2020年上海市浦东新区中考数学二模试卷 (解析版)
(高清版)2020届浦东新区中考数学二模

来源网络,造福学生5 6 91 33 - 2x ⎩2020 届浦东新区中考数学二模一. 选择题1. 下列各数是无理数的是( )A.B .C .22 7D . 0.12. 下列二次根式中,与 3 是同类二次根式的是()A.B .C .D .3. 一次函数 y = -2x + 3 的图像经过( )A. 第一、二、三象限 B . 第二、三、四象限 C . 第一、三、四象限D . 第一、二、四象限4. 如果一个正多边形的中心角等于 72°,那么这个正多边形的内角和为( )A . 360°B . 540°C . 720°D . 900°5. 在梯形 A BCD 中, AD ∥ B C ,那么下列条件中,不能判断它是等腰梯形的是( )A. AB = DCB. ∠DAB = ∠ABCC. ∠ABC = ∠DCBD. AC = DB6. 矩形 ABCD 中, A B = 5 ,BC = 12 ,如果分别以 A 、C 为圆心的两圆外切,且点 D 在圆C 内,点 B 在圆C 外,那么圆 A 的半径 r 的取值范围是( )A . 5 < r <12B . 18 < r < 25C . 1 < r < 8D . 5 < r < 8二. 填空题7. 函数 y =2 x -1的定义域是8. 方程 = x 的根是⎧x + 5 ≥ 19. 不等式组⎨2x < 5 的解集是10. 如果关于 x 的方程x 2 - 2 3x + k = 0 有两个相等的实数根,那么k 的值是11. 一个不透明的口袋中有五个完全相同的小球,分别标号 1,2,3,4,5,从中随机摸出一个小球,其标号是素数的概率是12. 如果点 A (3, y ) 、 B (4, y ) 在反比例函数 y = 2的图像上,那么 yy1 2 x12(填“ > ”、“ < ”或“ =”)13. 某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目,为了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计418来源网络,造福学生3 5该学校 1500 名学生中选择篮球项目的学生约为 名14. 已知向量a 与单位向量e 的方向相反,| a |= 3,那么向量a 用单位向量 e 表示为15. 如图, AB ∥ CD ,如果∠B = 50︒ , ∠D = 20︒ ,那么∠E =16. 在地面上离旗杆底部 15 米处的地方用测角仪测得旗杆顶端的仰角为α ,如果测角仪的高为 1.5 米,那么旗杆的高为(用含α 的三角比表示)17. 在 Rt △ ABC 中,∠ABC = 90︒, AB = 8 , BC = 6 ,点 D 、E 分别在边 AB 、AC 上,如果 D 为 AB中点,且 AD = DE,那么 AE 的长度为AB BC18. 如图,在 Rt △ ABC 中,∠ACB = 90︒ ,∠BAC = 60︒,BC = ,D 是 BC 边上一点,沿直线 AD 翻折△ ABD ,点 B 落在点 E 处,如果∠ABE = 45︒ ,那么 BD 的长为三. 解答题1 119. 计算: ( -1)0+ |1- | +( )-1 + 83. 320. 先化简,再求值:2a -1÷ 2a - 4 - a 2 -1 a a - 2 ,其中a = + 2 . 2020 3来源网络,造福学生21.已知,如图,在Rt△ABC 中,∠ACB =90︒,AC =8 ,BC =16 ,点O 为斜边AB 的中点,以O 为圆心,5 为半径的圆与BC 相交于E 、F 两点,联结OE 、OC .(1)求EF 的长;(2)求∠COE 的正弦值.22.学校开展“书香校园”活动,购买了一批图书,已知购买科普类图书花费了10000 元,购买文学类图书花费了9000 元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5 元,且购买科普类图书的数量比购买文学类图书的数量少100 本,科普类图书平均每本的价格是多少元?23.已知,如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点E ,过点E 作AC 垂线交边BC 于点F ,与AB 的延长线相交于点M ,且AB ⋅AM =AE ⋅AC .求证:(1)四边形ABCD 是矩形;(2)D E 2 =EF ⋅EM .来源网络,造福学生24.在平面直角坐标系xOy 中,已知抛物线y =-x2 +bx +c 与x 轴交于点A和点B(点A在点B 的左侧),与y 轴交于点C(0,3) ,对称轴是直线x =1.(1)求抛物线的表达式;(2)直线MN 平行于x 轴,与抛物线交于M 、N 两点(点M 在点N 的左侧),且MN =3AB ,点C 关4于直线MN 的对称点为E ,求线段OE 的长;(3)点P 是该抛物线上一点,且在第一象限内,联结CP 、EP ,EP 交线段BC 于点F ,当SCPF : SCEF= 1: 2 时,求点P 的坐标.25.已知,如图,在菱形ABCD 中,AC = 2 ,∠B =60︒,点E 为BC 边上的一个动点(与点B 、C 不重合),∠EAF = 60︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G ,设CE =x ,EG =y .(1)求证:△ AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG =EO 时,求x 的值.来源网络,造福学生3 5 2 参考答案一. 选择题 1. A2. C3. D4. B5. B6. C二. 填空题7. x ≠ 18. x = 19. -6 ≤ x < 5210. 311. 3 512. >13. 30014.-3e15. 30°16. (15tan α +1.5)17. 5 或 7518. 2 - 2三. 解答题 19. 5 + 3 .20. 原式=1 a -2 ,当 x = + 2 时,原式= 5 . 521.(1) EF = 6 ;(2) sin ∠COE = 5.522. 科普类图书平均每本的价格是 20 元. 23.(1)证明略;(2)证明略.24.(1) y = -x 2 + 2x + 3 ;(2) OE = 1;(3) P 的坐标为( 1 ,15) 或( 5 , 7) . 22 4 2 425.(1)证明略;(2) y =< x < 2) ;(3) x = . x x 2 - 2x + 4。
2020年上海市浦东新区初三数学二模试卷

2019~2020学年上海市浦东区九年级二模数学试卷(时间:100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分)1.下列各数是无理数的是()(A;(B(C)227;(D)0.1g.2.)(A;(B(C;(D3.一次函数23y x=-+的图像经过()(A)第一、二、三象限;(B)第二、三、四象限;(C)第一、三、四象限;(D)第一、二、三象限;4.如果一个正多边形的中心角等于72︒,那么这个多边形的内角和为()(A)360︒;(B)540︒;(C)720︒;(D)900︒.5.在梯形ABCD中,AD//BC,那么下列条件中,不能判断它是等腰梯形的是()(A)AB DC=;(B)DAB ABC∠=∠;(C)ABC DCB∠=∠;(D)AC DB=.6.矩形ABCD中,5AB=,12BC=,如果分别以A、C为圆心的两圆外切,且点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围是()(A)512r<<;(B)1825r<<;(C)18r<<;(D)58r<<.二、填空题(本大题共12题,每题4分,满分48分)7.函数21yx=-的定义域是___________.8.x=的根是___________.9.不等式组51;2 5.xx+≥-⎧⎨<⎩的解集是___________.10. 如果关于x 的方程2230x x k -+=有两个相等的实数根,那么k 的值是___________. 11. 一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是___________. 12. 如果点1(3,)A y 、2(4,)B y 在反比例函数2y x=的图象上,那么1y _____2y .(填“>”、“<”或“=”)13. 某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为_______名.14. 已知向量a r 与单位向量e r 的方向相反,3a =,那么向量a r 用单位向量e r 表示为_______.15. 如图,AB //CD ,如果50B ∠=︒,20D ∠=︒,那么E ∠=__________.16. 在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位_________________米.(用含α的三角比表示)17. 在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,点D 、E 分别在边AB 、AC 上.如果D 为AB 中点,且AD DEAB BC=,那么AE 的长度为__________. 18. 在Rt ABC △中,90ACB ∠=︒,60BAC ∠=︒,3BC =,D 是BC 边上一点,沿直线AD翻折ABD △,点B 落在点E 处,如果45ABE ∠=︒,那么BD 的长为__________.第15题图 第18题图三、解答题(本大题共7题,满分78分) 19. (本题满分10分)计算:11031(20201)1383-⎛⎫-+-++ ⎪⎝⎭.20. (本题满分10分)先化简,再求值:2224112a aa a a -÷----,其中2a .21. (本题满分10分,其中每小题5分)已知:如图,在Rt ABC △中,90ACB ∠=︒,8AC =,16BC =,点O 位斜边AB 的中点,以O 为圆心,5为半径的圆与BC 相交于E 、F 两点,联结OE 、OC .(1)求EF 的长; (2)求COE ∠的正弦值.22.(本题满分10分)学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?23.(本题满分12分,其中每小题各6分)已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB AM AE AC⋅=⋅.求证:(1)四边形ABCD是矩形;(2)2=⋅.DE EF EM24. (本题满分12分,其中每小题各4分)在平面直角坐标系xOy 中,已知抛物线2y x bx c =-++与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点(0,3)C ,对称轴是直线1x =.(1)求抛物线的表达式;(2)直线MN 平行于x 轴,与抛物线交于M 、N 两点(点M 在点N 的左侧),且34MN AB =,点C 关于直线MN 的对称点为E ,求线段OE 的长; (3)点P 是该抛物线上一点,且在第一象限内,联结CP 、EP ,EP 交线段BC 于点F ,当:1:2CPF CEF S S =△△时,求点P 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:如图,在菱形ABCD中,2B∠=︒.点E为边BC上的一个动点(与AC=,60点B、C不重合),60∠=︒,AF与边CD相交于点F,联结EF交对角线AC于点G.设EAF=.CE x=,EG y(1)求证:AEF△是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG EO=时,求x的值.2019~2020学年上海市浦东区九年级二模数学试卷参考答案。
2020年上海市浦东新区初三数学二模试题(解析版)

2020年上海市浦东新区九年级数学二模试题一、选择题(本大题共6题,每题4分,满分24分)1.下列各数是无理数的是()A. B. C. 227D. 0.1g【答案】A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此判断即可.【详解】解:AB=2,属于有理数,不符合题意;C、227是有理数,不符合题意;D、0.1g是无限循环小数,属于有理数,不符合题意.故选:A.【点睛】此题主要考查了无理数的定义,在初中范围内学习的无理数有:含π的式子,如π,2π等;开方开不尽的数;像0.1010010001…等有这样规律的无限不循环小数.2.)【答案】C【解析】【分析】各项化简后,利用同类二次根式定义判断即可.【详解】解:AB3=C3=D =.故选C .【点睛】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.3.一次函数23y x =-+的图像经过( )A. 第一、二、三象限B. 第二、三、四象限C. 第一、三、四象限D. 第一、二、四象限 【答案】D【解析】【分析】根据一次函数的性质k <0,则可判断出函数图象y 随x 的增大而减小,再根据b >0,则函数图象一定与y 轴正半轴相交,即可得到答案.【详解】解:∵一次函数y=-2x+3中,k=-2<0,则函数图象y 随x 的增大而减小,b=3>0,则函数图象一定与y 轴正半轴相交,∴一次函数y=-2x+3的图象经过第一、二、四象限.故选:D .【点睛】本题考查了一次函数的图象,一次函数y=kx+b 的图象经过的象限由k 、b 的值共同决定,分如下四种情况:①当k >0,b >0时,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0时,函数y=kx+b的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象.4.如果一个正多边形的中心角等于72︒,那么这个多边形的内角和为( )A. 360︒B. 540︒C. 720︒D. 900︒ 【答案】B【解析】【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算可求出这个多边形的边数,然后根据多边形的内角和公式(n-2)×180°可得出结果.【详解】解:根据题意可得,这个多边形的边数为:360÷72=5,∴这个多边形的内角和为:(5-2)×180°=540°.故选:B .【点睛】本题考查的是正多边形的中心角的有关计算以及多边形的内角和公式,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是( )A. AB DC =B. DAB ABC ∠=∠C. ABC DCB ∠=∠D. AC DB =【答案】B【解析】【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形;②对角线相等的梯形是等腰梯形;③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【详解】解:A 、∵四边形ABCD 为梯形,且AD //BC ,AB DC =,∴四边形ABCD 是等腰梯形,故本选项不符合题意;B 、∠DAB =∠ABC ,不能推出四边形ABCD 是等腰梯形,故本选项符合题意;C 、∵四边形ABCD 为梯形,且AD //BC ,∠ABC =∠DCB ,∴四边形ABCD 是等腰梯形,故本选项不符合题意;D 、∵四边形ABCD 为梯形,且AD //BC ,AC DB =,∴四边形ABCD 是等腰梯形,故本选项不符合题意.故选:B .【点睛】本题考查了等腰梯形的判定定理,等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.6.矩形ABCD 中,5AB =,12BC =,如果分别以A 、C 为圆心的两圆外切,且点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围是( )A. 512r <<B. 1825r <<C. 18r <<D. 58r << 【答案】C【解析】分析】先根据勾股定理求得AC=13,然后根据点D 在⊙C 内,点B 在⊙C 外,求得⊙C 的半径R 大于5而小于12,根据两圆外切可得到R+r=13,继而可得出结果.【详解】解:∵在矩形ABCD 中,AB=5,BC=12,∴22AB BC +,∵点D 在⊙C 内,点B 在⊙C 外,∴⊙C 的半径R 的取值范围为:5<R <12,∴当⊙A 和⊙C 外切时,圆心距为13等于两圆半径之和,则R+r=13,又∵5<R<12,则5<13-r<12,∴1<r<8.故选:C.【点睛】此题综合运用了点和圆的位置关系以及两圆的位置关系,同时考查了勾股定理,掌握基本概念和性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.函数2yx1=-的定义域是______.【答案】x≠1.【解析】【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得自变量x的取值范围.【详解】解:根据题意,有x-1≠0,解可得x≠1.故答案为x≠1.【点睛】考查了分式有意义的条件是分母不等于0.8.x=的根是___________.【答案】x=1【解析】【分析】先根据二次根式的性质两边同时平方,得到一个一元二次方程,解出x的值,再根据原方程中x的取值范围进行取舍即可得出结果.x=,∴3-2x≥0且x≥0,解得0≤x≤32.原方程两边同时平方,整理得,x2+2x-3=0,∴(x-1)(x+3)=0,∴x1=1,x2=-3.又0≤x≤32,∴x=1.故答案为:x=1.【点睛】本题考查了二次根式有意义的条件,二次根式的性质以及解一元二次方程,掌握基本概念和解法是解题的关键.9.不等式组5125xx+≥-⎧⎨<⎩的解集是___________.【答案】-6≤x<5 2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.【详解】解:5125xx+≥-⎧⎨<⎩①,②解不等式①得,x≥-6,解不等式②得,x<52,则不等式组的解集为-6≤x<52.故答案为:-6≤x<52.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.如果关于x的方程20x k-+=有两个相等的实数根,那么k的值是___________.【答案】3【解析】【分析】根据一元二次方程有两个相等的实数根,则根的判别式∆=b2-4ac=0,建立关于k的等式,求出k的值即可.【详解】解:∵方程有两个相等的实数根,∴∆=b2-4ac=12-4k=0,解得:k=3.故答案为:3.【点睛】本题主要考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与∆=b2-4ac有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.上面的结论反过来也成立.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是___________. 【答案】35 【解析】【分析】1、2、3、4、5中素数有3个,然后根据概率公式计算即可得解.【详解】解:∵标号为1、2、3、4、5的5个小球中,标号是素数的有3个, ∴标号是素数的概率是35. 故答案为:35. 【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.如果点1(3,)A y 、2(4,)B y 在反比例函数2y x =的图象上,那么1y _____2y .(填“>”、“<”或“=”) 【答案】>【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据A 、B 两点的横坐标判断出两点所在的象限,故可得出结论. 【详解】解:∵反比例函数2y x=中k=2>0, ∴该函数图象的两个分支在第一、三象限,在每一象限内y 随x 的增大而减小,∵0<3<4,∴A 、B 两点在第一象限,∴y 1>y 2.故答案为:>.【点睛】本题主要考查反比例函数的图象与性质,注意反比例函数的增减性是指在同一象限内的情况. 13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为______名.【答案】300【解析】【分析】先计算出调查学生人数中选择篮球项目学生所占的百分比,再利用样本估计总体用总人数乘以选择篮球项目学生所占的百分比即可得出答案.【详解】解:选择篮球项目学生所占的百分比为:1-16%-28%-36%=20%,∴学校1500名学生中选择篮球项目的学生人数约为:1500×20%=300(名).故答案为:300.【点睛】本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.14.已知向量a r 与单位向量er 的方向相反,|a r |=3,那么向量a r 用单位向量e r 表示为_______. 【答案】-3e r【解析】【分析】 由向量a r 与单位向量e r 的方向相反,且长度为3,根据向量的定义,即可求得答案.【详解】解:∵向量a r 与单位向量e r 的方向相反,|a r|=3,∴a r =-3e r. 故答案为:-3e r .【点睛】本题考查的是平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.15.如图,AB //CD ,如果50B ∠=︒,20D ∠=︒,那么E ∠=__________.【答案】30°【解析】【分析】根据平行线的性质,得出∠BCD=∠B=50°,再根据∠BCD 是△CDE 的外角,即可得出∠E .【详解】解:∵AB ∥CD ,∴∠BCD=∠B=50°,又∵∠BCD 是△CDE 的外角,∴∠E=∠BCD-∠D=50°-20°=30°.故答案为:30°.【点睛】本题主要考查了平行线的性质以及三角形外角的性质,掌握基本性质是解题的关键. 16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5米,那么旗杆的高为_________________米.(用含α的三角函数表示)【答案】(1.5+15tan α)【解析】【分析】在Rt △ABC 中,利用正切的定义先求出AC 的长,再由AE=AC+CE 可得出结果.【详解】解:如图,在Rt △ABC 中,tan α=15AC AC BC =, ∴AC=15tan α米,又CE=BD=1.5米,∴旗杆的高AE=(1.5+15tan α)米.故答案为:(1.5+15tan α).【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,点D 、E 分别在边AB 、AC 上.如果D 为AB 中点,且AD DE AB BC =,那么AE 的长度为__________. 【答案】5或1.4【解析】【分析】根据已知比例式先求出DE 的长,再分两种情况:①E 为BC 的中点,可直接得出AE 的长;②点E 在靠近点A 的位置,过点D 作DF ⊥AC 于点F ,证明△ADF ∽△ACB ,得出AD DF AC BC =,从而可得出DF 的长,再分别根据勾股定理得出AF ,EF 的长,从而可得出结果.【详解】解:∵在Rt ABC △中,根据勾股定理得,AC=2210AB BC +=, 又D 是AB 的中点,∴AD=12AB=4, ∵AD DE AB BC=, ∴126DE =,∴DE=3. 分以下两种情况:①当点E 在如图①所示的位置时,即点E 为AC 的中点时,DE=12BC=3, 故此时AE=12AC=5;②点E 在如图②所示的位置时,DE=3,过点D 作DF ⊥AC 于点F ,∵∠AFD=∠B=90°,∠A=∠A,∴△ADF∽△ACB,∴AD DF AC BC=,即4106DF =,∴DF=2.4.∴在Rt△ADF中,AF=22 3.2AD DF-=,在Rt△DEF中,EF=22 1.8DE DF-=,∴AE=AF-EF=1.4.综上所述,AE的长为5或1.4.故答案为:5或1.4.【点睛】本题考查的是相似三角形的判定与性质,中位线的性质以及勾股定理等知识,掌握基本性质并运用分类讨论思想是解题的关键.18.在Rt ABC△中,90ACB∠=︒,60BAC∠=︒,3BC=,D是BC边上一点,沿直线AD翻折ABD△,点B落在点E处,如果45ABE∠=︒,那么BD的长为__________.【答案】3【解析】【分析】先根据题意补全图形,并求出AC,BC的长.再根据折叠的性质可推出△ABF为等腰直角三角形,从而得出BF的长,设CD=x,则3,再证明△ACD∽△BFD,得出AC CDBF DF=,从而可用含x的式子表示出DF的长,又在Rt△BDF中,根据勾股定理可得出关于x的方程,解出x,从而可得出结果.【详解】解:在Rt△ACB中,∠C=90°,∠BAC=60°,BC=3,∴AC=1,AB=2.由折叠的性质可得AF⊥BE,又∠ABF=45°,∴∠BAF=90°-45°=45°,∴AF=BF2,∴2.设CD=x,则3,∵∠C=∠BFD=90°,∠ADC=∠BDF,∴△ACD∽△BFD,∴AC CDBF DF=2xDF=,∴2x.在Rt△BDF中,BD2=DF2+BF2,3)2=2x)2+2)2,整理得,x23,解得33,即333.故答案为:3.【点睛】此题考查了折叠的性质,含30°的直角三角形的性质,勾股定理,相似三角形的判定与性质以及解一元二次方程等知识.注意数形结合思想的应用以及折叠中的对应关系.三、解答题(本大题共7题,满分78分)19.计算:110311)183-⎛⎫+-++ ⎪⎝⎭.【答案】【解析】【分析】先利用零次幂的运算法则,绝对值的意义,负整指数的运算法则以及分数指数幂的运算法则进行化简,再进行加减运算即可.【详解】解:原式.【点睛】本题是实数的混合运算,考查了零次幂的运算法则,绝对值的意义,负整指数的运算法则以及分数指数幂的运算法则,掌握基本运算法则是解题的关键.20.先化简,再求值:2224112a a a a a -÷----,其中2a =.【答案】12a -. 【解析】【分析】先根据分式的运算法则化简分式,再将a 的值代入计算即可.【详解】解:原式=2(1)(1)12(2)2a a a a a a +-⨯---- =122a a a a +--- =12a -,将2a =代入上式得,原式=. 【点睛】本题考查了分式化简求值,掌握基本运算法则是解题的关键.21.已知:如图,在Rt ABC △中,90ACB ∠=︒,8AC =,16BC =,点O 为斜边AB 的中点,以O 为圆心,5为半径的圆与BC 相交于E 、F 两点,联结OE 、OC .(1)求EF的长;(2)求COE∠的正弦值.【答案】(1)6;(2)5.【解析】【分析】(1)过点O作OG⊥EF于点G,根据垂径定理得出EG=FG,然后由O为AB的中点,OG∥AC可推出OG 为△ABC的中位线,从而可求出OG的长,在Rt△OEG中,由勾股定理可求出EG的长,从而可得出EF 的长;(2)首先由直角三角形斜边中线的性质可得出CO=BO,然后根据等腰三角形的性质可得出CG=BG,由(1)中EG=3可得,CE=5=OE,所以∠COE=∠OCE,在Rt△OCG中,求出sin∠OCG的值即可得出结果.【详解】解:(1)过点O作OG⊥EF于点G,∴EG=FG,OG∥AC,又O为AB的中点,∴G为BC的中点,即OG为△ABC的中位线,∴OG=12AC=4,在Rt△OEG中,由勾股定理得,223OE OG-=,∴EF=2EG=6;(2)在Rt△ABC中,由勾股定理得,2285AC BC+=又O为AB的中点,∴5OG⊥BC,∴CG=BG=12BC=8, ∴CE=CG-EG=8-3=5,∴CE=EO ,∴∠COE=∠OCE ,∴sin ∠OCE=5OG CO ==.∴∠COE 【点睛】本题是圆的综合题,考查了垂径定理,中位线的性质,直角三角形斜边中线的性质,三角函数,等腰三角形的性质以及勾股定理等知识,作出辅助线,综合运算基本性质进行推理是解题的关键. 22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?【答案】科普类图书平均每本的价格为20元.【解析】【分析】设科普类图书平均每本的价格为x 元,则文学类图书平均每本的价格为(x-5)元,根据数量=总价÷单价结合用10000元购买科普类图书比用9000元购买文学类图书数量少100本,可得出关于x 的分式方程,解之经检验即可得出结论.【详解】解:设科普类图书平均每本的价格为x 元,则文学类图书平均每本的价格为(x-5)元, 根据题意得:1000090001005x x =--,化简得x 2+5x-500=0, 解得:x=20或x=-25(舍去),经检验,x=20是所列分式方程的解,且符合题意.答:科普类图书平均每本的价格为20元.【点睛】本题考查了分式方程的应用以及解一元二次方程,找准等量关系,正确列出分式方程是解题的关键.23.已知:如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点E ,过点E 作AC 的垂线交边BC 于点F ,与AB 的延长线交于点M ,且AB AM AE AC ⋅=⋅.求证:(1)四边形ABCD 是矩形;(2)2DE EF EM =⋅.【答案】(1)见解析;(2)见解析【解析】【分析】(1)由AB AM AE AC ⋅=⋅可得AB AE AC AM=,又∠CAB=∠EAM ,从而推出△ABC ∽△AEM ,继而推出∠ABC=∠AEM=90°,从而可得出结论;(2)先证明△EFB ∽△EBM ,从而推出EB EF EM EB =,得出2EB EF EM =⋅,又DE=BE ,从而可得出结果.【详解】证明:(1)∵AB AM AE AC ⋅=⋅,∴AB AE AC AM =, 又∠CAB=∠EAM ,∴△ABC ∽△AEM ,∴∠ABC=∠AEM=90°,又四边形ABCD 为平行四边形,∴四边形ABCD 为矩形;(2)∵四边形ABCD 为矩形,∴AE=BE=DE=CE ,∴∠EAB=∠EBA ,又∠EAB+∠M=90°,∠EBA+∠EBF=90°∴∠M=∠EBF ,又∠FEB=∠BEM ,∴△EFB ∽△EBM , ∴EB EF EM EB=,∴2EB EF EM =⋅,∴2DE EF EM =⋅.【点睛】本题考查了相似三角形的判定与性质,矩形的判定与性质以及等腰三角形的性质等知识,综合运用基本性质进行推理是解题的关键.24.在平面直角坐标系xOy 中,已知抛物线2y x bx c =-++与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点(0,3)C ,对称轴是直线1x =.(1)求抛物线的表达式;(2)直线MN 平行于x 轴,与抛物线交于M 、N 两点(点M 在点N 的左侧),且34MN AB =,点C 关于直线MN 的对称点为E ,求线段OE 的长;(3)点P 是该抛物线上一点,且在第一象限内,联结CP 、EP ,EP 交线段BC 于点F ,当:1:2CPF CEF S S =△△时,求点P 的坐标.【答案】(1)y=-x 2+2x+3;(2)12;(3)(12,154)或(52,74). 【解析】【分析】(1)根据抛物线与y 轴交于点(0,3)C 可得出c 的值,然后由对称轴是直线1x =可得出b 的值,从而可求出抛物线的解析式;(2)令y=0得出关于x 的一元二次方程,求出x ,可得出点A 、B 的坐标,从而得到AB 的长,再求出MN 的长,根据抛物线的对称性求出点M 的横坐标,再代入抛物线解析式求出点M 的纵坐标,再根据点的对称可求出OE 的长;(3)过点E 作x 轴的平行线EH ,分别过点F ,P 作EH 的垂线,垂足分别为G ,Q ,则FG ∥PQ ,先证明△EGF ∽△EQP ,可得E E Q F EG FG EP PQ ==,设点F 的坐标为(a ,-a+3),则EG=a ,FG=-a+3-12=-a+52,可用含a 的式子表示P 点的坐标,根据P 在抛物线的图象上,可得关于a 的方程,把a 的值代入P 点坐标,可得答案.【详解】解:(1)将点C (0,3)代入2y x bx c =-++得c=3,又抛物线的对称轴为直线x=1,∴-2b -=1,解得b=2, ∴抛物线的表达式为y=-x 2+2x+3;(2)如图,令y=0,则-x 2+2x+3=0,解得x 1=-1,x 2=3,∴点A (-1,0),B (3,0),∴AB=3-(-1)=4, ∵34MN AB =,∴MN=34×4=3, 根据二次函数的对称性,点M 的横坐标为31122-=-, 代入二次函数表达式得,y=22()3211724⎛⎫--⨯-++= ⎪⎝⎭, ∴点M 的坐标为17,24⎛⎫- ⎪⎝⎭, 又点C 的坐标为(0,3),点C 与点E 关于直线MN 对称,∴CE=2×(3-74)=52, ∴OE=OC-CE=12; (3)如图,过点E 作x 轴的平行线EH ,分别过点F ,P 作EH 的垂线,垂足分别为G ,Q ,则FG ∥PQ ,设直线BC 的解析式为y=kx+b (k ≠0),则303k b b +=⎧⎨=⎩,解得13k b =-⎧⎨=⎩, ∴直线BC 的解析式为y=-x+3,设点F 的坐标为(a ,-a+3),则EG=a ,FG=-a+3-12=-a+52. ∵FG ∥PQ ,∴△EGF ∽△EQP , ∴E E Q F EG FG EP PQ==. ∵:1:2CPF CEF S S =△△,∴FP:EF=1:2,∴EF:EP=2:3. ∴23EQ EF EG FG EP PQ ===, ∴EQ=32EG=32a ,PQ=32FG=32(-a+52)=-32a+154, ∴x P =32a ,y P =-32a+154+12=-32a+174,即点P 的坐标为(32a ,-32a+174), 又点P 在抛物线y=-x 2+2x+3上,∴-32a+174=-94a 2+3a+3,化简得9a 2-18a+5=0, 解得a=13或a=53,符合题意, ∴点P 的坐标为(12,154)或(52,74). 【点睛】本题是二次函数综合题,考查了利用待定系数法求函数解析式,相似三角形的判定与性质,轴对称的性质以及解一元二次方程等知识,综合运用相关性质是解题的关键.25.已知:如图,在菱形ABCD 中,2AC =,60B ∠=︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF V 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO =时,求x 的值.【答案】(1)见解析;(2)y=43224x x x -+(0<x <2);(32. 【解析】【分析】(1)首先由△ABC 是等边三角形,即可得AB=AC ,求得∠ACF=∠B=60°,然后利由∠BAC=∠EAF=60°,可证明∠BAE=∠CAF ,从而可证得△AEB ≌△AFC ,即可得AE=AF ,证得△AEF 是等边三角形; (2)过点E 作EH ⊥AC 于点H ,过点F 作FM ⊥AC 于点M ,先用含x 的代数式表示出HM ,然后证明△EGH ∽△FGM ,得出2GM FM x HG EH x-==,从而可用含x 的代数式表示出HG ,最后在Rt △EHG 中,利用勾股定理可得出x ,y 之间的关系;(3)先用含x 的代数式表示出CG 的长,然后证明△COE ∽△CGF ,得出CO CE CG CF=,从而可得出关于x 的方程,解出x 的值即可.【详解】(1)证明:∵四边形ABCD 菱形,∴AB=BC=CD=AD ,∠B=∠D=60°,∴△ABC ,△ACD 都是等边三角形,∴AB=AC ,∠B=∠ACF=60°,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF ,∴△BAE ≌△CAF (ASA ),∴AE=AF ,又∠EAF=60°,∴△AEF 为等边三角形.(2)解:过点E 作EH ⊥AC 于点H ,过点F 作FM ⊥AC 于点M ,∵∠ECH=60°,∴CH=2x ,EH=3x , ∵∠FCM=60°,由(1)知,CF=BE=2-x ,∴CM=12(2-x ),FM=32(2-x ), ∴HM=CH-CM=2x -12(2-x )=x-1. ∵∠EHG=∠FMG=90°,∠EGH=∠FGM ,∴△EGH ∽△FGM ,∴2GM FM x HG EH x -==,∴2HM HG x HG x--=, ∴12x HG x HG x---=,∴HG=(1)2x x -. 在Rt △EHG 中,EG 2=EH 2+HG 2,∴y 2=(3x )2+[(1)2x x -]2,∴y 2=432244x x x -+,∴y=432242x x x -+(舍去负值), 故y 关于x 的解析式为y=43224x x x -+(0<x <2). (3)解:如图,∵O 为AC 的中点,∴CO=12AC=1. ∵EO=EG ,EH ⊥OC ,∴OH=GH ,∠EOG=∠EGO ,∴∠CGF=∠EOG .∵∠ECG=60°,EC=x ,∴CH=2x ,∴OH=GH=OC-CH=1-2x ,∴OG=2OH=2-x , ∴CG=OC-OG=x-1. ∵∠CGF=∠EOC ,∠ECO=∠GCF=60°,∴△COE ∽△CGF , ∴CO CE CG CF =,∴112x x x=--,整理得x 2=2,∴,经检验x 是原方程的解.故x .【点睛】此题考查了菱形的性质、相似三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的性质等知识.准确作出辅助线,综合运用相关性质是解题的关键.。
上海市浦东新区2019-2020学年中考第二次模拟数学试题含解析

上海市浦东新区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH2.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°3.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.4.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°5.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A.B.C.D.6.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.57.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小8.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.149.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO 与∠DCO的度数和是()A.60°B.45°C.35°D.30°10.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.4511.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.2312.下列图案中,是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.14.一个圆的半径为2,弦长是3,求这条弦所对的圆周角是_____.15.如图,6的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.16.方程242x-=的根是__________.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.18.如图,角α的一边在x轴上,另一边为射线OP,点P(2,23),则tanα=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?20.(6分)先化简,再求值:(1x﹣21x-)÷2212x xx x+-+,其中x的值从不等式组11022(1)xx x⎧+⎪⎨⎪-≤⎩>的整数解中选取.21.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.23.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
2020年上海市浦东新区中考数学二模试卷 (解析版)

2020年上海市浦东新区中考数学二模试卷一、选择题(共6个小题)1.下列各数是无理数的是()A.B.C.D.0.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限4.如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°5.在梯形ABCD中,AD∥BC,那么下列条件中,不能判断它是等腰梯形的是()A.AB=DC B.∠DAB=∠ABC C.∠ABC=∠DCB D.AC=DB6.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C 内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12B.18<r<25C.1<r<8D.5<r<8二、填空题(本大题共12题,每题4分,满分48分)7.函数的定义域是.8.方程=x的根是.9.不等式组的解集是.10.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是.12.如果点A(3,y1)、B(4,y2)在反比例函数y=的图象上,那么y1y2.(填“>”、“<”或“=”)13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为名.14.已知向量与单位向量的方向相反,||=3,那么向量用单位向量表示为.15.如图,AB∥CD,如果∠B=50°,∠D=20°,那么∠E=.16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位米.(用含α的三角比表示)17.在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D、E分别在边AB、AC上.如果D为AB中点,且=,那么AE的长度为.18.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,D是BC边上一点,沿直线AD翻折△ABD,点B落在点E处,如果∠ABE=45°,那么BD的长为.三、解答题(本大题共7题,满分78分)19.计算:(﹣1)0+|1﹣|+()﹣1+8.20.先化简,再求值:÷﹣,其中a=+2.21.已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?23.已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB•AM=AE•AC.求证:(1)四边形ABCD是矩形;(2)DE2=EF•EM.24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C(0,3),对称轴是直线x=1.(1)求抛物线的表达式;(2)直线MN平行于x轴,与抛物线交于M、N两点(点M在点N的左侧),且MN =AB,点C关于直线MN的对称点为E,求线段OE的长;(3)点P是该抛物线上一点,且在第一象限内,联结CP、EP,EP交线段BC于点F,当S△CPF:S△CEF=1:2时,求点P的坐标.25.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.下列各数是无理数的是()A.B.C.D.0.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是无理数;B.,是整数,属于有理数;C.是分数,属于有理数;D.是循环小数,属于有理数.故选:A.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】各项化简后,利用同类二次根式定义判断即可.解:与是同类二次根式的是,故选:C.3.一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限【分析】根据一次函数的性质即可求得.解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限.故选:D.4.如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可求得边数,然后代入内角和公式求解即可.解:这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B.5.在梯形ABCD中,AD∥BC,那么下列条件中,不能判断它是等腰梯形的是()A.AB=DC B.∠DAB=∠ABC C.∠ABC=∠DCB D.AC=DB【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.解:A、∵AD∥BC,AB=DC,∴梯形ABCD是等腰梯形,故本选项错误;B、根据∠DAB=∠ABC,不能推出四边形ABCD是等腰梯形,故本选项正确;C、∵∠ABC=∠DCB,∴BD=BC,∴四边形ABCD是等腰梯形,故本选项错误;D、∵AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项错误.故选:B.6.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C 内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12B.18<r<25C.1<r<8D.5<r<8【分析】首先根据点D在⊙C内,点B在⊙C外,求得⊙C的半径是大于5而小于12;再根据勾股定理求得AC=13,最后根据两圆外切的位置关系得到其数量关系.解:∵在矩形ABCD中,AB=5,BC=12,∴AC==13,∵点D在⊙C内,点B在⊙C外,∴⊙C的半径R的取值范围为:5<R<12,当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是R c,即R c+r=13,又∵5<R c<12,则r的取值范围是1<r<8.故选:C.二、填空题(本大题共12题,每题4分,满分48分)7.函数的定义域是x≠1.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得自变量x的取值范围.解:根据题意,有x﹣1≠0,解可得x≠1.故答案为x≠1.8.方程=x的根是1.【分析】此题需把方程两边平方去根号后求解,然后把求得的值进行检验即可得出答案.解:两边平方得:3﹣2x=x2,整理得:x2+2x﹣3=0,(x+3)(x﹣1)=0,解得:x1=﹣3,x=1,检验:当x=﹣3时,原方程的左边≠右边,当x=1时,原方程的左边=右边,则x=1是原方程的根.故答案为:1.9.不等式组的解集是﹣6≤x<.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x+5≥﹣1,得:x≥﹣6,解不等式2x<5,得:x<,则不等式组的解集为﹣6≤x<,故答案为:﹣6≤x<.10.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为3.【分析】根据判别式的意义得到△=(﹣2)2﹣4k=0,然后解关于k的一元一次方程即可.解:根据题意得△=(﹣2)2﹣4k=0,解得k=3.故答案为:3.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是.【分析】从袋子中随机抽取1个小球共有5种等可能结果,其中抽出的标号是素数的有2、3、5这3种结果,再利用概率公式可得.解:从标号为1、2、3、4、5的5个小球中随机抽取1个小球共有5种等可能结果,其中抽出的标号是素数的有2、3、5这3种结果,所以从中随机抽取一个小球,其标号是素数的概率是,故答案为:.12.如果点A(3,y1)、B(4,y2)在反比例函数y=的图象上,那么y1>y2.(填“>”、“<”或“=”)【分析】反比例函数y=的图象在一、三象限,在每个象限内,y随x的增大而减小,判断出y的值的大小关系.解:∵k=2>0,∴反比例函数y=的图象在一、三象限,且在每个象限内y随x的增大而减小,∵A(3,y1)、B(4,y2)同在第一象限,且3<4,∴y1>y2,故答案为>.13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为300名.【分析】用整体1减去乒乓球、羽毛球、足球所占的百分比,求出篮球所占的百分比,再用该学校1500名学生乘以篮球所占的百分比即可得出答案.解:根据题意得:1500×(1﹣16%﹣28%﹣36%)=300(名),答:该学校1500名学生中选择篮球项目的学生约为300名;故答案为:300.14.已知向量与单位向量的方向相反,||=3,那么向量用单位向量表示为﹣3.【分析】根据向量的定义,确定模的大小,以及方向即可.解:∵向量与单位向量的方向相反,||=3,∴=﹣3,故答案为﹣3.15.如图,AB∥CD,如果∠B=50°,∠D=20°,那么∠E=30°.【分析】根据平行线的性质得出∠BCD=50°,利用三角形外角性质解答即可.解:∵AB∥CD,∴∠BCD=∠B=50°,∵∠D=20°,∴∠E=∠BCD﹣∠D=50°﹣20°=30°,故答案为:30°.16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位(1.5+15tanα)米.(用含α的三角比表示)【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.解:根据题意可得:旗杆比仪器高15tanα,测角仪高为1.5米,故旗杆的高为(1.5+15tanα)米.故答案为:(1.5+15tanα)17.在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D、E分别在边AB、AC上.如果D为AB中点,且=,那么AE的长度为5或.【分析】先求出DE的长,分两种情况讨论,利用相似三角形的性质和等腰三角形的性质可求解.解:∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵D为AB中点,∴AD=4,∵,∴∴DE=3,如图,∠ADE=∠ABC=90°时,∴△ADE∽△ABC,∴∴AE=5,如图,∠ADE≠∠ABC时,取AC中点H,连接DH,过点D作DF⊥AC于F,∵点D是AB中点,点H是AC的中点,∴DH=BC=3,AH=HC=5,DH∥BC,∴∠ADH=∠ABC=90°,∵S△ADH=×AH×DF=×AD×DH,∴5×DF=12,∴DF=,∴FH===,∵DE=DH,DF⊥AC,∴EF=FH=,∴AE=AH﹣﹣=,故答案为:5或.18.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,D是BC边上一点,沿直线AD翻折△ABD,点B落在点E处,如果∠ABE=45°,那么BD的长为2.【分析】过D作DF⊥AB于F,根据折叠可得∠ADF=∠DAF=45°,设DF=AF=x,则BF=x,BD=2x,根据AB=2,即可得到x的值,进而得出BD的长.解:如图所示,过D作DF⊥AB于F,∵Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,∴AB=2,∠ABC=30°,由折叠可得,AB=AE,∠BAD=∠EAD,∴∠ABE=∠AEB=45°,∴∠BAE=90°,∴∠BAD=∠BAE=45°,∴∠ADF=∠DAF=45°,∴AF=DF,设DF=AF=x,则BF=x,BD=2x,∵AB=AF+BF,∴2=x+x,解得x=﹣1,∴BD=2x=2,故答案为:2.三、解答题(本大题共7题,满分78分)19.计算:(﹣1)0+|1﹣|+()﹣1+8.【分析】直接利用绝对值的性质、负整数指数幂的性质、分数指数幂的性质分别化简得出答案.解:原式=1+﹣1+3+2=5.20.先化简,再求值:÷﹣,其中a=+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:原式=•﹣=﹣=,当a=+2时,原式===.21.已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.【分析】(1)作OM⊥EF于M,如图,根据垂径定理得到EM=FM,利用三角形中位线性质得到OM=AC=4,然后利用勾股定理计算出EM,从而得到EF的长;(2)利用CE=OE=5得到∠OEC=∠OCE,在利用勾股定理计算出OC=4,然后利用正弦的定义求出sin∠OCM,从而得到∠COE的正弦值.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?【分析】根据题意表示出科普类图书和文学类图书的平均价格,再利用购买科普类图书的数量比购买文学类图书数量少100本得出等式求出答案.解:设科普类图书平均每本的价格是x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意可得:=﹣100,解得:x=20,经检验得:x=20是原方程的根,答:科普类图书平均每本的价格是20元.23.已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB•AM=AE•AC.求证:(1)四边形ABCD是矩形;(2)DE2=EF•EM.【分析】(1)根据相似三角形的性质与判定可知∠AME=∠ACB,从而可得∠ACB+∠BAC=90°,所以▱ABCD是矩形.(2)由(1)可知:DE=EC,AE=EC,易证∠CME=∠AME=∠ECB,所以△CEF∽△MEC,所以,从而得证.解:(1)∵AB•AM=AE•AC,∴=,∵∠CAB=∠CAB,∴△ACB∽△AME,∴∠AME=∠ACB,由于∠AME+∠BAC=90°,则∠ACB+∠BAC=90°,∴▱ABCD是矩形.(2)由(1)可知:DE=EC,AE=EC,∵ME⊥AC,∴ME平分∠AMC,∴∠CME=∠AME=∠ECB,∵∠MEC=∠FEC=90°,∴△CEF∽△MEC,∴,∴EC2=EF•EM,即DE2=EF•EM24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C(0,3),对称轴是直线x=1.(1)求抛物线的表达式;(2)直线MN平行于x轴,与抛物线交于M、N两点(点M在点N的左侧),且MN =AB,点C关于直线MN的对称点为E,求线段OE的长;(3)点P是该抛物线上一点,且在第一象限内,联结CP、EP,EP交线段BC于点F,当S△CPF:S△CEF=1:2时,求点P的坐标.【分析】(1)根据对称轴为直线x=1求出b=2,即可求解;(2)由抛物线的对称性知,QM=QN=MN=,则点N(,),即MN在直线y=上,即可求解;(3)S△CPF:S△CEF=1:2,即=,而△PP′F∽△ECF,则,即,即可求解.解:(1)由题意得:﹣,解得:b=2,∵抛物线与y轴交于点C(0,3),故c=3,故抛物线的表达式为:y=﹣x2+2x+3;(2)对于y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0),则AB=4,MN=AB=3,如图1,作抛物线的对称轴交MN于点Q,由抛物线的对称性知,QM=QN=MN=,则点N的横坐标为1+=,故点N(,),即MN在直线y=上,则点C关于MN的对称点E的坐标为:(0,),即OE=;(3)过点P作PP′∥OC交BC于点P′,设直线BC的表达式为:y=mx+n,则,解得:,故直线BC的表达式为:y=﹣x+3,设点P(a,﹣a2+2a+3),则点P′(a,﹣a+3),则PP′=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+3a,∵S△CPF:S△CEF=1:2,即=,∵PP′∥CE,∴△PP′F∽△ECF,∴,即,解得:a=或,故点P的坐标为:(,)或(,).25.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.【分析】(1)根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠BAC=60°,AC=AB,易得∠ACF=60°,∠BAE=∠CAF,然后利用“ASA”可证明△AEB≌△AFC,得出AE=AF,则结论可得出;(2)过点A作AH⊥BC于点H,求出AE,证明△BAE∽△CEG,得出,则可得出答案;(3)证明△COE∽△CEA,由比例线段可得出答案.【解答】(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.。
【附5套中考模拟试卷】上海市浦东新区2019-2020学年中考数学二模考试卷含解析

上海市浦东新区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.63.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<44.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.35.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)26.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.16B.13C.12D.237.下列图案是轴对称图形的是()A.B.C.D.8.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差97)A7B.7C 7D.710.如果a﹣b=5,那么代数式(22a bab+﹣2)•aba b-的值是()A .﹣15B .15C .﹣5D .511.已知x 2+mx+25是完全平方式,则m 的值为( )A .10B .±10C .20D .±2012.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 14.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x 轴、y 轴的正半轴上,点Q 在对角线OB 上,若OQ=OC ,则点Q 的坐标为_______.15.已知扇形AOB 的半径OA=4,圆心角为90°,则扇形AOB 的面积为_________.16.因式分解:3a 3﹣3a=_____.17.半径是6cm 的圆内接正三角形的边长是_____cm .18.反比例函数k y x=的图象经过点()1,6和(),3m -,则m = ______ . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20.(6分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC =17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE =10米,现有一老人坐在MN 这层台阶上晒太阳.(3取1.73) (1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.21.(6分)已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K .(1)如图1,求证:KE =GE ;(2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sinE =35,AK =10,求CN 的长.22.(8分)解分式方程:28124x x x -=-- 23.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?24.(10分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,点D 在AB 上,DE ⊥EB . (1)求证:AC 是△BDE 的外接圆的切线;(2)若AD=2,AE=6,求EC 的长.25.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA=4,OC=3,若抛物线经过O ,A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点D ,E 的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB 的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点A ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.26.(12分)如图,在ABC △中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE BC ⊥于点E ,且BDE A ∠=∠.(1)判断DE 与⊙O 的位置关系并说明理由;(2)若16AC =,3tan 4A =,求⊙O 的半径.27.(12分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限.详解:∵点A在第三象限,∴a<0,-b<0,即a<0,b>0,∴点B在第四象限,故选D.点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.2.C【解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.3.B【解析】【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【解析】【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.5.B【解析】【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.6.D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263,故选D.7.C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.8.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.B【解析】)=0,故选B.10.D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(22a bab+﹣2)•aba b-=222·a b ab abab a b+--=()2·a b ab ab a b--=a-b,当a-b=5时,原式=5,故选D.11.B【解析】【分析】根据完全平方式的特点求解:a 2±2ab+b 2. 【详解】∵x 2+mx+25是完全平方式,∴m=±10,故选B .【点睛】本题考查了完全平方公式:a 2±2ab+b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍.12.D【解析】【分析】根据中心对称图形的定义解答即可.【详解】选项A 不是中心对称图形;选项B 不是中心对称图形;选项C 不是中心对称图形;选项D 是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.k <5且k≠1.【解析】试题解析:∵关于x 的一元二次方程()21410k x x -++=有两个不相等的实数根, ()2104410.k k -≠⎧∴⎨∆=-->⎩解得:5k <且1k ≠.故答案为5k <且1k ≠.14. (,)【解析】如图,过点Q 作QD ⊥OA 于点D ,∴∠QDO=90°.∵四边形OABC是正方形,且边长为2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ==.∴点Q的坐标为.15.4π【解析】根据扇形的面积公式可得:扇形AOB的面积为29044360ππ⨯=,故答案为4π.16.3a(a+1)(a﹣1).【解析】【分析】首先提取公因式3a,进而利用平方差公式分解因式得出答案.【详解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案为3a(a+1)(a﹣1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17.3【解析】【分析】根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.【详解】如图所示,OB=OA=6,∵△ABC 是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO 是∠ABC 的平分线;∠OBD=60°×12=30°, BD=cos30°×6=6×323 根据垂径定理,BC=2×3, 故答案为3.【点睛】本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.18.-1【解析】【分析】先把点(1,6)代入反比例函数y=k x ,求出k 的值,进而可得出反比例函数的解析式,再把点(m ,-3)代入即可得出m 的值.【详解】解:∵反比例函数y=k x 的图象经过点(1,6), ∴6=1k ,解得k=6, ∴反比例函数的解析式为y=6x . ∵点(m ,-3)在此函数图象上上,∴-3=6m,解得m=-1. 故答案为-1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.20.(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.【解析】试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在Rt△ABE中,∵,∴BA=10tan60°=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.∵∠BFA=45°,∴,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大楼的影子落在台阶MC 这个侧面上.∴小猫仍可晒到太阳.考点:解直角三角形.21.(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3)201013. 【解析】 试题分析: (1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ;(3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AH HK=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH ,在Rt △APN 中,由tan ∠CAH=43PN AP =,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP=tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长.试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G ,∴OG ⊥EF ,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=12∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=35AHAC=,设AH=3a,AC=5a,则224AC CH a-=,tan∠CAH=43 CHAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK=3,2210AH HK a+=,∵10,1010a=∴a=1.AC=5,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=5 13,∴CN=22PN CP+=410b⋅=2010 13.22.无解【解析】【分析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括号,得:2x+2x-2x+4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.23.(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元.【解析】【分析】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.【详解】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:661, 32x x+=解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=1.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为24000160023⨯=+(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)证明见解析;(2)1.【解析】试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.试题解析:(1)证明:取BD的中点0,连结OE,如图,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+2)2,解得r=2,∵OE∥BC,∴,即,∴CE=1.考点:1、切线的判定;2、勾股定理25.(1)y=﹣34x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)6+2326+215,﹣2).【解析】【分析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN 且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F 的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.【详解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣34,∴抛物线解析式为y=﹣34(x﹣2)2+3,即y=﹣34x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形;(3)存在.理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得341k bb=+⎧⎨=⎩,解得1k2b1⎧=⎪⎨⎪=⎩,∴直线BE解析式为y=12x+1,当x=2时,y=2,∴F(2,2),①当AF 为平行四边形的一边时,则M 到x 轴的距离与F 到x 轴的距离相等,即M 到x 轴的距离为2, ∴点M 的纵坐标为2或﹣2,在y=﹣34x 2+3x 中,令y=2可得2=﹣34x 2+3x ,解得 ∵点M 在抛物线对称轴右侧,∴x >2,∴∴M 点坐标为(3,2);在y=﹣34x 2+3x 中,令y=﹣2可得﹣2=﹣34x 2+3x ,解得x=63±, ∵点M 在抛物线对称轴右侧,∴x >2,∴∴M 2); ②当AF 为平行四边形的对角线时,∵A (4,0),F (2,2),∴线段AF 的中点为(3,1),即平行四边形的对称中心为(3,1),设M (t ,﹣34t 2+3t ),N (x ,0),则﹣34t 2+3t=2,解得 ∵点M 在抛物线对称轴右侧,∴x >2,∵t >2,∴t=3,∴M 2);综上可知存在满足条件的点M2,﹣2).【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.26.(1)DE与⊙O相切,详见解析;(2)5【解析】【分析】(1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE =90°,说明相切的位置关系。
上海市浦东新区2020年中考数学二模试卷含答案解析

上海市浦东新区2020年中考数学二模试卷(解析版)一、选择题:(本大题共6题,每题4分,满分24分)1.2020的相反数是()A.B.﹣2020 C.﹣D.20202.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|=.8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2=.10.计算:3()+2(﹣2)=.11.方程的根是.12.已知函数f(x)=,那么f()=.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20200++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.2020年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2020的相反数是()A.B.﹣2020 C.﹣D.2020【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2020的相反数是﹣2020.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y随着x的增大而增大;B、y=x2﹣1中a=1>0,∴函数y=x2﹣1的图象在第二、三象限内y随着x的增大而减小,在第一、四象限内y随着x的增大而增大;C、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y随着x的增大而减小;D、y=﹣x﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x﹣1的图象在第二、三、四象限内y随着x的增大而减小.故选A.【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为:=.故选A.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|=.【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3.【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2=2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)=﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4.【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()=3.【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为18米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720.【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5.【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R ﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=4.【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b 的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2020•浦东新区二模)计算:2sin45°﹣20200++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2020•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2020•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD 的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2020•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b 得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2020•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即:=,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即:=,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2020•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB 的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2020•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.。
浦东新区2020学年度第二学期初三教学质量检测数学试卷(含答案)

浦东新区2020学年度第二学期初三教学质量检测初三数学试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.C ; 3.B ; 4.A ; 5.B ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.81.7562310⨯; 8.3b ; 9.(2)(2)x x +-; 10.94k <-; 11.1x =-; 12.(2,2);13.3; 14.1:9; 15.32a b =-; 16.75; 17.2; 18.3.三、解答题:(本大题共7题,满分78分)19.解: 原式=13314++ ………………………………………(各2分) =34-. …………………………………………………………………(2分) 20.解:由①得 26x >-. …………………………………………………………(1分)∴3x >-. …………………………………………………………(2分)由②得 29x ≤. ……………………………………………………………(1分)∴92x ≤.……………………………………………………………(2分) ∴原不等式组的解集是932x -<≤. ………………………………………(2分) ∴原不等式组的自然数解为0,1,2,3,4. ………………………………(2分) (注:漏“0”扣1分)21. 解:(1)∵直线12y x =与直线1y =-相交于点A , ∴设点A 的坐标为(,1)x -.…………………………………………………(1分)把1y =-代入直线12y x =,解得2x =-.∴点A 的坐标为(2,1)--. (1分) ∵反比例函数(0)k y k x =≠图像经过点A , ∴12k -=-. 解得2k =.(2分) ∴反比例函数解析式为2y x=.……………………………………………(1分) (2)过点B 作BH ∥y 轴,交直线AC 于点H .∵点C 在直线1y =-上且横坐标为3,∴点C 的坐标为(3,1)-.………(1分) ∵反比例函数2y x =与直线12y x =的另一个交点为点B , ∴点A 、B 关于原点对称.∴点B 的坐标为(2,1).………………………(1分) ∵BH ∥y 轴,AC ∥x 轴,∴点H 的坐标为(2,1)-.………………………(2分) ∴BH =2,CH =1,在Rt △BHC 中,∠BHC=90°,BH =2,CH =1,∴tan 2BH ACB CH∠==.(1分)22.解:(1)联结AB 并延长交QD 于点M ,延长BA 交PC 于点N .∵PC 和QD 均垂直于地面,点A 与B 在同一水平线上,且它们之间距离为16cm , ∴MN 即为所求PC 和QD 之间的距离,AN ⊥PC ,BM ⊥QD ,AB =16. (1分) ∴∠ANC=90°,∠BMD=90°. …………………………………………(1分) 在Rt △ANC 中,∠ANC=90°,∠ACN=30°,AC =54,∴1272AN AC ==. 同理可得1272BM BD ==. ………………………………………………(1分) ∴MN =AN +AB +BM =27+16+27=70cm .…………………………………… (1分) 答:闸机通道的宽度,即PC 和QD 之间的距离为70cm .(2)①设9:00—10:00时段的入园游客人数为x 人.………………(1分) 根据题意可得3000480038002500510042006x +++++=.…………(1分) 解得x=6000.……………………………………………………(1分)答:9:00—10:00时段的入园游客人数为6000人.②9:00—10:00时段入园游客超过5000人.……………………………(1分) 12:00—13:00在园内游客总数超过20000人.…………………………(1分) 13:00—14:00时段入园游客超过5000人或在园内游客总数超过20000人.(1分)23. 证明:(1)∵CE ⊥CD ,∴∠ECD=90°.………………………………………(1分)∵AB ∥DC ,∴∠ECD+∠AEC=90°.∴∠AEC=90°. ………………(1分) ∴∠AEO+∠OEC=90°,∠OAE+∠OCE=90°. ………………………(1分) ∵OC =OE ,∴∠OEC=∠OCE .……………………………………………(1分) ∴∠AEO=∠OAE .∴OA =OE .……………………………………………………………………(1分) 即 12OE AC =.(2)∵AB ∥DC ,∴CD CO AB AO=. …………………………………………(1分) ∵CO =AO ,∴CD=AB . …………………………………………………(1分) 又∵AB ∥DC ,∴四边形ABCD 是平行四边形.…………………………(1分) ∵AB ∥DC ,∴∠CDB =∠ABD .……………………………………………(1分) ∵DB 平分∠ADC ,∴∠CDB =∠ADB . …………………………………(1分) ∴∠ABD =∠ADB .∴AB=AD . ……………………………………………(1分) 又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.……………(1分)24. 解:(1)∵点A 、B 在x 轴上(点A 在点B 的左侧),且到点M (-3, 0)的距离为5,∴点A 坐标为(-8, 0),点B 坐标为(2, 0). ……………………… (各1分) ∵点C 在y 轴上,设点C 的坐标为(0,y ) .由点C 到点M (-3, 0)距离为55=.解得4y =±.∵点C 在y 轴正半轴上,∴点C 的坐标为(0,4).………………………(1分)(2) ∵抛物线2y ax bx c =++经过点A (-8, 0)、B (2, 0)、C (0, 4).∴6480,420,4.a b c a b c c -+=⎧⎪++=⎨⎪=⎩ ……………………………………………………(3分) 解得a =14-,b =32-,c =4. ∴抛物线的表达式是213442y x x =--+. …………………………(1分) ∴抛物线的顶点P 的坐标为(-3,254).…………………………………(1分)(3)过点A 作AQ 1⊥AP 与抛物线的对称轴3x =-相交于点Q 1.此时以Q 1为圆心,Q 1A 为半径的圆与线段AP 相切于点A .∵∠MP A+∠MAP=90°,∠MAP+∠MAQ 1=90°. ∴∠MP A=∠MAQ 1. ∴tan ∠MP A=tan ∠MAQ 1.∴1AM Q M PM AM=. ∵AM =5,PM =254,∴Q 1M =4.即点Q 1坐标为(0,-4).…………………(1分) 作AP 的中垂线与AP 相交于点N ,与对称轴3x =-相交于点Q 2,则PN=12P A . 此时以Q 2为圆心,Q 2A 为半径的圆经过点A 、点P .∵AQ 1⊥AP ,NQ 2⊥AP ,∴∠Q 1AP=∠Q 2NP=90°.∴AQ 1∥NQ 2. ∴1212PQ PN PQ PA ==. ∵点P 的坐标为(-3,254),点Q 1的坐标为(-3,-4),∴PQ 1=414.…(1分) ∴PQ 2=418.∴Q 2M =PM -PQ 2=254-418=98.即点Q 2坐标为(0,98). (1分) ∴当以点Q 为圆心,QA 为半径的圆与线段AP 有两个交点时,点Q 纵坐标取值范围是948y -<≤.…………………………………………………………(1分)25. 解:(1)①过点O 作OH ⊥BC ,垂足为点H .∵OB =OC ,OH ⊥BC ,∴BH=12BOC =2∠BOH .在Rt △BOH 中,BO=2,sin BH BOH BO ∠==. ∴∠BOH =60°,∠OBH =30°.∴∠BOC =120°,∠OCB =30°. … (1分) ∵AB 、CD 是⊙O 内接正n 边形的边,AD 是⊙O 内接正(n+2)边形的边, ∴∠AOB =∠DOC=360n ,∠AOD=3602n +.……………………………… (1分) ∴3603603601203602n n n +++=+.…………………………………………(1分) 解得n =4,n =32-(不符合题意,舍去). 经检验n =4是原方程的解且符合题意.∴∠AOB =360n=90°.………………………………………………………(1分)在Rt △AOB 中,∠AOB =90°,AO =BO =2,∴AB =………………(1分)②∵△AOB 是等腰直角三角形,∴∠ABE =45°.∵OA =OC ,∠AOC=360°-∠AOB -∠BOC=360°-90°-120°=150°, ∴∠ACO =15°. ∴∠ACB =∠ACO+∠OCB=15°+30°=45°.∴∠ABE =∠ACB . …………………………………………………………(1分) ∵∠BAE =∠CAB ,∴△ABE ∽△ACB . ………………………………………………………(1分) 过点B 作BG ⊥AC ,垂足为点G .在Rt △BGC 中,∠BGC =90°,∠ACB =45°,BC =BG =CG在Rt △ABG 中,∠BGA =90°,BG AB =AG∴AC=AG +CG 1分)∵△ABE ∽△ACB ,∴2AB AE AC =g .即2AE =.解得AE =………………………………………………………(1分) ∴4AE AC=-……………………………………………………………(1分)(2)设∠AEB =x °,则∠ECB =(x -30)°,∠ECO =∠EAO =(x -60)°.(1分) ①如果AO =AE ,那么∠AOE =∠AEB =x °.根据题意可得 60180x x x ++-=.解得 x =80. ∴∠ABC =40°+30°=70°.………………………………………………(1分) ②如果AO =EO ,那么∠OAE =∠OEA .根据题意可得 60x x =-.此方程无解.∴此种情况不存在.………(1分) ③如果AE =OE ,那么∠EAO =∠EOA =(x-60)°.根据题意可得 6060180x x x +-+-=.解得x =100.∴∠ABC =20°+30°=50°.………………………………………………(1分) 综上所述,∠ABC 的度数为70°或50°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年上海市浦东新区中考数学二模试卷一、选择题(共6个小题)1.下列各数是无理数的是()A.B.C.D.0.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限4.如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°5.在梯形ABCD中,AD∥BC,那么下列条件中,不能判断它是等腰梯形的是()A.AB=DC B.∠DAB=∠ABC C.∠ABC=∠DCB D.AC=DB6.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C 内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12B.18<r<25C.1<r<8D.5<r<8二、填空题(本大题共12题,每题4分,满分48分)7.函数的定义域是.8.方程=x的根是.9.不等式组的解集是.10.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是.12.如果点A(3,y1)、B(4,y2)在反比例函数y=的图象上,那么y1y2.(填“>”、“<”或“=”)13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为名.14.已知向量与单位向量的方向相反,||=3,那么向量用单位向量表示为.15.如图,AB∥CD,如果∠B=50°,∠D=20°,那么∠E=.16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位米.(用含α的三角比表示)17.在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D、E分别在边AB、AC上.如果D为AB中点,且=,那么AE的长度为.18.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,D是BC边上一点,沿直线AD翻折△ABD,点B落在点E处,如果∠ABE=45°,那么BD的长为.三、解答题(本大题共7题,满分78分)19.计算:(﹣1)0+|1﹣|+()﹣1+8.20.先化简,再求值:÷﹣,其中a=+2.21.已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?23.已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB•AM=AE•AC.求证:(1)四边形ABCD是矩形;(2)DE2=EF•EM.24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C(0,3),对称轴是直线x=1.(1)求抛物线的表达式;(2)直线MN平行于x轴,与抛物线交于M、N两点(点M在点N的左侧),且MN =AB,点C关于直线MN的对称点为E,求线段OE的长;(3)点P是该抛物线上一点,且在第一象限内,联结CP、EP,EP交线段BC于点F,当S△CPF:S△CEF=1:2时,求点P的坐标.25.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.下列各数是无理数的是()A.B.C.D.0.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是无理数;B.,是整数,属于有理数;C.是分数,属于有理数;D.是循环小数,属于有理数.故选:A.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】各项化简后,利用同类二次根式定义判断即可.解:与是同类二次根式的是,故选:C.3.一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限【分析】根据一次函数的性质即可求得.解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限.故选:D.4.如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可求得边数,然后代入内角和公式求解即可.解:这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B.5.在梯形ABCD中,AD∥BC,那么下列条件中,不能判断它是等腰梯形的是()A.AB=DC B.∠DAB=∠ABC C.∠ABC=∠DCB D.AC=DB【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.解:A、∵AD∥BC,AB=DC,∴梯形ABCD是等腰梯形,故本选项错误;B、根据∠DAB=∠ABC,不能推出四边形ABCD是等腰梯形,故本选项正确;C、∵∠ABC=∠DCB,∴BD=BC,∴四边形ABCD是等腰梯形,故本选项错误;D、∵AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项错误.故选:B.6.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C 内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12B.18<r<25C.1<r<8D.5<r<8【分析】首先根据点D在⊙C内,点B在⊙C外,求得⊙C的半径是大于5而小于12;再根据勾股定理求得AC=13,最后根据两圆外切的位置关系得到其数量关系.解:∵在矩形ABCD中,AB=5,BC=12,∴AC==13,∵点D在⊙C内,点B在⊙C外,∴⊙C的半径R的取值范围为:5<R<12,当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是R c,即R c+r=13,又∵5<R c<12,则r的取值范围是1<r<8.故选:C.二、填空题(本大题共12题,每题4分,满分48分)7.函数的定义域是x≠1.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得自变量x的取值范围.解:根据题意,有x﹣1≠0,解可得x≠1.故答案为x≠1.8.方程=x的根是1.【分析】此题需把方程两边平方去根号后求解,然后把求得的值进行检验即可得出答案.解:两边平方得:3﹣2x=x2,整理得:x2+2x﹣3=0,(x+3)(x﹣1)=0,解得:x1=﹣3,x=1,检验:当x=﹣3时,原方程的左边≠右边,当x=1时,原方程的左边=右边,则x=1是原方程的根.故答案为:1.9.不等式组的解集是﹣6≤x<.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x+5≥﹣1,得:x≥﹣6,解不等式2x<5,得:x<,则不等式组的解集为﹣6≤x<,故答案为:﹣6≤x<.10.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为3.【分析】根据判别式的意义得到△=(﹣2)2﹣4k=0,然后解关于k的一元一次方程即可.解:根据题意得△=(﹣2)2﹣4k=0,解得k=3.故答案为:3.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是.【分析】从袋子中随机抽取1个小球共有5种等可能结果,其中抽出的标号是素数的有2、3、5这3种结果,再利用概率公式可得.解:从标号为1、2、3、4、5的5个小球中随机抽取1个小球共有5种等可能结果,其中抽出的标号是素数的有2、3、5这3种结果,所以从中随机抽取一个小球,其标号是素数的概率是,故答案为:.12.如果点A(3,y1)、B(4,y2)在反比例函数y=的图象上,那么y1>y2.(填“>”、“<”或“=”)【分析】反比例函数y=的图象在一、三象限,在每个象限内,y随x的增大而减小,判断出y的值的大小关系.解:∵k=2>0,∴反比例函数y=的图象在一、三象限,且在每个象限内y随x的增大而减小,∵A(3,y1)、B(4,y2)同在第一象限,且3<4,∴y1>y2,故答案为>.13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为300名.【分析】用整体1减去乒乓球、羽毛球、足球所占的百分比,求出篮球所占的百分比,再用该学校1500名学生乘以篮球所占的百分比即可得出答案.解:根据题意得:1500×(1﹣16%﹣28%﹣36%)=300(名),答:该学校1500名学生中选择篮球项目的学生约为300名;故答案为:300.14.已知向量与单位向量的方向相反,||=3,那么向量用单位向量表示为﹣3.【分析】根据向量的定义,确定模的大小,以及方向即可.解:∵向量与单位向量的方向相反,||=3,∴=﹣3,故答案为﹣3.15.如图,AB∥CD,如果∠B=50°,∠D=20°,那么∠E=30°.【分析】根据平行线的性质得出∠BCD=50°,利用三角形外角性质解答即可.解:∵AB∥CD,∴∠BCD=∠B=50°,∵∠D=20°,∴∠E=∠BCD﹣∠D=50°﹣20°=30°,故答案为:30°.16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位(1.5+15tanα)米.(用含α的三角比表示)【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.解:根据题意可得:旗杆比仪器高15tanα,测角仪高为1.5米,故旗杆的高为(1.5+15tanα)米.故答案为:(1.5+15tanα)17.在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D、E分别在边AB、AC上.如果D为AB中点,且=,那么AE的长度为5或.【分析】先求出DE的长,分两种情况讨论,利用相似三角形的性质和等腰三角形的性质可求解.解:∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵D为AB中点,∴AD=4,∵,∴∴DE=3,如图,∠ADE=∠ABC=90°时,∴△ADE∽△ABC,∴∴AE=5,如图,∠ADE≠∠ABC时,取AC中点H,连接DH,过点D作DF⊥AC于F,∵点D是AB中点,点H是AC的中点,∴DH=BC=3,AH=HC=5,DH∥BC,∴∠ADH=∠ABC=90°,∵S△ADH=×AH×DF=×AD×DH,∴5×DF=12,∴DF=,∴FH===,∵DE=DH,DF⊥AC,∴EF=FH=,∴AE=AH﹣﹣=,故答案为:5或.18.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,D是BC边上一点,沿直线AD翻折△ABD,点B落在点E处,如果∠ABE=45°,那么BD的长为2.【分析】过D作DF⊥AB于F,根据折叠可得∠ADF=∠DAF=45°,设DF=AF=x,则BF=x,BD=2x,根据AB=2,即可得到x的值,进而得出BD的长.解:如图所示,过D作DF⊥AB于F,∵Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,∴AB=2,∠ABC=30°,由折叠可得,AB=AE,∠BAD=∠EAD,∴∠ABE=∠AEB=45°,∴∠BAE=90°,∴∠BAD=∠BAE=45°,∴∠ADF=∠DAF=45°,∴AF=DF,设DF=AF=x,则BF=x,BD=2x,∵AB=AF+BF,∴2=x+x,解得x=﹣1,∴BD=2x=2,故答案为:2.三、解答题(本大题共7题,满分78分)19.计算:(﹣1)0+|1﹣|+()﹣1+8.【分析】直接利用绝对值的性质、负整数指数幂的性质、分数指数幂的性质分别化简得出答案.解:原式=1+﹣1+3+2=5.20.先化简,再求值:÷﹣,其中a=+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:原式=•﹣=﹣=,当a=+2时,原式===.21.已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.【分析】(1)作OM⊥EF于M,如图,根据垂径定理得到EM=FM,利用三角形中位线性质得到OM=AC=4,然后利用勾股定理计算出EM,从而得到EF的长;(2)利用CE=OE=5得到∠OEC=∠OCE,在利用勾股定理计算出OC=4,然后利用正弦的定义求出sin∠OCM,从而得到∠COE的正弦值.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?【分析】根据题意表示出科普类图书和文学类图书的平均价格,再利用购买科普类图书的数量比购买文学类图书数量少100本得出等式求出答案.解:设科普类图书平均每本的价格是x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意可得:=﹣100,解得:x=20,经检验得:x=20是原方程的根,答:科普类图书平均每本的价格是20元.23.已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB•AM=AE•AC.求证:(1)四边形ABCD是矩形;(2)DE2=EF•EM.【分析】(1)根据相似三角形的性质与判定可知∠AME=∠ACB,从而可得∠ACB+∠BAC=90°,所以▱ABCD是矩形.(2)由(1)可知:DE=EC,AE=EC,易证∠CME=∠AME=∠ECB,所以△CEF∽△MEC,所以,从而得证.解:(1)∵AB•AM=AE•AC,∴=,∵∠CAB=∠CAB,∴△ACB∽△AME,∴∠AME=∠ACB,由于∠AME+∠BAC=90°,则∠ACB+∠BAC=90°,∴▱ABCD是矩形.(2)由(1)可知:DE=EC,AE=EC,∵ME⊥AC,∴ME平分∠AMC,∴∠CME=∠AME=∠ECB,∵∠MEC=∠FEC=90°,∴△CEF∽△MEC,∴,∴EC2=EF•EM,即DE2=EF•EM24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C(0,3),对称轴是直线x=1.(1)求抛物线的表达式;(2)直线MN平行于x轴,与抛物线交于M、N两点(点M在点N的左侧),且MN =AB,点C关于直线MN的对称点为E,求线段OE的长;(3)点P是该抛物线上一点,且在第一象限内,联结CP、EP,EP交线段BC于点F,当S△CPF:S△CEF=1:2时,求点P的坐标.【分析】(1)根据对称轴为直线x=1求出b=2,即可求解;(2)由抛物线的对称性知,QM=QN=MN=,则点N(,),即MN在直线y=上,即可求解;(3)S△CPF:S△CEF=1:2,即=,而△PP′F∽△ECF,则,即,即可求解.解:(1)由题意得:﹣,解得:b=2,∵抛物线与y轴交于点C(0,3),故c=3,故抛物线的表达式为:y=﹣x2+2x+3;(2)对于y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0),则AB=4,MN=AB=3,如图1,作抛物线的对称轴交MN于点Q,由抛物线的对称性知,QM=QN=MN=,则点N的横坐标为1+=,故点N(,),即MN在直线y=上,则点C关于MN的对称点E的坐标为:(0,),即OE=;(3)过点P作PP′∥OC交BC于点P′,设直线BC的表达式为:y=mx+n,则,解得:,故直线BC的表达式为:y=﹣x+3,设点P(a,﹣a2+2a+3),则点P′(a,﹣a+3),则PP′=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+3a,∵S△CPF:S△CEF=1:2,即=,∵PP′∥CE,∴△PP′F∽△ECF,∴,即,解得:a=或,故点P的坐标为:(,)或(,).25.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.【分析】(1)根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠BAC=60°,AC=AB,易得∠ACF=60°,∠BAE=∠CAF,然后利用“ASA”可证明△AEB≌△AFC,得出AE=AF,则结论可得出;(2)过点A作AH⊥BC于点H,求出AE,证明△BAE∽△CEG,得出,则可得出答案;(3)证明△COE∽△CEA,由比例线段可得出答案.【解答】(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.。