七年级数学第二学期期末考模拟试卷一含答案
人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2(填“<”、“=”、“>”).12.(4分)9的平方根是.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=.三、解答题17.(8分)计算:++|1﹣|18.(8分)解不等式组并将解集在数轴上表示出来.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)【分析】直接利用y轴负半轴上点的坐标特点得出答案.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x 轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9【分析】方程组两方程左右两边相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个【分析】分别根据平行线的判定与性质以及垂线段和不等式的性质分别判断得出即可.【解答】解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2>(填“<”、“=”、“>”).【分析】利用的取值范围进而比较得出即可.【解答】解:∵1<<2,∴2>.故答案为:>.12.(4分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为80°.【分析】首先根据余角的性质可得∠AOM=90°﹣50°′=40°,再根据角平分线的性质可算出∠AOC=40°×2=80°,再根据对顶角相等可得∠BOD的度数,【解答】解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【解答】解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.【分析】根据在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元,A型车单价1000元,B型车单价800元,可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故答案为:.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=70°.【分析】根据折叠前后两图形全等和内角和进行解答即可.【解答】解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.(8分)计算:++|1﹣|【分析】原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣++﹣1=﹣1.18.(8分)解不等式组并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据BC平分∠ABD,∠D=112°,即可求∠C的度数.【解答】解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)根据平面直角坐标系可确定A′,B′,C′的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?【分析】(1)求出方程组的解,根据不等式组即可解决问题;(2)根据不等式即可解决问题;【解答】解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).【分析】(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,根据“一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球”列出方程组并解答;(2)利用(1)中求得的数据,结合优惠条件列出不等式组并解答;(3)当m=30时,分别求得在两商店的消费额,然后比较大小,从而得到答案.【解答】解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.【分析】(1)把x=2代入方程3x﹣5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【解答】解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.【分析】(1)根据题意即可得到结论;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a >0时,②当a<0时,列方程即可得到结论;(2)设E(m,3),由△BEO∽△PEQ可求得PQ=,再根据S△OBE﹣S△EPQ=2列出方程,求出m的值即可解决问题;(3)根据题意画出图形,再过M点作MF∥PP1,根据平行线的性质可得结论.【解答】解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,P A=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。
人教版七年级数学第二学期期末测试卷1-4Microsoft Word 文档 (2)

A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个 角都是对顶角 C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在 同一直线上,这两个角互为对顶角 10.下列各式中,正确的是( ) A.±=± B.±=; C.±=± D.=± 三、解答题:( 每题6分,共18分) 11.解下列方程组: 12.解不等式组,并在数 轴表示: 13.若A(2x-5,6-2x)在第四象限,求a的取值范围.
24.
25.(10分)如图,AD为△ABC的中线,BE为△ABD的中 线。 (1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)在△BED中作BD边上的高; (3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多 少?
26.(10分)5月12日我国四川汶川县发生里氏8.0级大地震,地 震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发 生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人 民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助 床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些 物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一 辆乙货车可装床架10个和课桌凳10套. (1)学校如何安排甲、乙两种货车可一次性把这些物资运到 灾区?有几种方案? (2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费 1000元,则学校应选择哪种方案,使运输费最少?最少运费是多
3.(05兰州)一束光线从点A(3,3)出发,经过y轴上 点C反射后经过点B(1,0)则光线从A点到B点经过的路 线长是( )A.4 B.5 C.6 D.7
4.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B. 四边形 C.五边形 D.六边形 5.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有 人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六 边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④ 6.如果中的解x、y相同,则m的值是( )(A)1(B)-1 (C)2(D)-2 7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一 队打了14场比赛,负5场,共得19分,那么这个队胜了( )(A) 3场(B)4场(C)5场(D)6场 8.若使代数式的值在-1和2之间,m可以取的整数有( )(A)1个 (B)2个(C)3个 (D)4个 9.把不等式组的解集表示在数轴上,正确的是( ).
北师大版七年级数学下册2019-2020年度第二学期期末模拟测试卷一(含答案)

北师大版七年级数学下册2019-2020 年度第二学期期末模拟测试卷一一、选择题(共10 小题,每小题 3 分,计30 分,每小题只有一个选项是符合要求的)1.下列计算正确的是()A.3a2﹣4a2=a2 B.a2•a3=a6 C.a10÷a5=a2 D.(a2)3=a62.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)3.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3 相差2 的概率是()A.B.C.D.5.已知三角形三边分别为2,a﹣1,4,那么a 的取值范围是()A.1<a<5 B.2<a<6 C.3<a<7 D.4<a<66.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了 10 分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路7.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8.已知实数a、b 满足a+b=2,ab=,则a﹣b=()A.1 B.﹣ C.±1 D.±9.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于()A.180°B.360°C.540°D.720°10.如图,在△ABC 中,点D、E、F 分别是BC、AD、EC 的中点,若△ABC 的面积是16,则△BEF 的面积为()A.4 B.6 C.8 D.10二、填空题(共 4 小题,每小题 3 分,计12 分)11.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300 亿元人民币等值专项贷款,将300 亿元用科学记数法表示为元.12.∠1 与∠2 有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=.13.如图,点P 关于OA、OB 的对称点分别为C、D,连接CD,交OA 于M,交OB 于N,若PMN 的周长=8 厘米,则CD 为厘米.14.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是(只需添加一个条件即可)三、解答题(共9 小题,计78 分解答应写出过程)15.(12分)计算(1)106÷10﹣2×100(2)(a+b﹣3)(a﹣b+3)(3)103×97(利用公式计算)(4)(﹣3a2b)2(2ab2)÷(﹣9a4b2)16.(6分)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.17.(6分)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x),其中x=﹣,y=1.18.(6分)如图,在正方形网格中,△ABC 是格点三角形,画出△ABC 关于直线l对称的△A1B1C1.19.(9分)将分别标有数字 1,2,3 的三张卡片洗匀后,背面朝上放在桌面上.请完成下列各题.(1)随机抽取1 张,求抽到奇数的概率.(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?(3)在(2)的条件下,试求组成的两位数是偶数的概率.20.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F 的度数.21.(9分)如图,直线 AB 与 CD 相交于点 O,∠AOM=90°.(1)如图1,若射线OC 平分∠AOM,求∠AOD 的度数;(2)如图2,若∠BOC=4∠NOB,且射线OM 平分∠NOC,求∠MON 的度数.22.(10分)已知一个等腰三角形的两个内角分别为(2x﹣2)°和(3x﹣5)°,求这个等腰三角形各内角的度数.23.(12 分)如图 1,在△ABC 中,∠BAC=90°,AB=AC,过点 A 作直线 DE,且满足BD⊥DE 于点 D,CE⊥DE 于点 E,当 B,C 在直线 DE 的同侧时,(1)求证:DE=BD+CE.(2)如果上面条件不变,当B,C 在直线DE 的异侧时,如图2,问BD、DE、CE 之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C 在直线DE 的异侧时,如图3,问BD、DE、CE 之间的数量关系如何?写出结论并证明.参考答案一、选择题1.D.2.D.3.C.4.B.5.C.6.B.7.A.8.C.9.B.10.A.二、填空题(共4 小题,每小题3 分,计12 分)11.3×1010.12.60°或120°.13.8.14.AE=AC.三、解答题(共9 小题,计78 分解答应写出过程)15.解:(1)原式=106+2+0=108;(2)原式=a2﹣(b﹣3)2=a2﹣b2+6b﹣9;(3)原式=(100+3)×(100﹣3)=1002﹣32=10000﹣9=9991;(4)原式=(9a4b2)•(2ab2)÷(﹣9a4b2)=﹣2ab2.16.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.17.解:原式=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣、y=1 时,原式=﹣4×(﹣)+2×1=2+2=4.18.解:如图,△A1B1C1 即为所求.19.解:(1)在这三张卡片中,奇数有:P(抽到奇数)=;(2)可能的结果有:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(3)由(2)得组成的两位数是偶数的概率==.20.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC 和△DEF 中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°21.解(1)∵∠AOM=90°,OC 平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD 的度数为135°;(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM 平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON 的度数为54°.22.解:①当(2x﹣2)°和(3x﹣5)°是两个底角时,2x﹣2=3x﹣5,x=3,∴三个内角分别是4°,4°,172°;②当2x﹣2 是顶角时,2x﹣2+2(3x﹣5)=180°,解得x=24,∴三个内角分别是46°,67°,67°;③当3x﹣5 是顶角时,3x﹣5+2(2x﹣2)=180°,解得x=27,∴三个内角分别是76°,52°,52°23.(1)证明:如图1,∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)解:BD=DE+CE,理由:如图2,∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°.∴∠BAD+∠ABD=90°.∵∠BAD+∠EAC=90°∴∠ABD=∠EAC.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AE=AD+ED,∴BD=DE+CE.(3)解:DE=CE﹣BD,理由是:如图3,同理易证得:△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD﹣AE,∴DE=CE﹣BD.。
七年级下册数学期末模拟试卷(含答案)(1)

七年级下册数学期末模拟试卷(含答案)(1)一、选择题1.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩ 2.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣1 3.计算:202020192(2)--的结果是( ) A .40392B .201932⨯C .20192-D .2 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 5.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 36.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=107.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 28.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .9.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( ) A .m=2,n=3 B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=3 10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤二、填空题11.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.12.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.13.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.14.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).15.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.16.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 17.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.20.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).22.解方程组:41325x y x y +=⎧⎨-=⎩. 23.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?24.先化简,再求值:(1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =. 25.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.26.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.27.解下列方程组:(1)32316x y x y -=⎧⎨+=⎩ (2)234229x y z x y z ⎧==⎪⎨⎪-+=-⎩ 28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:2|2|m --【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.【详解】解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y +=⎧⎨⨯=⎩.故选:B .【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.2.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.3.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.4.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.5.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.6.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ , 解得,1015x y =-⎧⎨=-⎩ ; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.7.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A、(a2)3=a6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.8.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.9.B解析:B【解析】【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可.【详解】解:将(2x+3y)(mx-ny)展开,得2mx2-2nxy+3mxy-3ny2,根据题意可得2mx2-2nxy+3mxy-3ny2=9y2-4x2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,解得m=-2,n=-3故选B .【点睛】本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.10.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题11.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF =∠EFG =50°,∠1=∠GED ,再根据折叠的性质得∠DEF =∠GEF =50°,则∠GED =100°,即可得到结论.详解:∵DE ∥GC ,∴∠DEF =∠EFG =50°,∠1=∠GED .∵长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,∴∠DEF =∠GEF =50°,即∠GED =100°,∴∠1=∠GED =100°. 故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.12.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x −4x −5=x −4x+4−4−5=(x −2) −9,所以m=2,k=−9,所以解析:-7【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.13.20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm ,即AE=2,解析:20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm ,即CF=1,则DF=DC-CF=6-1=5cm则S 矩形DEB'F =DE•DF=4×5=20cm 2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.14.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.15.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键.17.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x =﹣1.②当2x+3=﹣1时,解得:x =﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x =﹣2.③当x+2016=0时,x =﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x =﹣2016.综上所述,当x =﹣1,或x =﹣2,或x =﹣2016时,代数式(2x+3)x+2016的值为1. 故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键. 18.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2 10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.20.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm ,△ABD 周长为15cm ,∴BD=15-6-5=4cm ,∵AD 是BC 边上的中线,∴BC=8cm,∵△ABC 的周长为21cm ,∴AC=21-6-8=7cm .故AC 长为7cm .“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC 的长,题目难度中等.三、解答题21.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.22.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键. 23.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.24.(1)-8a+12,16;(2)x 2+3,139【分析】(1)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案; (2)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案.【详解】解:(1)原式=a 2-4a-(a 2-2a+6a-12)=a 2-4a-(a 2+4a-12)=a 2-4a-a 2-4a+12=-8a+12 把12a =-代入得:原式=-8×(1-2)+12=16; (2)原式=x 2+4x+4+4x 2-1-4x 2-4x=x 2+3 把13x =代入得:原式=(13)2+3=139. 【点睛】 本题考查了多项式乘法,合并同类项,平方差公式和完全平方公式.细心运算是解题关键.25.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.26.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.27.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.28.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。
北师大版数学七年级下册期末考试模拟试题(一)(二)含答案

(第8题1.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 ( )A .SASB .ASAC .AASD .SSS 2.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .3.如图2,有一个五角星的图案,那么图中的∠A +∠B +∠C +∠D +∠E= °4.如图3,先将正方形ABCD 对折,折痕为EF ,将这个正方形展平后,再分别将A 、B 对折,使点A 、点B 都与折痕EF 上的点G 重合,则∠NCG 的度数是 度。
图1 图2 图35.在“石头、剪刀、布”的猜拳游戏中,俩人出拳相同的概率的是( )A .B .C .D .6.如图,玲玲在美术课上用丝线绣成了一个“2”,AB ∥DE ,∠A=30°,∠ACE=110°,则∠E 的度数为( )A.30° B 。
150° C 。
120° D 。
100°7。
近似数3。
0的准确值a 的取值范围是( )A 。
2。
5<a <3。
4 B.2.95≤a≤3。
05 C.2。
95≤a <3。
05 D.2.95<a <3。
58 长度分别为3cm ,5cm ,7cm,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3 D 。
410 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .11.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s (km )和骑车时间t (h )之间的函数关系如下图所示,给出下列说法:(1)他们都骑行了20km ;(2)乙在途中中停留了0。
5h ;(3)甲、乙两人同时到达目的地;(4)相遇后,甲 的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个 B .2个 C .3个 D .4个12.如图,△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB 于E ,若AB =6㎝,则△DEB 的周长为( )A .5㎝B .6㎝C .7㎝D .8㎝13.一幅三角板,如图所示叠放在一起.则图中∠的度数是( )A .75°B .60°14B 15∥ACE 16∠,BD :CD =5:3,的面积是 .17、 如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=72°,则∠EGF 等于 ( )A . 36°B . 54°C . 72 °D . 108°18、若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( )A 、 1B 、-2C 、 2或-1D 、-2或119 锐角三角形的三个内角是∠A 、∠B 、∠C ,如果,,,那么、A .没有锐角 B .有1个锐角 C .有2个锐角 D .有3个锐角20、如图,中,D 、E 、F 分别是BC 、AD 、BE 的中点,若cm 2,则21、如右图,下列条件中,能判定DE ∥AC 的是( ) A 、∠EDC=∠EFC B ∠AFE=∠ACD C ∠3=∠4 D ∠1=∠2 22、一个正方形的边长增加了2cm ,面积相应增加了32cm 2,。
2020-2021七年级数学下期末模拟试卷(含答案)(1)

当y=7时,x=6.
所以有两种方案.
故答案为2.
本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.
17.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
解析:2
【解析】
设甲种运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.
解:设甲种运动服买了x套,乙种买了y套,
20x+35y=365
x= ,
∵x,y必须为正整数,
∴ >0,即0<y< ,
A.0B.-πC. D.-4
10.不等式4-2x>0的解集在数轴上表示为()
A. B. C. D.
11.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.16cmB.18cmC.20cmD.21cm
12.关于 , 的方程组 的解满足 ,则 的值为()
【点睛】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第二学期期末考模拟试卷(一)数学(满分100分,时间90分钟)一、选择题(本大题共15小题,每小题2分,共30分)1.如图,直线AB 与CD 相交于O ,若∠AOC +∠BOC +∠DOB =242°,则∠AOC 的度数为( ). A .62° B .118° C .72° D .59° 2.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3C .(-13)2的平方根是-13 D .-(-13)没有平方根 3.(2013广东广州)实数a 在数轴上的位置如图4所示,则|a -2.5|=( )A . a -2.5B . 2.5- aC . a +2.5D . -a -2.5第1题图第3题图 第10题图4. (2013浙江湖州)实数π,15,0,-l 中,无理数是A .πB .15C .0D .-l5.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则a 2>b 2 B .若a >|b |,则a 2>b 2 C .若|a |>b ,则a 2>b 2 D .若a 3>b 3,则a 2>b 2 6.若点P (a ,b )的坐标满足关系式ab >0,则点P 在( ). A .第一象限 B .第三象限 C .第一、三象限 D .第二、四象限 7.方程组⎩⎨⎧=-=+7283y x y x 的解是( ).A .⎩⎨⎧-=-=.1,3y xB .⎩⎨⎧=-=.3,1y xC .⎩⎨⎧-==.1,3y xD .⎩⎨⎧=-=.1,3y x8. 一船顺流航行速度为a 千米/时,逆流航行速度为b 千米/时(a >b ),则水流速度为( ).A .a +b 千米/时B .a -b 千米/时C .2b a +千米/时D .2ba -千米/时9. “a 的2倍减去b 的差不大于-3”用不等式可表示为( ). A .2a -b <-3 B .2(a -b )<-3 C .2a -b ≤-3 D .2(a -b )≤-310. (2013浙江丽水)若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解是( )A .2x ≤B .1x >C .12x ≤<D .12x <≤ 11. 若a >2,则下列各式中错误的是( ). A .a -2>0 B .a +5>7 C .-a >-2 D .a -2>-412. 不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).A .x <-4B .x >2C .-4<x <2D .无解13. 一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好),下表为我国某A .生活质量稳步提高B .生活质量稳步下降C .生活质量有升有降D .生活质量稳定不变14.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名七年级学生15.按下面的程序计算:若输入100,x=x值为正整数,最后输出的结果为556,则开始输入的x值可能有A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分)16.38的平方根是______;-12的立方根是______.17.当a______时,|a-2 |=a-2.18.若无理数a满足不等式1<a<4,请写出两个符合条件的无理数______.19.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD 的度数为______.第19题图第24题图20.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______21.方程2x m+1+3y2n=5是二元一次方程,则m=______,n=______.22.(2013广东广州)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________.23.若⎪⎩⎪⎨⎧=+=+=+.3,2,1zxzyyx则x+y+z=__________________.24.用边长为10cm的正方形做成一套七巧板,拼成如图所示的一座“桥”,则图中阴影部分面积为____________cm2.25.观察下面两行数第一行:4,-9, 16,-25, 36,…第二行:6,-7, 18,-23, 38,…则第二行中的第6个数是;第n个数是.三、解答题(26题8分,27题3分,28题4分,29、30、31题各5分)26.解方程(组)或不等式(组):(每小题2分,共8分)(1)2953x x-=+;(2)2313424()3(23)17x yx y x y⎧-=⎪⎨⎪---=⎩;(3)5731164x x--+>;(4)3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩.27.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:(1)请在所给的网格内画出以线段AB、BC为边的平行四边形ABCD;(1分)(2)填空:平行四边形ABCD的面积等于______.(2分)第27题图第28题图28.(4分)已知:如图,∠1=∠2,求证:AB∥CD.分析:欲证AB∥CD,只要证∠3=∠4.证明:∵∠4=∠1,∠3=∠2,(对顶角相等)又∠1=∠2,(已知)从而∠3=______.( )∴AB∥CD.( )29.(5分)(2013浙江湖州)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:由学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总得票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).票数是多少?请补全条形统计图.(画在答题卷相对应的图上)(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是哪两位老师?为什么?30.(5分)为了保护环境,某校环保小组成员收集废电池.第一天收集1号电池4节,5号电池5节,总重460克;第二天收集1号电池2节,5号电池3节,总重240克.试问1号电池和5号电池每节分别重多少克?31.(5分)一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?四、解答题:(第32题6分,第33、34题各7分)32.关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩①②只有5个整数解,求a的取值范围.33.为了保护环境,某造纸厂决定购买20台污水处理设备,现有A、B两种型号的设备,其中每台的价格、日处理污水量及年消耗费用如下表:经预算,该纸厂购买设备的资金不能高于410万元.(1)请你设计该企业有几种购买方案;(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案.34.如图在平面直角坐标系中,A (a ,0),B (b ,0),C (-2,1),且|a +2b +1|+(3a -4b +13)2=0. (1)求a ,b 的值;(2)在y 轴上存在一点D ,使得△COD 的面积是△ABC 面积的两倍,求出点D 的坐标. (3)在x 轴上是否存在这样的点,存在请直接写出点D 的坐标,不存在请说明理由.七年级第二学期期末考模拟试卷(一)数学(满分100分,时间90分钟)一、选择题(本大题共15小题,每小题2分,共30分)1.A .2.B .3.B.4.A.5.B .6.C .7.C .8.D .9.C .10.D . 11. C .12. B .13. A .14. D .15. B .二、填空题(本大题共10小题,每小题2分,共20分)161; 17.≥2;18.(答案不唯一)π等; 19.110°; 20.(x -a ,y ),(x +a ,y ); 21.0,12; 22.5.25×106; 23.3; 24.50; 25.-47,()()12112n n +-⋅++.三、解答题(26题8分,27题3分,28题4分,29、30、31题各5分) 26.解方程(组)或不等式(组):(每小题2分,共8分)(1)x =-4;(2)69117411x y ⎧=⎪⎪⎨⎪=⎪⎩;(3)x >-1;(4)-7<x ≤1.27.(1)如图所示;(2)15.D28.∠4;等量代换;内错角相等,两直线平行.29.(1)李老师得到4票教师票;(2)设王老师得到x 票学生票,李老师得到y 票学生票. 依题意列方程组得500320x y x y +=⎧⎨=+⎩,解得x =380,y =120.答:王老师得到380票学生票,李老师得到120票学生票. (3)①王老师得到总票数=7×5+380=415; ②赵老师得到总票数=6×5+200=230; ③李老师得到总票数=4×5+120=140; ④陈老师得到总票数=8×5+300=340.所以我认为应该推选王老师和陈老师到市里.30.解:设1号电池重x克,5号电池重y克,依题意列方程组得45460 23240 x yx y+=⎧⎨+=⎩,解得9020 xy=⎧⎨=⎩,答:略.31.解:设平均每天至少要挖掘xm2的土方,依题意列不等式得:120+(10-2-2)x≥600解得:x≥80.答:略.四、解答题:(第32题6分,第33、34题各7分)32.解:解①得x<20,解②得x>3-2a,∴3-2a<x<20,∵不等式组只有5个整数解,∴该不等式组的整数解为19,18,17,16,15.∴14≤3-2a<15,解得:-6<a≤-5.533.解:(1)三种方案.A型0台,1台,2台.(2)A型1台,B型19台.34.(1)a=-3,b=1;(2)(0,4),(0,-4);(3)(8,0),(-8,0).。