分类列方程解应用题
列方程解应用题归类

列方程解应用题类型一(简单的一步方程)1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)类型二(几倍多多少/少多少):1、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?类型三(买东西和卖东西):1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。
其中《科学家》这本书买了4本,《发明家》买了多少本?3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?类型四(和倍问题/ 差倍问题):1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?类型五(相遇问题、追及问题、鸡兔同笼)1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
一元一次方程解应用题分类全

(一)和差倍分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?4、初一(1)班举办了一次集邮展览。
展出的邮票比平均每人3张多24张,比平均每人4张少26张。
这个班级有多少学生?一共展出了多少邮票?5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。
问该校有多少住校生?有多少间宿舍?7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(二)调配问题1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少?2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队?3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人?4、甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。
问原来每架上各有多少书?(三)配套问题1、现有白铁皮28张,每张白铁皮可做甲件5个或乙件6个,若3个甲件及2个乙件配套,问如何下料正好使机件配套2、某车间22名工人参加生产一种螺母和螺丝。
分式方程应用题分类讲解与训练(很全面)

分式方程应用题分类讲解与训练一、【行程中的应用性问题】例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?分析:等量关系:慢车用时=快车用时+ (小时)例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1。
5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得xx 6828-=x 5.1828,解得46x =, 经检验,46x =是方程的根,且符合题意. ∴46x =,1.569x =,即普通快车车的平均速度为46km /h,直达快车的平均速度为69km /h .评析:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义.4060例3 A 、B 两地相距87千米,甲骑自行车从A 地出发向B 地驶去,经过30分钟后,乙骑自行车由B 地出发,用每小时比甲快4千米的速度向A 地驶来,两人在距离B 地45千米C 处相遇,求甲乙的速度.分析:等量关系:甲用时间=乙用时间+ (小时)例4 一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?解: 设步行速度为x 千米/时,骑车速度为2x 千米/时,依题意,得:方程两边都乘以2x ,去分母,得 30—15=x , 所以,x =15. 检验:当x =15时,2x =2×15≠0,所以x =15是原分式方程的根,并且符合题意.∵,∴骑车追上队伍所用的时间为30分钟.所行距离 速度 时间甲(87-45)千米x 千米/小时乙45千米(x+4)千米/小时30608745x-454x +例5 农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.解: 设自行车的速度为x千米/小时,那么汽车的速度为3x千米/小时,依题意,得:解得x=15.经检验x=15是这个方程的解.当x=15时,3x=45.即自行车的速度是15千米/小时,汽车的速度为45千米/小时.例6 甲乙两人同时从一个地点相背而行,1小时后分别到达各自的终点A与B;若从原地出发,但是互换彼此的目的地,则甲将在乙到达A之后35分钟到达B,求甲与乙的速度之比。
【方程应用题】五年级数学上册-简易方程应用题分类大全

五年级上册数学一、和倍问题1.某商场暑假期间卖出的冰箱和空调共572台,卖出的空调数量是冰箱的1.2倍,卖出冰箱和空调各多少台?(用方程解答)2.一幅画框用了2.4米的木条,这幅画的长是宽的2倍。
这幅画的长、宽分别是多少?(列方程解决)3.某学校实践基地有桃树和荔枝树共1400棵,桃树的棵数是荔枝树的2.5倍,基地里有桃树、荔枝树各多少棵?(列方程解答)这个公司去年第四季度销售小汽车和面包车各多少辆?(列方程解)二、差倍问题5.火箭的速度是超音速飞机的9倍,火箭每秒比超音速飞机飞行快4千米,火箭和超音速飞机每秒分别飞行多少千米?(列方程解答)6.某学校的四年级学生比五年级少80人,五年级人数是四年级的1.4倍。
四、五年级各有学生多少人?7.三个植树队共植树1800棵,甲队植树的棵数是乙队的2倍,乙队植树的棵数比丙队少200棵,三队各植树多少棵?8.学校新进了一批童话书和科技书,童话书的本数是科技书的4倍,科技书比童话书少630本。
学校新进童话书和科技书各多少本?(用方程解)三、一个数的几倍多/少多少9.图书室有文艺书180本,比科技书的2倍多20本,科技书有多少本?(用方程解答)10.书架下层有图书130本,比上层的1.4倍少3本,书架上层有多少本图书?(列方程解答)11.学校图书馆有文艺书480本,比科技书的3倍还多60本。
科技书有多少本?12.学校图书馆有150本科技书,科技书的本数比漫画书的3倍少36本,漫画书有几本?(用方程解答)13.圆明园曾是我国清朝著名的皇家园林之一,1860年被英法联军洗劫、焚毁。
它占地面积520万平方米,比故宫的面积的5倍少10万平方米。
故宫的面积是多少万平方米?(列方程解)四、和差问题果比每千克橘子贵1.5元,每千克苹果和橘子各多少元?15.花园里桂花、月季花、杜鹃花共235棵。
桂花比月季花多20棵,桂花比杜鹃花少15棵。
三种花各有多少棵?16.张大伯家的果园有桃树120棵,比梨树少15棵。
七年级一元一次方程解应用题分类【精编】【大量题目】【经典全面】

列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该对战平机场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
则甲仓原有大米多少t?5.甲、乙两人各有钱若干元,若甲给乙5元,则甲、乙两人的钱数相等;若乙给甲40元.则甲的钱数是乙剩下的4倍,甲原有的钱数多少?6.41人参加运土劳动,有30根扁担,要安排多少人抬、多少人挑,可使扁担和人数相配不多不少?7.某旅行团外出旅行,如果每辆汽车坐45人,那么有10人没有座位;如果每辆汽车坐60人,那么空出一辆车,求有多少辆汽车?8.某工地调来72人挖土和运土,已知3人挖的土1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工.9.用绳量井深,三折而量,绳长比井深多2 m,四折而量,绳长比井深少1 m,求绳子长?井深?10.有两根绳子,第一根长110m,第二根绳长80m,两根绳子剪去相同的长度后,第一根绳子的长度是第二根绳子的3倍,求每根绳子剪掉多少米?11.一辆翻斗车向工地运送一堆石子,第一天运了这对石子的1/3还多2吨,第二天运了剩下的1/2少1吨,这时还剩下38吨石子没运完,这对石子原有多少吨?12.某企业原来管理人员与营销人数之比为3:2,总人数为180人,为了扩大市场,从管理人员中抽调多少人参加营销工作,就能使营销人员人数是管理人员人数的2倍?13.把一些图书分给某班学生阅读,如果每人分3本,则余20本;如果每人分4本,则还缺25本,这个班有多少学生?14.甲、乙、丙三队合修一条公路,计划出280人,如果甲队人数是乙队人数的一半,丙队人数是乙队的2倍,问三队各有多少人?15.某车间有60名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓15个或螺帽10个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽配套?(每个螺栓配两个螺帽)16.爷爷与孙子下棋,爷爷赢1盘记1分,孙子赢1盘记3分,下了8盘后两人得分相等,他们各赢了多少盘?17.某校七年级选出男生的和12名女生参加数学竞赛,余下的男生人数恰好是所余下的女生人数的2倍.已知该年级共有学生156人,问男生、女生各有多少人?18.甲工厂有某种原料120t,乙工厂有同样原料96t,甲厂每天用原料15t,乙厂每天用原料90 t,问多少天后,两厂剩下的原料相等?19.有桔子、梨、苹果三种水果若干,梨的个数是桔子个数的4/5,苹果个数是桔子个数的2/3,梨的个数比苹果多2个,问筐内三种水果共有多少个?20.某沿海发达镇2006年的人均收人是16000元,比2004年的人均收入翻两番还多2000元,该镇2004年人均收人多少元?21.李大爷到商店购鞋,仅知道自己的老尺码是43码,而不知道自己应穿多大的新鞋号,他记得老尺码加上一个数后折半计算即为新鞋号,由于他儿子鞋号的新老尺码都是整数且容易记住,因而他知道儿子穿鞋的老尺码是40号,新鞋号是25号,现在请你帮助李大爷计算一下他的新鞋号是多少?22.某种中药含有甲、乙、丙、丁四种草药成分,这四种成分的质量比为0.7:1:2:4.7,现要配制这种中药2100 g,四种草药分别要多少克?23.阅读下列材料,并交流体会.诗仙李白本性嗜酒,豪放、旷达,向有斗酒诗百篇的美誉,为唐代‘饮中八仙’之一,民间流传李白买酒歌谣,是一道有趣的数学问题:李白街上走,提壶去买酒;遇店加一倍,见花喝一斗;三遇店和花,喝完壶中酒,试问壶中原有多少酒?24.小明和小颍同学在课多外学习中,用20张白卡纸做包装盒,,每张白卡纸可以做盒身2个或者做盒底盖3个。
小学五年级上册数学列方程解应用题练习题(分类)

小学五年级上册数学列方程解应用题练习题(分类)1.学校开展了绿色校园活动,六年级各班之间进行易拉罐收集比赛。
六一班收集了60个易拉罐,六二班比六一班多收集了15个易拉罐。
那么,六二班一共收集了多少个易拉罐?2.学校开展了绿色校园活动,六年级各班之间进行易拉罐收集比赛。
六二班收集了60个易拉罐,六二班比六一班多收集了15个易拉罐。
那么,六一班收集了多少个易拉罐?3.学校开展了绿色校园活动,六年级各班之间进行易拉罐收集比赛。
六二班收集了60个易拉罐,六二班收集的数量是六一班收集量的两倍。
那么,六一班收集了多少个易拉罐?4.学校开展了绿色校园活动,六年级各班之间进行易拉罐收集比赛。
其中,六二班收集了60个易拉罐,六二班共有4个小组。
那么,平均每个小组收集了多少个易拉罐?(使用除法)类型二(几倍多多少/少多少):1.食堂运来了150千克的大米,比运来的面粉少了面粉数量的三倍再减去30千克。
那么,食堂运来了多少千克的面粉?2.吉阳村有84公顷的粮食作物,比经济作物的种植面积多了2公顷,而且是经济作物种植面积的4倍。
那么,吉阳村的经济作物种植面积是多少公顷?3.农场一共收获了1200棵大白菜,每22棵大白菜可以装一筐,装完后还剩下12棵大白菜。
那么,农场一共装了多少筐大白菜?类型三(买东西和卖东西):1.XXX手中有9元钱,其中有10张面值为2角的硬币。
如果还有5角的硬币,那么XXX手中有多少张5角的硬币?2.我买了两套丛书,单价分别为《科学家》每本2.5元和《发明家》每本3元。
两套丛书共花费28元,其中《科学家》这本书买了4本。
那么,我买了多少本《发明家》这本书?3.XXX奶奶拿着她的孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元。
已知易拉罐和饮料瓶每个都是0.15元,易拉罐有20个,那么饮料瓶有多少个?类型四(和倍问题/差倍问题):1.粮店运来了480包大米和面粉,其中大米的包数是面粉的3倍。
人教版七年级上册《一元一次方程》应用题分类练习(一)

《一元一次方程》应用题分类练习(一)一.行程问题:1.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.2.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.3.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?4.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?5.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?二.配套问题:6.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?7.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?三.数字问题:8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.四.数轴问题:10.如图,A,B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP+OQ=5时的运动时间t的值.11.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.五.积分问题:12.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 88D14 6 64E10 10 40(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?13.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进14 10 4 24光明14 9 5 23远大14 m n22卫星14 4 10 a钢铁14 0 14 14 请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.六.方案问题:14.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.15.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).2.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.3.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.4.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.5.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.6.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.7.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.10.解:(1)A、B两点之间的距离是:4﹣(﹣12)=16.故答案为16;(2)分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP+OQ=5,∴12﹣5t+4﹣2t=5,解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP+OQ=5,∴5t﹣12+3(t﹣2)=5,∴t=,综上所述,当OP+OQ=5时的运动时间t的值为或.11.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.12.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.13.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.14.解:(1)设乙工程队要刷x天,由题意得:240x=160(x+20),解得:x=40,240×40=9600(间),答:这个小区共有9600间房间;(2)设甲工程队的工作时间为y天,则乙工程队的工作时间(2y+4)天,由题意得:160y+240y+240(1+25%)×(2y+4﹣y)=9600,解得:y=12,2y+4=2×12+4=28(天),答:乙工程队共粉刷28天;(3)方案一:由甲工程队单独完成,时间:40+20=60(天),60×1600=96000(元);方案二:由乙工程队单独完成需要40天,费用:40×2600=104000(元);方案三:按(2)问方式完成,时间:28天,费用:12×(1600+2600)+(28﹣12)×2600=92000(元),∵28<40<60,且92000<96000<104000,∴方案三最合适,答:选择方案三既省时又省钱的粉刷方案.15.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。
一元二次方程应用题分类

一元二次方程应用题分类变式1】某超市购进了大量饮料,一种饮料平均每天可售出100瓶,每瓶盈利0.5元,为了尽快减少库存,超市决定采取适当的降价措施,调查发现,如果这种饮料的售价每降低0.2元,那么超市平均每天可多售出50瓶,超市要想平均每天盈利150元,每瓶饮料应降价多少元?变式2】某电商平台购进了大量手机,一种手机平均每天可售出50台,每台盈利200元,为了尽快减少库存,电商平台决定采取适当的促销措施,调查发现,如果这种手机的售价每降低100元,那么平均每天可多售出20台,电商平台要想平均每天盈利8000元,每台手机应降价多少元?2.某商场在618购物节期间推出了一款电饭煲,原售价为299元,活动期间降价20元,销售量比平时增加了50%,求活动期间该电饭煲的销售额和销售量的增长率。
变式1】某商场在双11购物节期间推出了一款智能手表,原售价为999元,活动期间降价200元,销售量比平时增加了80%,求活动期间该智能手表的销售额和销售量的增长率。
变式2】某家餐厅在圣诞节期间推出了一款特色套餐,原售价为88元,活动期间降价10元,销售量比平时增加了30%,求活动期间该特色套餐的销售额和销售量的增长率。
变式1:某超市以进货单价40元的商品售价50元,每天可卖出500件。
每涨价1元,销售量减少10件。
如果超市想要每天赚取8000元利润,那么商品的售价应该是多少?改写:某超市以40元进货的商品定价为50元,每天销售量为500件。
每涨价1元,销售量减少10件。
为了每天赚取8000元利润,该商品应该定价为多少?变式2:某种服装每天平均销售20件,每件盈利44元。
每降价1元,每天可多销售5件。
如果要每天盈利1600元,那么每件服装应该降价多少元?改写:某种服装每天平均销售20件,每件盈利44元。
每降价1元,每天可多销售5件。
为了每天盈利1600元,该服装应该降价多少元?变式3:某种新产品进价为120元,试销发现每件售价与产品的日销量存在下表中的数量关系:请根据上表所给数据表述每件售价提高的数量与日销量减少的数量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类列方程解应用题姓名:
类型一(简单的一步方程)
1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?
2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?
3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?
类型三(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。
其中《科学家》这本书买了4本,《发明家》买了多少本?
3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?
类型四(和倍问题 / 差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?
类型五(相遇问题、追及问题、鸡兔同笼)
1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?
2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
4分钟后,小明到达终点,取得了胜利,这时小东落后了他400米。
经过计算发现,小明每分钟骑300m,那么小东每分钟骑多少米?
3、笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?
类型六(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然
3、两个连续自然数的和是153,这两个数
分别是多少?分别是多少?。