成不同的LDH[11]㊂主层板基本单元为金属(氢)氧八面体,具体为M2+或M3+位于八面体中心,羟基位于八面体的六个顶点上,相邻两个八面体之间通过共边相互联结成层,层与层之间通过氢键结合[12]㊂LDH由于其板层离子的可调控性与层间阴离子的可变性,因而具有一些独特的性质(酸碱性㊁结构记忆效应㊁高比表面积㊁层间阴离子交换能力等),尤其在吸附方面,水滑石表现出巨大的潜力[13]㊂LDH常被用于吸附阴离子污染物,但原始LDH对重金属的吸附能力较弱㊂为了解决这一问题,可以在LDH层间引入具有特定功能的基团㊂通常采用有机阴离子(如乙二胺四乙酸㊁己二酸㊁琥珀酸㊁酒石酸盐㊁腐殖酸㊁柠檬酸盐)插层LDH,提高水滑石的吸附能力[14-17]㊂这些有机阴离子的官能团(如 SH㊁ COOH和 NH2)含有许多配位原子,可以提供电子对,使有机阴离子与重金属离子反应形成配合物[18]㊂乙二胺四乙酸(EDTA)含有羟基㊁羧基和氨基官能团,可与Cu2+㊁Cd2+㊁Pb2+㊁Ca2+㊁Mn2+等多种重金属螯合,形成金属-EDTA稳定配合物,因而常被用作吸附剂的改性材料[19]㊂Kameda等[20]将CuAl-CO3-LDH煅烧得到CuAl氧化物,然后在EDTA溶液中重构得到CuAl-EDTA-LDH,发现其对溶液中Y3+的吸附能力较好,吸附迅速,吸附机制包括EDTA的螯合作用等㊂此外,Kameda等[21]用共沉淀法制备了EDTA和TTHA插层的LiAl-LDH (EDTA-LDH㊁TTHA-LDH),并研究了其对水溶液中Nd3+和Sr2+的吸附能力与吸附机制㊂但合成的插层LDH材料容易团聚,从而降低了对重金属的吸附能力㊂将LDH生长在基体上可以阻碍LDH的聚集,提高LDH的分散性,增加吸收位点,提高LDH的吸附能力[22],但目前关于此类材料的研究较少,而且已制备的此类材料对重金属的吸附能力有待进一步提高㊂沸石是一种成本低廉的天然矿物,离子交换能力强,比表面积大,可以作为LDH的生长基体,充分分散LDH㊂本文用水热法将LDH负载于沸石基体上合成LDH/zeolite材料,通过焙烧还原法将EDTA引入LDH/ zeolite中,制备EDTA-LDH/zeolite复合材料并系统研究其对水中Cd2+㊁Pb2+㊁Cu2+单一污染物以及三者混合污染物的吸附能力及吸附机理㊂1㊀实㊀验1.1㊀原材料原材料包括:六水硝酸镁㊁九水硝酸铝㊁碳酸钠㊁尿素㊁EDTA-2Na㊁氢氧化钠㊁盐酸㊁四水硝酸镉㊁硝酸铅㊁三水硝酸铜㊂所有试剂均是分析纯,并且在没有进一步纯化的情况下使用㊂沸石产自河北围场,为钙型斜发沸石(见图1(a)),粒径为200目(74μm)左右㊂1.2㊀LDH的制备将7.2mmol Mg(NO3)2㊃6H2O㊁3.6mmol Al(NO3)3㊃9H2O在蒸馏水中混合,得到溶液A,将NaOH和Na2CO3按一定的比例配制成混合碱液,得到溶液B㊂将溶液A与B按一定的滴速同时滴入三口烧瓶中,在ZNCL-BS型磁力加热板中剧烈搅拌,控制体系pH值恒定㊂完成滴定后,持续搅拌陈化[23]㊂用蒸馏水洗至中性后在烘箱中烘干,磨细,获得层间为碳酸根的MgAl-CO2-3-LDH,样品记为LDH㊂1.3㊀EDTA-LDH/zeolite的制备将2g沸石置于蒸馏水中搅拌,得到溶液C;将14.4mmol的Mg(NO3)2㊃6H2O㊁7.2mmol的Al(NO3)3㊃9H2O溶解于蒸馏水得到溶液D;将100mmol尿素溶解于蒸馏水,得到溶液E㊂室温条件下将溶372㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷液C㊁D㊁E 混合,充分搅拌后,将混合溶液移入水热反应釜内,在110ħ下反应6h㊂冷却至室温后取出,用蒸馏水冲洗2~3次,干燥,研磨,得到的样品记为LDH /zeolite㊂LDH /沸石对Cd 2+㊁Pb 2+㊁Cu 2+的吸附量为22.18㊁34.24和27.67mg /g㊂在马弗炉中400ħ条件下焙烧LDH /zeolite 4h,所得焙烧产物记作LDO /zeolite,将3g LDO /zeolite 置于0.02mol /L 的EDTA-2Na 溶液中,在80ħ下水浴加热并搅拌4h,停止搅拌后陈化2h㊂用蒸馏水将样品洗至中性,在烘箱中烘干,磨细,所得样品记作EDTA-LDH /zeolite㊂1.4㊀吸附试验1)pH 值对吸附的影响配制浓度为100mg /L 的Cd 2+㊁Pb 2+㊁Cu 2+单一溶液及三者的混合溶液,每种溶液各移取20mL 于离心管内,分别称取0.05g LDH 和EDTA-LDH /zeolite 加入其中,调控pH 值为4.0~6.5,在室温下震荡24h,取出样品过0.22μm 滤膜,测试吸附后溶液的重金属离子浓度㊂2)初始重金属离子浓度对吸附的影响移取20mL 不同重金属离子溶液于离心管中,分别称取0.05g LDH 和EDTA-LDH /zeolite 加入其中,调节pH 值为5.5,在室温下震荡24h,过0.22μm 滤膜,测试吸附后滤液中重金属离子浓度㊂3)接触时间对吸附的影响移取20mL 浓度为100mg /L 的重金属离子溶液于离心管中,分别称取0.05g LDH 和EDTA-LDH /zeolite 加入其中,调控pH 值为5.5,在室温下分别震荡不同时间后取出,取出样品过0.22μm 滤膜,测试吸附后溶液的重金属离子浓度㊂用ICP 测定吸附后溶液的残留重金属含量㊂根据式(1)㊁(2)计算吸附量与去除率㊂q e =(C 0-C e )ˑV m (1)η=C 0-C e C 0ˑ100%(2)式中:q e 为吸附平衡时的吸附量,mg /g;C 0为Cd 2+㊁Pb 2+㊁Cu 2+的初始浓度,mg /L;C e 为吸附平衡时溶液中Cd 2+㊁Pb 2+㊁Cu 2+的浓度,mg /L;V 为溶液体积,L;m 为吸附剂质量,g;η为吸附剂的去除效率,%㊂Freundlich 和Langmuir 模型是描述吸附等温线行为最常用的模型㊂Langmuir 模型方程如式(3)所示,Freundlich 模型方程如式(4)所示㊂C e q e =1bq m +C e q m(3)ln q e =ln K F +ln C e n (4)式中:b 为Langmuir 模型常数,L /mg;q m 为最大吸附容量,mg /g;K F 为Freundlich 吸附系数;n 为Freundlich 吸附常数㊂吸附动力学可以为工艺设计提供必要的参数,有助于理解动态吸附平衡㊂拟一阶动力学模型方程如式(5)所示,拟二阶动力学模型如式(6)所示㊂ln(q e -q t )=ln q e -k 1t(5)t q t =1k 2q 2e +t q e (6)式中:q t 为t 时刻的吸附量,mg /g;t 为反应时间,min;k 1为拟一阶反应速率常数,min -1;k 2为拟二阶反应速率常数,min -1㊂1.5㊀表㊀征采用D8Advances 型X 射线衍射仪分析样品的物相组成以及结晶程度,测试条件:加速电压40kV,扫描范围2θ=5~80ʎ㊂采用MERLIN Compact 型扫描电子显微镜观察样品的形貌和分析样品的表面元素种类,测试条件:加速电压为0.2~30.0kV㊂采用NICOLET iS20型红外吸收光谱仪分析样品官能团,测试条件:㊀第1期谢修鑫等:EDTA-LDH/zeolite制备及其对重金属离子的吸附373扫描次数为64,分辨率为4.0,波长范围为400~4000cm-1,数据间隔为0.482cm-1㊂用ICAP-7600型电感耦合等离子体发射光谱仪测定吸附后溶液的残留重金属含量,测试条件:RF功率为1150W,辅助气流量为0.5L/min,雾化器流量为0.7L/min㊂2㊀结果与讨论2.1㊀XRD、FT-IR分析图1(a)为LDH㊁沸石㊁LDH/zeolite和EDTA-LDH/zeolite复合材料的XRD谱及与钙型斜发沸石㊁MgAl-CO2-3-LDH标准卡的对比,可以明显看出沸石原料为钙型斜发沸石,LDH的衍射峰与标准卡吻合,衍射峰尖锐说明样品结晶度较高㊂XRD谱中未检测到AlOOH㊁MgOOH等杂相,但有少量弱杂峰㊂与沸石的XRD 谱相比,LDH/zeolite和EDTA-LDH/zeolite的XRD谱在2θ=11.78ʎ㊁23.63ʎ㊁35.02ʎ㊁62.21ʎ和65.08ʎ处分别出现了新的衍射峰,与LDH的衍射峰位置相同,说明LDH㊁EDTA-LDH成功地生长在沸石上㊂图1(b)和图1(c)分别为LDH㊁沸石㊁LDH/zeolite和EDTA-LDH/zeolite复合材料的FT-IR谱和400~ 1500cm-1的局部FT-IR谱㊂可以看出,EDTA-LDH/zeolite的谱图上同时存在沸石和EDTA-LDH的特征振动峰,520cm-1属于沸石的Al O Si弯曲振动,1011cm-1属于沸石的Si O弯曲振动,3403cm-1处宽而强的吸收带归属于LDH层内羟基和水分子的拉伸振动,1568cm-1处的吸收带为C O的拉伸振动, 1359cm-1附近的强吸收带是LDH中CO2-3的C O拉伸振动,937cm-1处是Al OH键的振动,549~ 765cm-1附近的宽吸收带对应于Mg O键和Al O键的拉伸振动㊂EDTA-LDH/zeolite1359cm-1处的吸收峰基本消失,而1606和1413cm-1处出现COOH对称和不对称拉伸振动峰,说明EDTA进入LDH层间或吸附于LDH表面[24]㊂图1㊀LDH㊁沸石㊁LDH/zeolite和EDTA-LDH/zeolite的XRD谱㊁FT-IR谱(4000~400cm-1)和FT-IR放大谱(1500~400cm-1)Fig.1㊀XRD patterns,FT-IR spectra(4000~400cm-1)and FT-IR(1500~400cm-1)amplified spectra of LDH,zeolite,LDH/zeolite and EDTA-LDH/zeoliteLDH㊁沸石㊁LDH/zeolite和EDTA-LDH/zeolite的SEM照片如图2所示㊂从图2(a)可以看出LDH为几十到几百纳米的纳米片,形状不规则,松散堆叠在一起㊂图2(b)显示沸石呈不规则块状,表面有不规则的细小颗粒㊂从图2(c)可以看出,LDH/zeolite表面呈花状结构,LDH片垂直沸石表面生长,形成松散的花状团聚体㊂除花状结构外,可见六边形片状LDH晶体,大小为2~5μm,说明LDH结晶性较好㊂EDTA-LDH/ zeolite(图2(d))与LDH/zeolite相比,表面的花状结构消失,LDH片方向也由垂直沸石表面变为平行于沸石表面,这可能是由于焙烧过程中LDH的层状结构坍塌,还原过程中LDH的晶片方向发生改变㊂2.2㊀对单一金属离子的吸附2.2.1㊀pH值对吸附的影响LDH在溶液pH值低于4时会溶解,Cd2+在较高pH条件下会生成沉淀,因此确定试验pH值为4.0~ 6.5㊂图3为LDH和EDTA-LDH/zeolite复合材料分别对Cd2+㊁Pb2+㊁Cu2+的吸附图㊂可以看出,在单一重金374㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷属离子体系中,LDH与EDTA-LDH/zeolite对Cd2+㊁Pb2+㊁Cu2+的吸附量均随着pH值的增加而增加㊂pH值较低时,LDH和EDTA-LDH/zeolite对重金属离子的吸附量较低,这是由于较强酸性条件下,溶液中存在大量H+,使LDH表面出现质子化反应,并产生强烈的静电斥力,使吸附量相对较低[25]㊂EDTA以H4Y的形态存在,对重金属离子的螯合作用较弱[26]㊂随着溶液pH值的增加,H+含量降低,由于强的表面配位㊁静电力作用和螯合作用,LDH和EDTA-LDH/zeolite的吸附量迅速上升,在pH=6.5时达到最大,此时LDH对Cd2+㊁Pb2+㊁Cu2+的吸附量分别为23.1㊁39.75和27.25mg/g,EDTA-LDH/zeolite对Cd2+㊁Pb2+㊁Cu2+的吸附量分别为33.68㊁35.51和34.13mg/g㊂EDTA-LDH/zeolite对三种重金属的吸附量接近,对Cd2+㊁Cu2+的吸附量高于LDH,这是因为EDTA-LDH/zeolite去除重金属的主要机制是LDH层间EDTA的螯合作用与沸石的离子交换作用,去除能力较强㊂LDH由于层间含有碳酸根,在表面容易诱导生成K sp极小的碱式碳酸铅(Pb3(CO3)2(OH)2)沉淀,因此LDH对Pb2+的吸附量高于不含碳酸根的EDTA-LDH/zeolite[27-28]㊂Pb3(CO3)2(OH)2的K sp较Cd2+㊁Cu2+的碳酸盐小,更容易形成沉淀,因此对Pb2+的吸附量高于Cd2+和Cu2+㊂图2㊀LDH㊁沸石㊁LDH/zeolite和EDTA-LDH/zeolite的SEM照片Fig.2㊀SEM images of LDH,zeolite,LDH/zeolite and EDTA-LDH/zeolite图3㊀不同pH值条件下LDH㊁EDTA-LDH/zeolite对Cd2+㊁Pb2+和Cu2+的吸附Fig.3㊀Adsorption of Cd2+,Pb2+and Cu2+by LDH and EDTA-LDH/zeolite at different pH conditions2.2.2㊀重金属离子初始浓度对吸附的影响改变Cd2+㊁Pb2+和Cu2+的初始浓度,待反应达到吸附平衡后测定Cd2+㊁Pb2+和Cu2+平衡浓度,分析平衡浓㊀第1期谢修鑫等:EDTA-LDH/zeolite制备及其对重金属离子的吸附375度与吸附量的关系,得到LDH和EDTA-LDH/zeolite对Cd2+㊁Pb2+和Cu2+的吸附等温线,如图4所示㊂随着Cd2+㊁Pb2+和Cu2+浓度增加,LDH对Cd2+㊁Pb2+和Cu2+的吸附量随之增加并趋于稳定㊂LDH在Cd2+㊁Pb2+和Cu2+的平衡浓度为890.00㊁179.47和812.1mg/L时达到吸附饱和,最大吸附量分别为44.00㊁87.63和75.87mg/g; EDTA-LDH/zeolite在Cd2+㊁Pb2+㊁Cu2+平衡浓度为838.93㊁754.13和732.27mg/L时达到吸附饱和,最大吸附量分别为65.33㊁98.35和108.51mg/g㊂EDTA-LDH/zeolite对Cd2+㊁Pb2+㊁Cu2+的最大吸附量均高于LDH㊂图4㊀LDH和EDTA-LDH/zeolite对Cd2+㊁Pb2+和Cu2+的吸附等温线Fig.4㊀Adsorption isotherms of LDH,EDTA-LDH/zeolite for Cd2+,Pb2+and Cu2+LDH和EDTA-LDH/zeolite吸附Cd2+㊁Pb2+和Cu2+的Langmuir拟合结果见图5㊂图5㊀LDH和EDTA-LDH/zeolite吸附Cd2+㊁Pb2+和Cu2+的Langmuir拟合结果Fig.5㊀Langmuir fitting results of LDH and EDTA-LDH/zeolite for Cd2+,Pb2+and Cu2+LDH㊁EDTA-LDH/zeolite吸附Cd2+㊁Pb2+和Cu2+的Langmuir和Freundlich等温模型拟合参数见表1㊂由表1可知,LDH㊁EDTA-LDH/zeolite吸附Cd2+㊁Pb2+和Cu2+的Langmuir模型拟合相关系数R2高于Freundlich 模型,说明三种重金属在LDH和EDTA-LDH/zeolite上的吸附均主要为单层吸附㊂Langmuir模型拟合的LDH和EDTA-LDH/zeolite对三种重金属的最大理论吸附量与试验结果相近㊂2.2.3㊀接触时间对吸附的影响在Cd2+㊁Pb2+和Cu2+的浓度为100mg/L,吸附剂用量为0.05g,溶液pH=6.5的条件下,研究接触时间对LDH和EDTA-LDH/zeolite吸附重金属的影响,结果如图6所示㊂由图可知,LDH和EDTA-LDH/zeolite对Cd2+㊁Pb2+和Cu2+的吸附,前期较为迅速,随着时间的延长,吸附量缓慢增加,直至吸附达到平衡㊂LDH对Cd2+㊁Pb2+和Cu2+的吸附速率为Pb2+>Cu2+>Cd2+,分别在12㊁24㊁48h达到吸附平衡,此时吸附量分别为15.78㊁39.96和19.49mg/g;EDTA-LDH/zeolite对Cd2+㊁Pb2+和Cu2+的吸附平衡时间相同,均为12h,吸附量分别为36.23㊁38.36和37.67mg/g㊂LDH对Cd2+的吸附平衡时间较长,反应速率较低,这可能是由于LDH去除Cd2+的机理主要是类质同象替代,需要较长时间达到反应平衡[29];LDH对Pb2+的吸附速376㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷率最大,这是因为Pb 2+在溶液中快速扩散,与吸附剂外表面接触并被吸附,同时与层间CO 2-3作用,在LDH 表面㊁层间形成诱导沉淀[30]㊂表1㊀LDH ㊁EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+和Cu 2+的Langmuir 和Freundlich 等温模型拟合参数Table 1㊀Fitting parameters of Langmuir and Freundlich isothermal models for LDH ,EDTA-LDH /zeoliteadsorption of Cd 2+,Pb 2+and Cu 2+Material Pollutant Langmuir isotherm Freundlich isotherm q m /(mg㊃g -1)b R 2n K F /(mg㊃g -1)R 2LDHCd 2+45.070.00510.9774 2.3552 2.40030.9561Pb 2+87.710.07880.99998.160045.2450.5986Cu 2+78.10 1.09840.9933 2.4697 5.73390.9022EDTA-LDH /zeolite Cd 2+65.620.00840.9929 2.9248 6.33820.9809Pb 2+100.630.00860.9975 2.2472 5.04920.9512Cu 2+109.160.00500.9962 2.1782 5.33720.9522图6㊀LDH 和EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+和Cu 2+的吸附动力学曲线Fig.6㊀Adsorption kinetic curves of LDH and EDTA-LDH /zeolite for Cd 2+,Pb 2+and Cu 2+㊀㊀LDH 和EDTA-LDH /zeolite 对Cd 2+(a)㊁Pb 2+(b)和Cu 2+(c)的拟二阶动力学拟合结果见图7㊂图7㊀LDH 和EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+和Cu 2+的动力学拟合结果Fig.7㊀Kinetic fitting results of LDH and EDTA-LDH /zeolite adsorption of Cd 2+,Pb 2+and Cu 2+为了研究Cd 2+㊁Pb 2+和Cu 2+在LDH 和EDTA-LDH /zeolite 上的吸附动力学,选择拟一阶和拟二阶动力学模型拟合试验结果,拟合相关参数见表2㊂由表可知,拟二阶动力学模型的拟合程度优于拟一阶动力学,线性相关系数R 2更高,理论吸附量接近试验数据,说明LDH 和EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+和Cu 2+的吸附过程主要受化学吸附的影响㊂对比发现,EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+和Cu 2+的K 2值均大于LDH,说明EDTA-LDH /zeolite 的反应速率更高,反应平衡时的吸附量也更大,可能是因为EDTA-LDH /zeolite第1期谢修鑫等:EDTA-LDH /zeolite 制备及其对重金属离子的吸附377㊀中的EDTA 的螯合作用和沸石的离子交换作用提高了对重金属的吸附能力㊂表2㊀LDH ㊁EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+和Cu 2+的拟一阶和拟二阶动力学模型参数Table 2㊀Fitting parameters of pseudo-first and pseudo-second order kinetic models for LDH ,EDTA-LDH /zeoliteadsorption of Cd 2+,Pb 2+and Cu 2+Material Pollutant Pseudo-first order model Pseudo-second order model k 1/min -1q e (cal)/(mg㊃g -1)R 2k 2/min -1q e (cal)/(mg㊃g -1)R 2LDHCd 2+0.048816.320.93900.001717.130.9712Pb 2+0.166939.850.95970.020339.880.9985Cu 2+0.096820.490.96280.076520.350.9993EDTA-LDH /zeolite Cd2+0.169836.140.94830.092236.22 1.0000Pb 2+0.110138.390.91130.062738.280.9998Cu 2+0.108937.710.83350.085037.63 1.0000当EDTA-LDH /zeolite 投加量为0.05g㊁重金属离子浓度为1500mg /L㊁pH 值为6.5㊁吸附时间为24h时,EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+的最大吸附量分别为65.33㊁98.35和108.51mg /g㊂2.3㊀对混合金属离子的吸附2.3.1㊀pH 值对吸附的影响图8是不同pH 条件下LDH 和EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+混合液中各金属离子的吸附量㊂LDH 和EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+的吸附量均随着pH 升高而增加㊂在pH =4.0~6.5时,LDH 对Cu 2+的吸附量与去除率始终高于Cd 2+㊂在pH =4.0~4.5时,LDH 对Pb 2+的吸附量与去除率为三者中最低㊂在pH =5.0~6.5时,Pb 2+的吸附量与去除率迅速上升,并高于Cd 2+和Cu 2+㊂在pH =6.5时,LDH 对Cd 2+㊁Pb 2+㊁Cu 2+的吸附量分别为21.09㊁38.52㊁23.41mg /g㊂这是由于在较高pH 下溶液中OH -的含量高,Pb 3(CO 3)2(OH)2的溶度积(K sp )较小,Pb 2+更易与LDH 层间CO 2-3反应,形成沉淀㊂对于同价金属阳离子,离子半径越小,表面电荷密度越大,水合能力越强,因此LDH 对Cd 2+㊁Pb 2+㊁Cu 2+的选择性吸附顺序为Cu 2+>Cd 2+>Pb 2+㊂由图8(b)可知,对在pH =4.0~6.0时,EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+的吸附量随pH 增大急剧增加,在pH >6时吸附趋于平衡,此时溶液中90%以上的Pb 2+㊁Cu 2+被去除,80%以上的Cd 2+被去除㊂在pH =6时,EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+的吸附量分别为33.27㊁37.23和38.53mg /g㊂EDTA-LDH /zeolite 对Cd 2+㊁Cu 2+的吸附量始终高于LDH,而对Pb 2+的吸附量仅在pH =4.0~5.5时大于LDH㊂图8㊀不同pH 值条件下Cd 2+㊁Pb 2+和Cu 2+在LDH 和EDTA-LDH /zeolite 上的吸附Fig.8㊀Adsorption of Cd 2+,Pb 2+and Cu 2+on LDH and EDTA-LDH /zeolite under different pH conditions 2.3.2㊀金属离子初始浓度对吸附的影响不同初始浓度条件下,LDH 和EDTA-LDH /zeolite 对Cd 2+㊁Pb 2+㊁Cu 2+的吸附曲线如图9所示㊂随着金属离子初始浓度的增加,吸附在LDH 和EDTA-LDH /zeolite 上的Cd 2+㊁Pb 2+㊁Cu 2+均显著增加㊂由图9(a)可见,在平衡浓度为0~350mg /L 时,Pb 2+㊁Cu 2+的吸附量迅速增加㊂当溶液中Cu 2+的平衡浓度为261.8mg /L 时,LDH 对Cu 2+的吸附量达到55.30mg /g;当Pb 2+的平衡浓度为255mg /L 时,LDH 对378㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷Pb2+的吸附量达到57.99mg/g;LDH对Cd2+的吸附量增长比较缓慢,当溶液中Cd2+的平衡浓度为255mg/L 时,LDH对Cd2+的吸附量仅为26.40mg/g㊂这可能是LDH对重金属的吸附机理不同,对Pb2+㊁Cu2+的作用机理可能主要是诱导沉淀,而Cd2+的去除主要通过类质同象替代[28,30]㊂LDH对Cd2+㊁Pb2+㊁Cu2+的最大吸附容量分别为40.05㊁61.79和64.16mg/g㊂与单一金属离子体系相比,混合金属离子体系中LDH对Cd2+㊁Pb2+㊁Cu2+的最大吸附量均有所降低㊂混合金属离子体系对Cd2+与Cu2+的吸附影响不大,而Pb2+的吸附受到较大影响,LDH对Pb2+㊁Cu2+的主要吸附机理为沉淀作用,表明Pb2+和Cu2+在吸附位点上存在竞争吸附, Cu2+形成的沉淀物比Pb2+更稳定,因此可以占据更多的点位,吸附量影响相对较小㊂由图9(b)可知,当溶液中重金属离子平衡浓度低于216mg/L时,EDTA-LDH/zeolite对Cd2+㊁Pb2+㊁Cu2+的吸附量随重金属离子浓度增加而迅速提高,当重金属离子平衡浓度在216~790mg/L时,吸附量增长相对缓慢,Cd2+㊁Pb2+㊁Cu2+分别在平衡浓度为865.47㊁787.73和768.27mg/L时达到吸附平衡,此时的最大吸附量分别为55.52㊁84.80和93.12mg/g㊂与单一离子体系相比,EDTA-LDH/zeolite对混合溶液中重金属离子的最大吸附量均有所降低㊂与LDH相比,EDTA-LDH/zeolite对重金属离子的吸附能力明显更强㊂在所有平衡浓度下,EDTA-LDH/zeolite对三种重金属的吸附量大小为Cu2+>Pb2+>Cd2+,这是由于EDTA-LDH/ zeolite主要通过螯合作用吸附重金属,而Cu-EDTA的稳定常数最大,因此优先吸附Cu2+㊂图9㊀Cd2+㊁Pb2+㊁Cu2+在LDH和EDTA-LDH/zeolite上的吸附曲线Fig.9㊀Adsorption curves of Cd2+,Pb2+,Cu2+on LDH and EDTA-LDH/zeolite2.3.3㊀接触时间对吸附的影响图10为反应时间对LDH和EDTA-LDH/zeolite吸附混合溶液中Cd2+㊁Pb2+㊁Cu2+的影响㊂从图10(a)中可以看出,在反应前期(0~2h),LDH对Cd2+㊁Pb2+㊁Cu2+的吸附量随接触时间延长而快速增加,在2h处的吸附量分别为12.13㊁38.21㊁16.29mg/g㊂当接触时间为2~24h时,吸附量与去除率增加逐渐放缓,在24h 处达到吸附平衡㊂LDH吸附Cd2+㊁Pb2+㊁Cu2+的速率为Cu2+>Pb2+>Cd2+,这可能是由于吸附剂吸附位点充足,Cu2+在LDH表面产生络合沉淀,Pb2+与层间碳酸根生成稳定的碱式碳酸铅,而Cd2+主要通过类质同象替代被吸附㊂达到反应平衡时,LDH对Cd2+㊁Pb2+㊁Cu2+的吸附量分别为12.66㊁31.09和21.41mg/g, LDH对三种重金属离子的吸附量顺序为Pb2+>Cu2+>Cd2+㊂由图10(b)可见,前1h,EDTA-LDH/zeolite对Cd2+㊁Pb2+㊁Cu2+的吸附迅速增加,1h的Cd2+㊁Pb2+㊁Cu2+吸附量分别为28.57㊁27.99和29.43mg/g㊂随后EDTA-LDH/zeolite对Cd2+㊁Pb2+㊁Cu2+的吸附量小幅度增加直至达到吸附平衡,平衡时间均为24h㊂此时EDTA-LDH对Cd2+㊁Pb2+㊁Cu2+的吸附量分别为38.17㊁38.82㊁38.1mg/g㊂与LDH及EDTA-LDH相比,EDTA-LDH/zeolite吸附重金属离子的速度与去除率稍低于EDTA-LDH(重金属离子浓度100mg/L),但均远超LDH㊂2.4㊀机理讨论前人研究认为尽管LDH结构层带正电,但依然可以吸附水溶液中的金属阳离子,主要原因可能是局部的高pH值使LDH微溶,释放的碳酸根离子作用于金属阳离子,从而在LDH表面发生诱导沉淀;正电荷结构层吸引氢氧根离子,LDH晶体在水溶液中诱导金属氢氧化物形成[28]㊂同时,附着在表面和边缘的电荷补偿第1期谢修鑫等:EDTA-LDH /zeolite 制备及其对重金属离子的吸附379㊀碳酸根离子也能与金属阳离子接触形成不溶性金属碳酸盐㊂因此,金属阳离子与LDH 的反应可能包括金属氢氧化物沉淀㊁金属阳离子在LDH 表面羟基上的吸附㊁通过阴离子交换或结构分解形成金属碳酸盐沉淀㊂图10㊀Cd 2+㊁Pb 2+㊁Cu 2+在LDH 和EDTA-LDH /zeolite 上的吸附动力学曲线Fig.10㊀Adsorption kinetic curves of Cd 2+,Pb 2+and Cu 2+on LDH and EDTA-LDH /zeolite LDH 对重金属离子的吸附量均随着pH 增加而增加,可能是因为在较高的pH 值下,LDH 表面发生脱质子化,与重金属离子的静电斥力减小,LDH 表面羟基对带正电荷的金属阳离子的吸附增强㊂图11为LDH 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的FT-IR 谱㊂对比图1(b)和图11中LDH 吸附前后的FT-IR 变化可以发现3403㊁1359cm -1处的振动带向低波数移动,说明LDH 表面的羟基与重金属离子发生化学结合形成内球配合物㊂同时一些脱质子羟基(Sur-O-)可通过静电吸引与金属阳离子形成外球配合物㊂M 2+在LDH 上的复合吸附可用式(7)㊁(8)描述[31]㊂Sur-OH +M 2+ңSur-O-M 2+(7)Sur-O -+M 2+ңSur-O M 2+(8)LDH 可以通过形成表面沉淀去除溶液中的Cd 2+㊁Pb 2+和Cu 2+㊂溶液中的Pb 2+首先与表面OH -和CO 2-3发生反应,并破坏部分层结构㊂由于Pb(OH)2(K sp =2.8ˑ10-16)的稳定性相对于PbCO 3(K sp =1.5ˑ10-13)更高,可能主要形成Pb(OH)2㊂Cu(OH)2(K sp =1.6ˑ10-19)的稳定性比CuCO 3(K sp =2.5ˑ10-10)高得多,因此更可能生成Cu(OH)2㊂同样,因为K sp (Cd(OH)2)=3.2ˑ10-14<K sp (CdCO 3)=1ˑ10-12,因此更容易生成Cd(OH)2㊂图12为LDH 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的XRD 谱㊂图12表明LDH 吸附Cd 2+㊁Pb 2+均形成碳酸根沉淀,这可能是因为空气中CO 2溶入水使溶液中碳酸根浓度增加并与Cd 2+㊁Pb 2+反应生成PbCO 3㊁Pb 3(CO 3)2(OH)2和CdCO 3㊂对于Cu 2+,因为Cu(OH)2的K sp 非常小(1.6ˑ10-19),因此先形成明显的Cu(OH)2,后形成Cu 3(OH)2(CO 3)沉淀㊂由图12可见,吸附Cd 2+㊁Pb 2+㊁Cu 2+后的LDH 出现明显的重金属沉淀物相,这表明沉淀作用对LDH 吸附重金属离子起主导作用㊂图11㊀LDH 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的FT-IR 谱Fig.11㊀FT-IR spectra of LDH after adsorption of Cd 2+,Pb 2+and Cu 2+图12㊀LDH 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的XRD 谱Fig.12㊀XRD patterns of LDH after adsorption of Cd 2+,Pb 2+and Cu 2+380㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷前人认为一些阳离子可通过类质同象替代Mg 2+或Al 3+而被去除,但图12未能证实形成了CdAl-LDH㊁CuAl-LDH㊁PbAl-LDH,因此该机理需要进一步研究㊂图13为EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的FT-IR 谱㊂对比图1(b)与图13发现,EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+㊁Cu 2+后FT-IR 谱中1606cm -1处COOH 的振动带向低波数偏移,表明EDTA 参与了对重金属的吸附过程㊂图14为EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的XRD 谱㊂由图14可见,EDTA-LDH /zeolite 通过沉淀作用吸附重金属离子㊂与LDH 相比,EDTA-LDH 去除Cd 2+㊁Pb 2+㊁Cu 2+的能力明显提高(EDTA-LDH 对Cd 2+㊁Pb 2+㊁Cu 2+的最大吸附量分别为106.53㊁110.25和125.48mg /g [32])㊂通过LDH 层间EDTA 的螯合作用,金属离子与EDTA 离子之间形成金属配合物,这些金属配合物被固定在EDTA-LDH 的层间㊂EDTA 分子的四个羧基和两个胺基上的氧有孤对电子,这些孤对电子可以填充在金属离子的空轨道上形成络合物㊂因此,EDTA 具有较强的螯合能力,这也是EDTA 基吸附剂去除重金属离子的主要机理[33]㊂EDTA-LDH /沸石去除Cd 2+㊁Pb 2+㊁Cu 2+的能力较EDTA-LDH 进一步提高,原因可能包括:1)沸石基体使EDTA-LDH 充分分散,暴露出更多吸附位点;2)EDTA-LDH 与沸石间具有协同作用㊂EDTA-LDH 与沸石间存在协同作用是因为EDTA-LDH /沸石对Cd 2+㊁Pb 2+㊁Cu 2+的吸附量明显高于等量EDTA-LDH 和等量沸石对相应重金属离子的吸附量之和(当pH =6时,沸石对Pb 2+㊁Cu 2+的吸附量分别为10.01㊁3.53mg /g [34])㊂EDTA-LDH 与沸石协同作用的方式复杂,比如,LDH 是一种氢氧化物,沸石是一种硅酸盐矿物,二者均具有一定的碱性,EDTA-LDH /沸石进入溶液时,可导致局部pH 值增加,释放的OH -与溶液中的重金属离子结合,形成沉淀析出㊂EDTA-LDH 与沸石间的协同作用方式有待深入研究㊂图13㊀EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的FT-IR 谱Fig.13㊀FT-IR spectra of EDTA-LDH /zeolite after adsorption of Cd 2+,Pb 2+and Cu 2+图14㊀EDTA-LDH /zeolite 吸附Cd 2+㊁Pb 2+㊁Cu 2+后的XRD 谱Fig.14㊀XRD patterns of EDTA-LDH /zeolite after adsorption of Cd 2+,Pb 2+and Cu 2+3㊀结㊀论1)EDTA-LDH /zeolite 对单一溶液中Cd 2+㊁Pb 2+㊁Cu 2+的吸附能力均随pH 值的增大而增大,吸附量在pH =6.5时达到最大,分别为65.33㊁98.35和108.51mg /g㊂EDTA-LDH /zeolite 对几种重金属离子的吸附速率相同,在12h 达到吸附平衡㊂EDTA-LDH /zeolite 对三种重金属离子的去除符合Langmuir 等温吸附模型与拟二阶动力学模型㊂2)EDTA-LDH /zeolite 对混合溶液中Cd 2+㊁Pb 2+㊁Cu 2+的吸附量较单一离子溶液略低,三种金属离子之间存在竞争吸附,EDTA-LDH /zeolite 对三种重金属离子的选择性顺序为Cu 2+>Pb 2+>Cd 2+㊂3)EDTA-LDH /zeolite 对三种重金属离子的去除存在多种机制,主要包括表面络合㊁沉淀反应㊁螯合反应和离子交换㊂。

孔雀石表面丁基黄药吸附和解吸特性研究

孔雀石表面丁基黄药吸附和解吸特性研究任阳光;熊堃【摘要】为确定黄药在孔雀石表面的吸附形式,用剩余浓度法研究了孔雀石表面丁基黄药的吸附和解吸特性.结果表明,孔雀石表面吸附丁基黄药达到饱和所需的搅拌时间为3 min,解吸达到平衡需要的时间为4 min;硫化钠的用量为100 g/t、pH为9、50℃时丁基黄药在孔雀石表面的吸附效果最佳.红外光谱分析表明,黄药在孔雀石表面吸附后生成了黄原酸铜等疏水物质,其吸附形式主要是化学吸附中的离子交换吸附.【期刊名称】《金属矿山》【年(卷),期】2014(000)012【总页数】4页(P112-115)【关键词】孔雀石;解吸;红外光谱;离子交换吸附【作者】任阳光;熊堃【作者单位】中国矿业大学(北京)化学与环境工程学院,北京100083;长安大学地球科学与资源学院,陕西西安710064【正文语种】中文【中图分类】TD923+.13黄药主要用来浮选有色金属硫化矿物,高级黄药亦可用来浮选有色金属氧化矿物。

黄药与有色金属硫化物表面的作用机理主要有以下几种[1]:化学假说、双黄药见解及共吸附假说。

采用黄药直接浮选氧化铜矿,会因黄药吸附层结构松散、易脱落而导致浮选效果不好。

但当氧化铜矿处于硫化钠溶液中时,可吸附HS-或S2-,吸附平衡后,表面被一层CuS覆盖,形成硫化后的氧化铜表面[2],可提高黄药与氧化铜吸附的几率,提高氧化铜矿的回收率。

本文通过孔雀石表面丁基黄药的吸附和解吸特性的研究,为选择孔雀石的最佳浮选条件提供理论依据,并通过红外光谱研究了孔雀石与丁基黄药的作用机理。

1.1 试验材料孔雀石纯矿物取自湖北大冶,纯度为98%,孔雀绿色,结晶形态,含铜54.8%。

经锤碎、手选后再在陶瓷研钵中研磨,研磨后的细粉末用200目的筛子筛分,筛下产物作为试验用矿样。

本试验使用的药剂有:硫化钠(Na2S·9H2O),分析纯,无色四方体结晶,易溶于水;丁基黄药(C4H9OCSSNa),市售化学药剂,有刺激性气味的浅黄色粉末;氢氧化钠,分析纯;硫酸,分析纯。

石油烃类污染物在天然水体中的迁移转化

石油烃类污染物在天然水体中的迁移转化一、绪论石油地质组成复杂,主要包括饱和与不饱和烃、芳烃类化合物、沥青质、树脂类等。

石油的开采、冶炼、使用和运输过程的污染和遗漏事故,以及含油废水的排放、污水灌溉、各种石油制品的挥发、不完全燃烧物飘落等引起一系列石油污染问题。

石油烃是由碳氢化合物组成的复杂混合体,没有明显的总体特征,主要由烃类组成,目前对环境污染构成威胁的主要分为(1)烷烃,可分为直链烃、支链烃和环烃;(2)芳烃、多环芳烃。

石油烃中不同的馏分会对人类和动植物产生不同影响。

当石油类污染发生时,污染物往往不是单一组分,而是多种污染物共存的复合污染,各组份间往往会发生各种相互作用,并对水体的迁移转化过程产生影响,如不同组分在含水层介质的吸附上,往往会发生竞争吸附,从而改变部分组分的迁移性和生物降解特性。

以往对于复合污染物迁移转化研究主要集中在多环芳烃类(芘、萘、菲),以及苯系物(BTE某)的复合污染等,组分之间从分子结构、化学性质、作用机制方面均具有一定的相似性,而对组分种类、理化性质、作用机制差别较大的芳香烃和氯代烷烃复合污染所开展的研究则较少,此类复合污染物对地下水的污染机制和在地下水中的迁移转化机理尚不明确,诸如地下水中多组分竞争吸附规律、含水层介质中有机质对污染物吸附作用机理、污染场地包气带、含水层微生物多样性等。

二、浅层地下水中石油烃污染物迁移转化机理1.迁移转化方式当芳香烃、氯代烷烃污染物进入地下水系统后,所发生的迁移转化作用主要包括对流弥散、吸附、降解、挥发等几个过程。

污染物的迁移转化作用除受自身特性影响外,同时受污染场地的地下水环境因素、地质、水文地质条件等要素的影响。

目前国内外关于有机污染物在地下水中的迁移转化机理研究主要集中在吸附作用和生物降解作用两方面。

弥散迁移,又称水动力弥散,研究单个流体粒子的运动速度偏离于平均渗流速度的效应。

当污染物在地下水中存在浓度梯度时,污染物粒子将受到扩散作用的影响,但与对流作用相比,扩散项通常非常小,只有当流速极低时,扩散作用影响才会显现。

离子强度对土壤与沉积物吸附多环芳烃的影响研究

中 图 分类 号 :xl 1 3. 3 文 献 标 识 码 :A 文 章 编 号 :l 7. l5( 0 6) 50 8 -5 6 22 7 2 0 0 —9 30
表 1 黄 河三角 洲沉 积物与 湿地 土壤 理化性 质
T b e 1 Ba i r p  ̄iso e me tn Yelw i e e t a l scp o e e f di n l s i o rv rd l a
离子 强 度 对 土 壤 与 沉 积物 吸 附 多环 芳 烃 的 影 响研 究
罗 雪梅 ,刘 昌明
环境模 拟 与污染 控制 国家 重点实 验室删 E 师范 大学 环境学 院 ,北京 107 京 85 0
摘要 :以黄河 ■角洲表层沉积物 湿地土壤为对象 ,研究 r离子强度对菲 、苯并[】 j a芘在土壤和沉积物 I 附行为 的影响 。 : 吸
结果表明 :不 同 c z离子强度 下 ,土壤 与沉积物对菲 、苯并[】 a十 a芘的吸附速率均较怏 , 8h吸附能够达到平衡 ,c z 4 a十 离子强度 对土壤和沉积物影响程度不同 ;土壤和沉积物 的吸附等温线均呈线 形 ,能较好地符合线性方程 ,可决系数 在 O 8以 J, . 9 :
P s是 一种疏 水 I AH 生有机 污染 物( O ) H Cs,容易 与天然 颗 粒物 之 间发生 相互 作用 ,P s在吸 附过 AH 程 受 到诸 多 因素 影 响 ,一 旦水 环境 条件发 生改 变 , 对沉 积物 和土壤 吸 附污染 物 的行 为 产生重 要影 响 , 最 终 强 烈 影 响有 机 污 染 物 质 在 环境 中 的迁 移 转 化 和最终 归 宿 。黄河 角 洲 因其地 理位置 优越 ,是环 渤海 重要 的经 济发展 区 ,而 三角 洲 自然 保护 区 ,是 我 国重要 的湿 地之 一 。近 年研究 表 明…,由于 在黄 河流 域 的不 同河 段 均 已受 到 P AHs的污 染 ,导致 黄 河i 角 洲沉积 物 中含 有 P s AH ,主要 为菲 、荧 葸 、 芘 、 和苯 并 [】 【, 主要来 自黄 河j 角洲就 萘 a芘等 2 这 J 地 原 油 污 染 和 黄河 流 域 T 业 或 民用 煤 不 完 全燃 烧 所产 生 的 。因此 ,研究 黄河 三角 洲环境 污染 问题 自 然成 为人 们关注 的课 题 ,这 对保 护黄河 角 洲湿地 生 态系统 ,提高 污染 防治 能力 ,改善环 境质 量具有 重要 意义 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
维普资讯
第2 5卷 第 1期
20 0 6仨




Vo .2 1 5,No 1 .
1 月
ENV R I ON MEN AL CHEMIT T S RY
J n ay 2 0 a u r 0 6
地 质 吸 附剂 对 萘 的 吸 附 与解 吸 行 为 研 究
近年来 ,人们在城市附近的土壤和沉 积物 中发现 ,干酪根和碳黑 ( l kcr n B )类地质吸 Ba a o , C c b 附剂是重要 的土壤有机质组分 ,并可能控制多环芳烃在 土壤 中的迁移过程….干酪根和碳黑在来源、 类型及成熟度上的差异决定其 内部结 构和表面性质有较大 的差别 ,正 由于其结构和性质上 的非均质 性 ,人们对多环芳烃在这类吸附剂上吸附和解吸特性了解甚少. 本研究选用一种低成熟的褐煤 ( 主要成分 为干酪根 ) ,在实验室人工模拟地质演变过程 ,使成熟
q =
为固液两相体系的体积 ,即
为安瓿瓶 中溶液的体积 ,以 L表示 ,该体积是根据溶液的重量计算所得 ,密度取 10 m ~; 为 .g· l
C 一( 一 ) : 吧 + ): 。 C 一( c

式中,

,C 和 q定义同前; 为安瓿瓶 内溶液被吸走 后残 留的溶液体积,以 L表示 ; 。
安瓿瓶 内重新加入的背景溶液的体积 ,以 L 表示;c为达到吸附平衡时的溶液浓度 ,以 g· 。 1。 表示;
c为达到解吸平衡时溶液的浓度,以 I 1 : , 表示. t g·
2 结果 与讨 论
2 1 吸附与解吸等温线 . 吸附与解 吸数据均用统计软件 Ss 1. S S A o )依 Fenlh y  ̄ 00( Y T TC . t r dc 模型进行拟合 ,模型的线 u i
性 因子 n与土壤有机质 的 O C原子 比呈正相关性 ,即随着 O C原子 比的减小非线性增加. / /
在本研究 中,也同样可 以观察到非线性与 H C原 子比 、O C原子比 、 香度 以及成 熟度之间的 / / 芳
主要的矿物成分 ,10 g· ~N N 控制溶液 的生物活性 ,N H O ~ m l )调节溶液 的 p 0m l a , a C 3( 5 g- H值 至 一 . .初始溶液是将一定量的储备液溶于背景溶液中配制而成 ,其中甲醇的浓度控制在 2 o 70 % 以下. 吸附实验采用间歇式平衡实验法 ,称取样 品,置于 1m 安瓿瓶 中,加入不同浓度 的萘溶液 , J 0l
检查无荧光. 自 然风干 2h后 ,于 6  ̄真空干燥 1d 4 0C 0 .充分分散后作为吸附剂用于吸附/ 解吸实验. 由于无机矿物对 P H 的吸附作用相对于干酪根而言很小口 ,因此 ,本研究未去除无机矿物 ,尽 As ] 可能地保 留其 中干酪根的原始状态.样品的物理及化学性质列于表 1 .
溶液中化合物的浓度用 高效液相色谱仪( P C ( e lt akr m dl 0型 , H L ) H we - ca oe 10 tP d 1 带荧光检测器和
二极管阵列紫外检测器 ) 析 ,色谱柱为 H prl 1 C8 分 ye i5 m 1 s  ̄ 反相柱 ( D , 5 0 m, hnm nx . O S 20X . m P eo ee ) 2 萘浓度在 6 o 1 范围内,采用荧光检测器检测 ( _3o g· 激发波长为 20 m, 5 n 发射波长为 34 m) 6 n ,在
吸附 阶段 :
( 。一C ) C
g = e
式 中,g为达到吸附平衡时固相上的化合物浓度,以 g· 表示 ;C 为达到吸附平衡时液相 中化合 g
物的浓度 ,以 g· 表示 ;C 为溶液的初始浓度 ,以 1 o g· 表示 ; 1
吸附剂 的重量 ,以 g表示 . 解 吸阶段 :
12 吸附与解 吸 实验 .
国家 自然科学基金 (0 7 04)和有机地 球化学 国家重点 实验室 资助项 目 4 0 29 通讯联 系人
维普资讯
1期
杨琛等 :地质吸附剂对萘的吸附与解 吸行为研究
目标化合物为萘 ( 色谱纯 > 8 9 %,Ad c hmcl o ) l i C e i . .背景溶液包括 :005 o · ~ a 1 rh aC .0 t l 1 C C2 o 为
3 4




2 5卷
附/ 解吸时环境的温度 ,本研究中温度为 2 % ;C为不同的浓度级 ,本研究 中采用 了三个不同的浓度 5 级进行计算. 吸附与解吸 的 Fenlh r dc 参数及标准偏差列于表 2中.从表 2可以看到,萘在 于酪根上的吸附与 u i 解吸行为均呈现出规律性的变化 : ( )所有 的吸附和解 吸等温线均呈 现出明显的非线性 ,n大致在 1 04 _. 之间.( )随着成熟度 的增加 ,n l . _08 2 和 g 值逐渐增大 ,其 中吸附的 n值从 X L K F0的0 73逐 .3 渐减小至 X L F 7的04 7 .0 ,解吸的 n 值也从 X L F0的0 86减至 X L 04 3 .5 F 7的 .4 ;吸附的 l F g 值从 X L K F0
表 2 样品 的 Fen l h等温线参数 ru d c i
Ta l F e n l h i t em a a tr f a ls b e2 r u d i s h r p r mee s o mp e c o s
注 :a 以 ( - )/ ( ) g g g- I ) 表示 , )根据 Fen lh吸附容量参数和样品的总有机碳的含量 ( 1 汁算所得 , )l 的 l1 b r dc u i 表 ) c g 标准偏差 , )n d 的标 准偏差 .
50 1 0 0 g· 时,滞后指数 H 从 X L I F O的 0 1 逐渐增加到 X L .8 F 7的 13 .我们的结果与文献报道的数 .1 据相吻合. G cw n 等人 在研究 了高温燃烧沉积物得到的碳黑对芘的吸附行为 ,发现吸附等温线 的 n s ed h 大 致在0 5_ . ._o7之间,LB ef Wee_ 曾报道菲在两种低成熟煤上吸附的线性因子 几 e ou 和 br 6 分别为0 6 .2和 0 5 ,解吸滞后指数 H 大致在 0 1—04 ,与本研究中 X L - .7 I .7 .8 FO3的结果相似.
吸 附剂上的吸附与解吸均呈现 出明显 的非线性 和解 吸滞后 现象 ,这种 吸附与解 吸特性 可能 与地 质吸 附剂 的 内部结构之间存在一定的 内在联系 ,结构 的剐性 、还 原性 和芳 香性越 大的地质 吸 附剂 ,对萘 吸附和解 吸的 非线性愈强 ,解吸滞后愈 明显. 关键词 地质吸 附剂 ,萘 ,吸 附,解吸 .
3o 00 l 范 围 内,采 用 u o 00 g- V检测 器在 20 m检 测.流 动相为 乙腈 : =8 : 2 2r i 水 8 1 ,流速 为 03 m · i~.用外标法建立标准曲线来计算溶液 的浓度.固相上的化合物浓度是通过固液两相 中 .4 l rn a
化合物的质量平衡计算所得.
迅速火焰封 口,以减少溶质的挥发性损失 ,摇匀后避光水平置于 2 2C 5±  ̄ 的恒温摇床上振荡 ( 转速为 20 · i ) 5 r mn ,其间每周人工摇动几分钟 ,以保证 固液相能充分接触.平衡 2 后 ,停止振荡 ,竖立 d 静置 3 ,待固液分层后 ,在火焰中轻轻打开安瓿瓶 ,迅速用吸管吸取约 3 l d m 溶液置于已装有 15 l .m 甲 醇的色谱瓶 内,摇匀并贮于 4 冰箱 ,待分析.  ̄ C 解吸实验采用 的是一次性取出. 重注技术 J ,即吸附结束后,取 出待分析溶液 ,然后用吸管尽可 能多地将安瓿瓶中残留的溶液吸 出,重新注入背景溶液,焰封 ,摇匀后再次置于恒温摇床上继续解吸 实验 ,实验条件与吸附实验相同.解吸实验结束后 ,固、液相经静置分离 ,取样分析溶液的浓度. 13 高效液相色谱分析 .
杨 琛 傅 家谟 盛 国英 党 志
( 1华南理工大学环境科学与工程学院 ,广州 , 160 504 ; 2中国科学院 广州地球化学研究所 ,有机地球化学 国家重点实验室 ,广州 , 16 0 504 )
摘 要 应用振荡平衡实验方法对萘在地质吸附剂上的吸附和解吸行为进行了研究 ,结果表明:萘在地质
22 吸附/ . 解吸行为与地质吸附剂 的结构性质问的关系
Xn 曾研究同一剖面不同深度 的土壤腐殖酸对萘和菲的吸附行为,发现随着土壤埋藏深度 的增 i g 大 ,土壤腐殖酸的 H C原子 比和 O C原子 比减小 ,芳香度增大 ,而在吸附行为表现为吸附容量和非 / /
线性增加,这可能与腐殖酸分子中芳香结构的增多有关 ,随着芳香度 的增加 ,极性基团减少 ,对萘和 菲的亲合力增加.H ag Wee_也 曾报道过菲在土壤有机质 ( un 和 br 8 包括腐殖酸和干酪根 )上吸附 的线
愈小 ,吸附的非线性愈大. 吸附与解吸的滞后现象用吸附/ 解吸滞后指数 ( I H )指示 ] .其定义为
滞 指 (i= g: 1 c 后 数 H) f 、 ,
式 中, : q代表达到吸附平衡时固相上化合物的浓度;q代表解吸结束时 固相上源自合物的浓度;T为吸 维普资讯
表 1 样品的物理化学性质 ]
T b e 1 Ph se c e c lp o et s o a l s a l y i o h mia r p ri fs mp e e
() 1 未测得 ;( ) 香度 由核磁共振谱 图中各共振峰 的相对含量计算所得 , = 0 芳香碳(315 × 0 / 2芳 10× 9— ) 1 “ 总碳( - 5 × 0 6 O1 ) 1 一 6
性 表 示形式 为 :
l q = lKF+ n g g g lC
式中,C ( o g· )为体系 中有机物在液相 中的浓度;g( g· )为体 系中有机物在 固相上 的浓 1 I g x
相关文档
最新文档