凯氏定氮法原理
凯氏定氮法的原理

凯氏定氮法的原理
凯氏定氮法是一种用于测定有机物中氮量的方法。
其原理基于有机物中的氮经过强碱消化后被转化为氨气,再利用酸性溶液吸收氨气产生离子反应,并通过酸碱滴定测定消耗的酸量来反推氮的含量。
具体实施过程如下:
1. 取一定质量的样品,通常需要将样品先通过干燥和研磨等步骤预处理。
2. 将样品加入含有氢氧化钠(NaOH)和氧化钠(Na2O2)的
密闭消化瓶中,在高温高压条件下进行消化。
消化过程中,氧化钠能转化有机物中的氮为氨气,而氢氧化钠起到促进反应和提高反应温度的作用。
3. 在消化完成后,将消化瓶中产生的氨气通过氨吸收瓶,其中溶有硼酸溶液。
氨气通过硼酸溶液中的水分发生以下反应:
NH3 + H3BO3 → NH4+ + B(OH)4-
4. 将氨吸收瓶与滴定瓶相连,用硫酸作为滴定液缓慢滴定,可使吸收瓶中的氨气与硫酸反应生成铵盐离子。
反应终点可通过加入几滴酚酞指示剂,溶液由浅红色变为鲜红色来判断。
5. 根据滴定时消耗的硫酸体积和硫酸的浓度,可以推算出氨气生成的量,从而计算出样品中的氮含量。
凯氏定氮法能够检测出较低浓度的氮,广泛应用于农业、环境、食品等领域中。
凯氏定氮法的原理

凯氏定氮法的原理
凯氏定氮法是一种常用的测定氨量的方法,它的原理基于氨和煮沸的碱性溴水反应生成氮气,进而通过收集氮气的体积得到氨的含量。
具体步骤如下:
1. 取一定量的待测溶液,并将其加入特制的凯氏蒸馏器中。
2. 在蒸馏器的底部加入适量的氢氧化钠溶液,使溶液保持碱性。
3. 在蒸馏器的侧管中加入适量的盐酸,使其与钠氢氧化物发生中和反应,酸性反应消除。
4. 在蒸馏器的顶部加入一定量的悬浊的碱性溴水,然后轻轻摇晃蒸馏器,使其中的氨与碱性溴水中的溴发生反应。
反应生成的氮气以氮气泡的形式逸出到氮气收集瓶中。
5. 定时蒸馏,直到氮气收集瓶中的气泡停止产生为止。
6. 使用水银流量计测量氮气的体积,获取氮气的体积数据。
7. 根据凯氏定氮法的计算公式,计算出溶液中氨的含量。
需要注意的是,该方法只适用于含有游离氨的样品。
在分析前,如有需要,可先将有机物中的游离氨转化为铵盐形式,再进行测定。
此外,在实际操作中,为了提高准确性,还需要进行空白试验和标准曲线法,以便校正和保证结果的准确性。
凯氏定氮法原理

凯氏定氮法原理
凯氏定氮法是一种常用的测定水样中氨氮含量的方法,它是利用氨氮与硼酸在酸性条件下生成三氯胺氮,然后在碱性条件下与二甲基苯胺发生偶合反应生成蓝色的吲哚蓝色染料,通过比色法测定染料的光密度来确定水样中氨氮的含量。
首先,将水样加入蒸馏水中,然后加入氢氧化钠和碳酸氢铵,使水样中的氨氮转化为氨气。
接着,将氨气通过硼酸溶液中,氨与硼酸在酸性条件下生成三氯胺氮。
然后,将生成的三氯胺氮与二甲基苯胺在碱性条件下发生偶合反应,生成蓝色的吲哚蓝色染料。
最后,利用比色法测定染料的光密度,从而确定水样中氨氮的含量。
凯氏定氮法原理简单明了,操作简便,且测定结果准确可靠。
这种方法在环境监测、水质监测等领域有着广泛的应用。
通过测定水样中氨氮的含量,可以及时了解水体的污染情况,为环境保护和水质治理提供重要的参考依据。
在实际应用中,需要注意的是,凯氏定氮法对水样的处理和操作条件要求严格,需要严格按照操作规程进行操作,避免操作失误导致测定结果的偏差。
此外,还需要注意仪器的校准和维护工作,
保证测定结果的准确性和可靠性。
总的来说,凯氏定氮法是一种简单、准确的测定水样中氨氮含
量的方法,具有操作简便、测定结果可靠的特点,适用于环境监测、水质监测等领域。
在实际应用中,需要严格按照操作规程进行操作,保证测定结果的准确性和可靠性。
通过凯氏定氮法的应用,可以及
时了解水体的污染情况,为环境保护和水质治理提供重要的参考依据。
简述凯氏定氮法的基本原理

简述凯氏定氮法的基本原理
凯氏定氮法是一种定氮量的快速测定方法,它建立在室温下把氨和其
它氮含量溶液与酸性过氧化物混合,氧化邻苯二甲酸,释放出氮气的
基础上。
原理如下:
一、酸性过氧化物的存在:
1、能使氨气和其它氮含量溶液发生氧化反应,将氨气转变成其它氮含
量物质;
2、酸性过氧化物与邻苯二甲酸发生氧化反应,使邻苯二甲酸脱氧,释
放出氨气。
二、邻苯二甲酸发挥的作用:
1、释放出氨气,使水解苯甲酸发生变化;
2、邻苯二甲酸被氧化,形成硫酸酯类,加强回流使得反应更快更完全;
3、添加适量的硝酸使氮气通过压力转变,更有利于检测。
三、检测的原理:
1、氮量的快速测定:将样品加入酸性过氧化物,邻苯二甲酸,硝酸,经反应产生氨气,放入滤瓶中测定其净重,比较其变化,从而测定氮含量;
2、11秒内即可终止反应:在11秒内,反应所产生的氮气饱和,此时需要快速采集样品,然后迅速断开反应,避免反应产生氨氯离子;
3、有效防止气体质量变化:充分利用滤瓶及其空气鞘效应,有效防止气体质量变化;
4、减少影响:检测的剂量量报在微克级,可有效缓解外部环境对检测和计算的影响,减少检测误差。
总而言之,凯氏定氮法是一种定氮量的快速测定方法,其中酸性过氧化物、邻苯二甲酸、硝酸都参与了反应,将原来存在于溶液中的氨气转变成其它氮含量物质,通过减少外部环境对检测和计算的影响,可以有效减少检测误差。
凯氏定氮法原理

凯氏定氮法原理
凯氏定氮法是一种用来测定有机物中氮含量的方法,它是以化学反应为基础的定量分析方法。
凯氏定氮法的原理是通过将有机物中的氮转化为氨,然后用酸或碱溶液中的氯化物与氨反应生成氯胺,再用氯胺与自由氯反应生成氯气,最后通过测定氯气的体积来计算有机物中的氮含量。
凯氏定氮法的具体步骤如下:
首先,将待测物溶解在硫酸中,然后加入氯化铁作为催化剂,加热使有机物中的氮转化为氨。
其次,将生成的氨气通过盛有硼酸溶液的吸收瓶中,氨气和硼酸反应生成三氯胺。
然后,将三氯胺与自由氯反应生成氯气,用气体容器收集氯气,并通过测定氯气的体积来计算有机物中的氮含量。
凯氏定氮法的原理是基于有机物中的氮转化成氨,然后通过一系列化学反应最终生成氯气来实现氮含量的测定。
这种方法具有操作简便、准确度高、灵敏度好的特点,因此在实际应用中得到了广泛的应用。
凯氏定氮法的原理虽然简单,但在实际操作中需要注意一些问题。
首先,待测物中的氮必须完全转化为氨,否则会影响测定结果的准确性;其次,在氨和硼酸反应生成三氯胺时,必须保证反应充分,否则也会影响测定结果;最后,在三氯胺与自由氯反应生成氯气时,收集氯气的容器必须严密,以防氯气的泄漏。
总的来说,凯氏定氮法是一种可靠的测定有机物中氮含量的方法,它的原理简单,操作方便,准确度高,因此在实际应用中得到了广泛的应用。
在使用凯氏定氮法进行氮含量测定时,需要注意操作规范,确保测定结果的准确性。
凯氏定氮仪原理

凯氏定氮仪原理
凯氏定氮仪是一种常用于测定有机物中氮含量的仪器。
其原理基于气相反应原理和体积测定法。
凯氏定氮仪的工作原理如下:
1. 样品预处理:首先,需要将待测样品进行预处理,通常采用酸浸和蒸发等方法,将有机物转化为可溶于硫酸中的氨基根(NH4-)。
2. 气相反应:样品预处理后,将其与水银氯化铵
(NH4Cl·HgCl2)混合,反应生成氯铵盐(NH4Cl)。
这一反应是通过样品中的氨基根与水银氯化铵中的汞离子(Hg2+)发生置换反应而实现的。
NH4- + Hg2+ → NH4+ + Hg
这个反应是快速、可逆的。
3. 体积测定:在发生反应的特定温度和压力条件下,利用水银柱的高度差来测定氮气的体积。
反应生成的氯铵盐会占据一定的体积,并压缩到水银柱内。
由于氮气和水银的密度差异较大,只有氮气的体积变化才对水银柱的高度产生明显的影响。
通过测定水银柱上氢气和氮气两个气泡之间的高度差,即可
确定氮气体积,进而计算出样品中的氮含量。
注意:为了排除空气中的氮气对测定的干扰,实验中通常会先将空气从仪器中排除。
总结起来,凯氏定氮仪的原理是利用样品中的氨基根与水银氯化铵中的水银离子发生置换反应,生成氯铵盐。
通过测定水银柱上氢气和氮气两个气泡之间的高度差来确定氮气体积,从而测定样品中的氮含量。
凯氏定氮仪工作原理

凯氏定氮仪工作原理
凯氏定氮仪是一种用于测量样品中氮含量的仪器,其工作原理是利用样品中含氮化合物在高温下与氧气反应产生氮气,并通过检测氮气的体积变化来计算样品中的氮含量。
具体的工作原理如下:
1. 准备样品:将待测样品通过预处理步骤,如干燥或研磨,以获得适合测量的样品。
2. 加热反应:将样品放入凯氏定氮仪中的燃烧室,同时引入高纯度的氧气。
样品在高温(通常为900℃至1000℃)下与氧气发生反应,产生气体。
3. 气体分离:将产生的气体通过凯氏融液管,使其与一定数量的融液接触,从而吸收其他气体,如二氧化碳和水蒸气。
4. 体积测量:将融液管放在容器中,通过倒转法测量气体体积的变化。
氧气反应产生的氮气体积与样品中的氮含量成正比。
5. 计算结果:通过对氮气体积的测量,结合仪器的校准曲线,可以计算出样品中的氮含量。
凯氏定氮仪的工作原理基于样品中含氮化合物的燃烧反应,具有测量范围广、准确度高、操作简便等优点,因此在化学分析领域得到广泛应用。
凯氏定氮仪原理及方法

凯氏定氮仪原理及方法凯氏定氮仪是一种常用的分析仪器,主要用于测定样品中的氮含量。
它的原理是基于凯氏法,通过化学反应将样品中的氮转化为氨,然后利用氨的比色反应来测定氮含量。
本文将从凯氏定氮仪的原理和方法两个方面进行介绍。
一、凯氏定氮仪的原理。
凯氏定氮仪的原理主要包括两个部分,氮的转化和氨的比色反应。
1. 氮的转化。
在凯氏定氮仪中,样品首先需要经过氮的转化过程。
通常采用硫酸钾和硫酸铁作为氮的转化剂,将样品中的氮转化为氨。
这个过程需要在高温下进行,以保证氮的完全转化。
2. 氨的比色反应。
转化后的氨会与氯化汞形成白色的沉淀,然后用硫化钠将其转化为黄色的硫化汞。
最后通过比色计测定溶液的吸光度,进而计算出样品中的氮含量。
二、凯氏定氮仪的方法。
凯氏定氮仪的方法主要包括样品处理、转化反应、比色测定和计算结果。
1. 样品处理。
首先,需要将待测样品进行预处理,通常是将样品溶解或者研磨成粉末。
然后取适量样品放入凯氏定氮仪的反应瓶中,加入硫酸钾和硫酸铁等转化剂。
2. 转化反应。
将反应瓶放入凯氏定氮仪中进行加热反应,将样品中的氮转化为氨。
反应完成后,需要将溶液冷却至室温。
3. 比色测定。
取适量转化后的溶液,加入氯化汞和硫化钠,使其发生比色反应。
然后使用比色计测定溶液的吸光度。
4. 计算结果。
根据比色测定的结果,结合标准曲线或者计算公式,计算出样品中的氮含量。
总结:凯氏定氮仪是一种常用的分析仪器,通过化学反应将样品中的氮转化为氨,然后利用氨的比色反应来测定氮含量。
在使用凯氏定氮仪时,需要严格按照操作规程进行样品处理、转化反应、比色测定和结果计算,以保证测定结果的准确性和可靠性。
通过本文的介绍,相信大家对凯氏定氮仪的原理和方法有了更深入的了解,希望能够对大家的工作和学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年09月25日星期四 19:52三鹿奶粉事件让全国人民知道了三聚氰胺,食品中蛋白质含量的现行国家标准和国际通行测定方法是经典凯氏定氮法,三少作为一名分析人员,现在将凯氏定氮法原理,方法步骤和计算方法写出来,看看凯氏定氮法在蛋白质含量中的缺陷。
何为凯氏定氮法?简单地说,凯氏定氮法是一种检测物质中“氮的含量”的方法。
蛋白质是一种含氮的有机化合物,食品中的蛋白质经硫酸和催化剂分解后,产生的氨能够与硫酸结合,生成硫酸氨,再经过碱化蒸馏后,氨即成为游离状态,游离氨经硼酸吸引,再以硫酸或盐酸的标准溶液进行滴定,根据酸的消耗量再乘以换算系数,就可以推算出食品中的蛋白含量。
一. [凯氏定氮法原理]凯氏定氮法首先将含氮有机物与浓硫酸共热,经一系列的分解、碳化和氧化还原反应等复杂过程,最后有机氮转变为无机氮硫酸铵,这一过程称为有机物的消化。
为了加速和完全有机物质的分解,缩短消化时间,在消化时通常加入硫酸钾、硫酸铜、氧化汞、过氧化氢等试剂,加入硫酸钾可以提高消化液的沸点而加快有机物分解,除硫酸钾外,也可以加入硫酸钠、氯化钾等盐类类提高沸点,但效果不如硫酸钾。
硫酸铜起催化剂的作用。
凯氏定氮法中可用的催化剂种类很多,除硫酸铜外,还有氧化汞、汞、硒粉、钼酸钠等,但考虑到效果、价格及环境污染等多种因素,应用最广泛的是硫酸铜。
使用时常加入少量过氧化氢、次氯酸钾等作为氧化剂以加速有机物氧化。
消化完成后,将消化液转入凯氏定氮仪反应室,加入过量的浓氢氧化钠,将NH4+转变成NH3,通过蒸馏把NH3驱入过量的硼酸溶液接受瓶内,硼酸接受氨后,形成四硼酸铵,然后用标准盐酸滴定,直到硼酸溶液恢复原来的氢离子浓度。
滴定消耗的标准盐酸摩尔数即为NH3的摩尔数,通过计算即可得出总氮量。
在滴定过程中,滴定终点采用甲基红-次甲基蓝混合指示剂颜色变化来判定。
测定出的含氮量是样品的总氮量,其中包括有机氮和无机氮。
反应式如下:1.有机物中的氮在强热和CuSO4,浓H2SO4 作用下,消化生成(NH4)2SO4反应式为: H2SO4==SO2+H2O+[O]R. +[O]== NH32NH3+H2SO4==(NH4)2SO42.在凯氏定氮器中与碱作用,通过蒸馏释放出NH3 ,收集于 H3BO3 溶液中反应式为: 2NH4++OH-==NH3+H2ONH3+H3BO3==NH4++H2BO3-3. 再用已知浓度的HCI标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量。
反应式为: H2BO3-+H+==H3BO3蛋白质是一类复杂的含氮化合物,每种蛋白质都有其恒定的含氮量[约在14%~18%,平均为16%(质量分数)]。
凯氏定氮法测定出的含氮量,再乘以系数,即为蛋白质含量。
凯氏定氮装置图1.安全管2.导管3.汽水分离管4.样品入口5.塞子6.冷凝管7.吸收瓶8.隔热液套9.反应管 10.蒸汽发生瓶本文为三少综合整理所得,转载请注明源自二. [方法和步骤](一)消化1、准备6个凯氏烧瓶,标号。
1、2、3号烧瓶中分别加入适当浓度的蛋白溶液,样品要加到烧瓶底部,切勿沾在瓶口及瓶颈上。
再依次加入硫酸钾-硫酸铜接触剂,浓硫酸,30%过氧化氢。
4、5、6号烧瓶作为空白对照,用以测定试剂中可能含有的微量含氮物质,对样品测定进行校正。
4、5、6号烧瓶中加入蒸馏水代替样液,其余所加试剂与1、2、3号烧瓶相同。
2、将加好试剂的各烧瓶放置消化架上,接好抽气装置。
先用微火加热煮沸,此时烧瓶内物质炭化变黑,并产生大量泡沫,务必注意防止气泡冲出管口。
待泡沫消失停止产生后,加大火力,保持瓶内液体微沸,至溶液澄清后,再继续加热使消化液微沸15min。
在消化过程中要随时转动烧瓶,以使内壁粘着物质均能流入底部,以保证样品完全消化。
消化时放出的气体内含SO2,具有强烈刺激性,因此自始自终应打开抽水泵将气体抽入自来水排出。
整个消化过程均应在通风橱中进行。
消化完全后,关闭火焰,使烧瓶冷却至室温。
(二)蒸馏和吸收蒸馏和吸收是在微量凯氏定氮仪内进行的。
凯氏定氮蒸馏装置种类甚多,大体上都由蒸气发生、氨的蒸馏和氨的吸收三部分组成。
1、仪器的洗涤仪器安装前,各部件需经一般方法洗涤干净,所用橡皮管、塞须浸在10%NaOH溶液中,煮约10min,水洗、水煮10min,再水洗数次,然后安装并固定在一只铁架台上。
仪器使用前,微量全部管道都须经水蒸气洗涤,以除去管道内可能残留的氨,正在使用的仪器,每次测样前,蒸气洗涤5min即可。
较长时间未使用的仪器,重复蒸气洗涤,不得少于三次,并检查仪器是否正常。
仔细检查各个连接处,保证不漏气。
首先在蒸气发生器中加约2/3体积蒸馏水,加入数滴硫酸使其保持酸性,以避免水中的氨被蒸出而影响结果,并放入少许沸石(或毛细管等),以防爆沸。
沿小玻杯壁加入蒸馏水约20mL让水经插管流入反应室,但玻杯内的水不要放光,塞上棒状玻塞,保持水封,防止漏气。
蒸气发生后,立即关闭废液排放管上的开关,使蒸气只能进入反应室,导致反应室内的水迅速沸腾,蒸出蒸气由反应室上端口通过定氮球进入冷凝管冷却,在冷凝管下端放置一个锥形瓶接收冷凝水。
从定氮球发烫开始计时,连续蒸煮5min,然后移开煤气灯。
冲洗完毕,夹紧蒸气发生器与收集器之间的连接橡胶管,由于气体冷却压力降低,反应室内废液自动抽到反应室外壳中,打开废液排出口夹子放出废液。
如此清洗2~3次,再在冷凝管下换放一个盛有硼酸-指示剂混合液的锥形瓶使冷凝管下口完全浸没在溶液中,蒸馏1~2min,观察锥形瓶内的溶液是否变色。
如不变色,表示蒸馏装置内部已洗干净。
移去锥形瓶,再蒸馏1~2min,用蒸馏水冲洗冷凝器下口,关闭煤气灯,仪器即可供测样品使用。
2、无机氮标准样品的蒸馏吸收由于定氮操作繁琐,为了熟悉蒸馏和滴定的操作技术,初学者宜先用无机氮标准样品进行反复练习,再进行有机氮未知样品的测定。
常用巳知浓度的标准硫酸铵测试三次。
取洁净的100mL锥形瓶五只,依次加入2%硼酸溶液20mL,次甲基蓝-甲基红混合指示剂(呈紫红色)3~4滴,盖好瓶口待用。
取其中一只锥形瓶承接在冷凝管下端,并使冷凝管的出口浸没在溶液中。
注意:在此操作之前必须先打开收集器活塞,以免锥形瓶内液体倒吸。
准确吸取2mL硫酸铵标准液加到玻杯中,小心提起棒状玻塞使硫酸铵溶液慢慢流入蒸馏瓶中,用少量蒸馏水冲洗小玻杯3次,一并放人蒸馏瓶中。
然后用量筒向小玻杯中加入10 mL 30%NaOH溶液,使碱液慢慢流入蒸馏瓶中,在碱液尚未完全流入时,将棒状玻塞盖紧。
向小玻杯中加约5mL蒸馏水,再慢慢打开玻塞,使一半水流入蒸馏瓶,一半留在小玻杯中作水封。
关闭收集器活塞,加热蒸气发生器,进行蒸馏。
锥形瓶中的硼酸-指示剂混合液由于吸收了氨,由紫红色变成绿色。
自变色时起,再蒸馏3~5min,移动锥形瓶使瓶内液面离开冷凝管下口约lcm,并用少量蒸馏水冲洗冷凝管下口,再继续蒸馏1min,移开锥形瓶,盖好,准备滴定。
在一次蒸馏完毕后,移去煤气灯,夹紧蒸气发生器与收集器间的橡胶管,排除反应完毕的废液,用水冲洗小玻杯几次,并将废液排除。
如此反复冲洗干净后,即可进行下一个样品的蒸馏。
按以上方法用标准硫酸铵再做两次。
另取2mL蒸馏水代替标准硫酸铵进行空白测定二次。
将各次蒸馏的锥形瓶一起滴定。
3、未知样品及空白的蒸馏吸收将消化好的蛋白样品三支,空白对照液三支,依次作蒸馏吸收。
加5mL热的蒸馏水至消化好的样品或空白对照液中,通过小玻杯加到反应室中,再用热蒸馏水洗涤小玻杯3次,每次用水量约3mL,洗涤液一并倒入反应室内。
其余操作按标准硫酸铵的蒸馏进行。
由于消化液内硫酸钾浓度高而呈粘稠状,不易从凯氏烧瓶内倒出,必须加入热蒸馏水5 mL稀释之,如果有结晶析出,必须微热溶解,趁热加入玻杯,使其流入反应室。
此外,还应当注意趁仪器洗涤尚未完全冷却时立即加入样品或空白对照液,否则消化液通过冷却的管道容易析出结晶,造成堵塞。
(三)滴定样品和空白蒸馏完毕后,一起进行滴定。
打开接受瓶盖,用酸式微量滴定管以L的标准盐酸溶液进行滴定。
待滴至瓶内溶液呈暗灰色时,用蒸馏水将锥形瓶内壁四周淋洗一次。
若振摇后复现绿色,应再小心滴入标准盐酸溶液半滴,振摇观察瓶内溶液颜色变化,暗灰色在一二分钟内不变,当视为到达滴定终点。
若呈粉红色,表明已超越滴定终点,可在已滴定耗用的标准盐酸溶液用量中减去,每组样品的定氮终点颜色必须完全一致。
空白对照液接受瓶内的溶液颜色不变或略有变化尚未出现绿色,可以不滴定。
记录每次滴定耗用标准盐酸溶液毫升数,供计算用。
三. [结果与计算]运算下列公式计算出每次无机氮标准样品和未知样品的总含氮量。
式中WN——每毫升样品的含氮毫克数;A——滴定样品消耗的盐酸量(mL);B——滴定空白消耗的盐酸量(mL);C——测定样品所取用量(mL);——标准盐酸物质的量浓度(mol/L);——每摩尔氮原子质量(g/mol)。
三次样品测定的含氮量相对误差应小于±2%。
样品粗蛋白含量=总氮量×为含氮量换算为蛋白质含量的系数。
.这个系数来自蛋白质平均含氮量为16%,实际上各种蛋白质因氨基酸组成不同,含氮量不完全相同。
乳类为,大米为,花生为等本文为三少综合整理所得,转载请注明源自凯氏定氮法的缺陷:从凯氏定氮原理可以知道:凯氏定氮法是将含氮有机物转变为无机氮硫酸铵来进行检测,以得到含氮量的测定值乘以一定系数得出蛋白质含量。
而含氮有机物不仅仅是蛋白质,还有三聚氰胺等等。
在加上食品中蛋白质含量的现行国家标准和国际通行测定方法是经典凯氏定氮法,这就为造假者提供了可乘之机。
蛋白质中的含氮量不超过30%,三聚氰胺的最大的特点是含氮量很高(66%),溶于水后无色无味,也就是说在一杯清水中加入三聚氰胺,然后用凯氏定氮法检测,结果显示是含有蛋白质的。
由于“凯氏定氮法”只能测出含氮量,并不能鉴定饲料中有无违规化学物质,所以,添加三聚氰胺的奶粉理论上可以测出较高的蛋白质含量。