高中生物奥林匹克竞赛辅导专题讲座_专题一、二、三

合集下载

高级中学生物奥林匹克竞赛辅导专业题材

高级中学生物奥林匹克竞赛辅导专业题材

高中生物奥林匹克竞赛辅导专题讲座专题四呼吸作用[竞赛要求]呼吸系统:1.系统的结构特点 2.呼吸机制3.气体交换呼吸作用:1.呼吸作用的类型2.呼吸作用的生理意义3.呼吸作用的途径4.呼吸作用的过程5.影响呼吸作用的因素6.呼吸作用与光合作用的关系7.呼吸作用的原理的应用[知识梳理]一、呼吸系统呼吸:机体与环境交换氧和二氧化碳的过程称为呼吸。

其全过程包括外呼吸(又称肺呼吸)、气体运输和内呼吸(又称组织呼吸)三个相互紧密联系的环节。

1、呼吸系统的基本结构呼吸系统由鼻、咽、喉、气管、支气管和肺等器官组成。

肺的实质是由反复分支的支气管树(各级支气管)及大量肺泡构成。

(图4-1)肺泡是肺实现气体交换的结构和功能单位,壁薄,仅由单层扁平上皮组成,外面密布毛细血管网(对保证血液与外界气体交换有重要作用)和弹性纤维(与呼吸后肺泡的弹性回缩有关)。

肺泡的数量极多,为气体交换提供了广大的面积。

图4-1人的呼吸系统2、呼吸运动与肺通气(1)呼吸运动肺本身不能主动的长缩,呼吸时气体进出于肺,有赖于胸廓的周期性运动。

胸廓扩大,肺随之扩张,外界气体吸入肺泡;胸廓缩小,肺泡气被排出。

所以胸廓的节律性扩大与缩小,称为呼吸运动。

呼吸运动的实现,是由于呼吸肌活动的结果。

主要的呼吸肌是膈肌和肋间肌。

吸气时,肋间外肌收缩,肋间内肌松弛,使肋骨上举,增大了胸廓的前后径,同时,当肋骨上举时,其下缘又略向外侧偏转,故胸廓的左右径亦增大。

呼气时,肋间内肌收缩,肋骨下降,于是胸廓前后、左右径复位(图4-2)。

图4-2 吸气和呼气时胸廓的变化(2)肺通气的动力呼吸肌的活动是推动气体进出肺的原动力,但此原动力还必须引起肺内、外压力的周期性变化,从而建立起肺泡与大气之间存在一定的压力差,方能推动气体进出肺。

3、气体交换与运输(1)气体交换呼吸气体的交换是指肺泡和血液之间,血液和组织细胞之间氧和二氧化碳的交换。

气体交换是通过扩散的方式进行的,而决定气体扩散方向的为该气体的分压。

2021年高中生物奥赛培训考点讲义汇总

2021年高中生物奥赛培训考点讲义汇总

中学生物奥赛夏令营课程《普通动物学》讲义一、生物的分类系统现代分类系统是根据生物所有性状的异同,综合起来分门别类,称为自然分类法,它采用了阶梯从属的等级,分为界、门、纲、目、科、属、种七个等级。

如果某一等级内种类繁多,还可划分出中间等级如亚门、亚纲、亚目、亚科、亚属、亚种等。

通过分类系统,可以了解各物种之间的亲缘关系和每一个物种在生物界中的地位。

二、生物的界级分类随着生物科学的发展,对生物的分界产生了不同的观点,出现了不同的分界方法,如两界说、三界说、五界说、六界说等。

在显微镜发明以前,由林奈提出了两界说,把生物分为植物界和动物界。

三界说是在用显微镜发现单细胞生物后产生的,在1866年由赫克尔提倡,把生物分成单细胞的原生生物界和植物界、动物界。

五界说是1969年由惠特克提出的,把生物分为原核生物界、原生生物界、真菌界、植物界和动物界五界,此说更完善地反映出生物的进化历程,得到大多数生物学家的承认。

也有一些学者主张,将现在生活在地球上的生物,分为六大类群:病毒界、原核生物界、真核原生生物界、植物界、真菌界和动物界。

动物类群的多样性【知识概要】一、无脊椎动物主要门的基本特征无脊椎动物的主要特点是身体的中轴没有由脊椎骨组成的脊柱,这类动物各主要门的基本特征如下表所示。

无脊椎动物主要门的基本特征门种的数量分布体制主要特点胚层体腔对称分节肛门腔肠动物约l万水生,大部海产 2 无辐射对称--有刺细胞,中胶层扁形动物 1.2万水生、寄生、少数陆生3 无两侧对称--有焰细胞线形动物约1.7万水生,土壤中 3 固体腔两侧对称-+只有纵肌,周期性蜕皮环节动物约1.3万水生、土壤中 3 体腔两侧对称++有刚毛棘皮动物约9500 水生、全为海产 3 体腔幼虫两侧对称,成体次生性两侧对称-+有管足和水管系软体动物10余万水生、部分陆生 3 体腔两侧对称-+身体分头、足、躯干和外套膜,有外套膜分泌的壳节肢动物100余万水生、陆生,土壤中3 体腔两侧对称++有头、胸、腹的分化,有甲壳质外骨骼和分节的附肢1.腔肠动物门——水娘水螅是腔肠动物的代表,是营淡水生活的水螅纲动物。

高中生物奥林匹克竞赛辅导专题总结(二)

高中生物奥林匹克竞赛辅导专题总结(二)

高中生物奥林匹克竞赛辅导专题讲座专题五光合作用[竞赛要求]1.光合作用的概念及其重大意义2.光合作用的场所和光合色素3.光合作用的全过程(光系统I和光系统II)4.C3和C4植物的比较(光呼吸)5.外界条件对光合作用的影响(饱和点、补偿点)6.光合作用的原理在农业生产中的应用[知识梳理]一、光合作用概述光合作用是指绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程。

1.光合作用的重要性可以概括为把无机物变成有机物、蓄积太阳能量和环境保护为三方面。

应注意吸收光谱只说明光合色素吸收的光段,不能进一步说明这些被吸收的光段在光合作用中的效率,要了解各被吸收光段的效率还需研究光合作用的作用光谱,即不同波长光作用下的光合效率称为作用光谱。

荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色的现象。

磷光现象:叶绿素在去掉光源后,还能继续辐射出极微弱的红光(用精密仪器测知)的现象。

3.光合作用的发现●17世纪,van Helmont,将2.3kg的小柳树种在90.8kg干土中,雨水浇5年后,小柳树重76.7kg,而土仅减少57g。

因此,他认为植物是从水中取得所需的物质。

●1771年,Joseph Priestley,密闭容器中蜡烛燃烧污染了空气,使放于其中的小鼠窒息;若在密闭容器中放入一支薄荷,小鼠生命就可得到挽救。

他的结论是,植物能净化空气。

● 1779年,Jan Ingenhousz ,确定植物净化空气是依赖于光的。

● 1782年,J.Senebier ,证明植物在照光时吸收CO 2并释放O 2。

● 1804年,N.T.De Saussure 发现,植物光合作用后增加的重量大于吸收CO 2和释放O 2所引起的重量变化,他认为是由于水参与了光合作用。

● 1864年,J.Sachs 观察到照光的叶绿体中有淀粉的积累,显然这是由光合作用产生的葡萄糖合成的。

● 20世纪30年代,von Niel 提出光合作用的通式:● 1937年,R. Hill 用离体叶绿体培养证明,光合作用放出的O 2,来自H 2O 。

高中生物奥林匹克竞赛辅导讲座之不可忽略的七大热点

高中生物奥林匹克竞赛辅导讲座之不可忽略的七大热点

高中生物奥林匹克竞赛辅导讲座之不可忽略的七大热点1.细胞的结构与功能的分析(1)双层磷脂分子层和三种不同形式的蛋白质决定了细胞膜的结构特点和功能特点:一定的流动性和选择透过性。

温度升高,膜层变薄和膜面积扩大,细胞的变形运动等均反映了流动性的特点。

小分子物质和离子通过膜的方式有自由扩散和主动运输,大分子物质以外排作用和内吞作用的方式出入细胞。

以自由扩散方式吸收分子的数量与膜内外浓度差有关;以主动运输方式通过膜的物质数量与载体的数量和ATP的供给量有关。

(2)线粒体、叶绿体在结构和成分上的区别决定其功能的不同,但都是细胞内的能量转换器。

内质网是细胞内物质运输的通道,与蛋白质、糖类、脂类的合成有关,对分泌蛋白具有运输和加工的作用。

高尔基体与动物细胞分泌物的形成有关,在植物细胞内与细胞壁的形成有关,对蛋白质进行加工转运。

(3)附着于内质网上的核糖体合成的分泌蛋白按内质网→高尔基体→细胞膜的方向运输,而线粒体为该过程提供能量。

(4)细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围绕而成的细胞器,在结构与功能上构成了统一整体,形成了细胞的生物膜系统。

2.酶的特性及应用的考查(1)酶的催化作用需要适宜的温度和pH,在最适温度和最适pH下酶活性最高。

过酸、过碱和高温都破坏酶的分子结构而使酶失活。

(2)在底物足够,其他条件固定的情况下,反应中没有抑制酶活性的物质和不利于酶发挥作用的因素时,酶促反应速度与酶浓度成正比。

(3)在底物浓度较低时,反应速度随底物浓度增加而加快,几乎成正比;底物浓度较高时,随底物浓度增加,反应速度加快,但不显著;底物浓度很大,达到一定限度时,反应速度达到最大值且不再随底物浓度增加而增加。

3.对植物光合作用与呼吸作用过程的理解与应用的重点精析(1)光反应是在叶绿体囊状结构的薄膜上进行的,完成了光能转换成电能、电能转换成活跃化学能的能量转换过程。

活跃的化学能贮藏在光反应的产物NADPH和ATP中。

生物奥赛专题讲座3(lkx)

生物奥赛专题讲座3(lkx)

高中生物奥林匹克竞赛辅导专题讲座专题三细胞代谢的基础[竞赛要求]1.细胞代谢与能量2.ATP(三磷酸腺苷)结构和功能2.酶的功能3.细胞膜:理化性质、分子结构与物质运输等[知识梳理]一、细胞代谢与能量1.细胞代谢与能量生物的新陈代谢,或称代谢,是生物体内所进行的全部物质和能量变化的总称,它是最基本的生命活动过程。

生活的细胞通过代谢活动,不断从环境中取得各种必需的物质,来维持自身高度复杂的有序结构,并保证细胞生长、发育和分裂等活动的正常进行。

细胞中能的转换类型是多种多样的。

由于细胞成分中的蛋白质、核酸等分子相当脆弱,遇到高温就要变性失活,所以细胞内不能利用热能来做功。

在细胞和生物体的能量转换中起重要作用的是化学能。

三磷酸腺苷(ATP)常常充当各种类型的能量相互转换的媒介物。

许多放能反应总是和ATP 的合成相耦联,将放出的能贮存在ATP中;许多需能反应总是和ATP分解相耦联,从ATP中获得自由能(在压力和温度都恒定的条件下能够做功的能称为自由能)。

2.三磷酸腺苷(ATP)(1) ATP的结构特性三磷酸腺苷(ATP)也叫做腺苷三磷酸、是高能磷酸化合物的典型代表。

ATP是由一分子腺嘌呤、一分子核糖和三个相连的磷酸基团构成的。

这三个磷酸基团从与分子中腺苷基团连接处算起,依次分别称为α、β、γ磷酸基团。

ATP的结构式是:ATP分子中的γ磷酸基团水解时(有关酶的催化下),能释放30.5 kJ/mol的能量。

ATP分子既可以水解一个磷酸基团(γ磷酸基团),而形成二磷酸腺苷(ADP)和磷酸(Pi);也可以同时水解两个磷酸基团(β磷酸基团和γ磷酸基团),而形成一磷酸腺苷(AMP)和焦磷酸(PPi)。

后一种水解方式在某些生物合成中具有特殊意义。

AMP可以在腺苷酸激酶的作用下,由ATP提供一个磷酸基团而形成ADP,ADP又可以迅速地接受另外的磷酸基团而形成ATP。

(2) ATP系统的动态平衡ATP是活细胞内一种特殊的能量载体,在细胞核、线粒体、叶绿体以及细胞质基质中广泛存在着,但是ATP在细胞内的含量是很少的。

高中生物奥赛知识点

高中生物奥赛知识点

高中生物奥赛知识点(一)1、向性运动:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。

2、感性运动:由没有一定方向性的外界刺激(如光暗转变、触摸等)而引起的局部运动,外界刺激的方向与感性运动的方向无关。

3、激素的特点:①量微而生理作用显着;②其作用缓慢而持久。

激素包括植物激素和动物激素。

植物激素:植物体内合成的、从产生部位运到作用部位,并对植物体的生命活动产生显着调节作用的微量有机物;动物激素:存在动物体内,产生和分泌激素的器官称为内分泌腺,内分泌腺为无管腺,动物激素是由循环系统,通过体液传递至各细胞,并产生生理效应的。

4、胚芽鞘:单子叶植物胚芽外的锥形套状物。

胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。

胚芽鞘分为胚芽鞘的尖端和胚芽鞘的下部,胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位和胚芽鞘的下部,胚芽鞘下面的部分是发生弯曲的部位。

5、琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。

6、生长素的横向运输:发生在胚芽鞘的尖端,单侧光刺激胚芽鞘的尖端,会使生长素在胚芽鞘的尖端发生从向光一侧向背光一侧的运输,从而使生长素在胚芽鞘的尖端背光一侧生长素分布多。

7、生长素的竖直向下运输:生长素从胚芽鞘的尖端竖直向胚芽鞘下面的部分的运输。

8、生长素对植物生长影响的两重性:这与生长素的浓度高低和植物器官的种类等有关。

一般说,低浓度范围内促进生长,高浓度范围内抑制生长。

9、顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。

由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。

解出方法为:摘掉顶芽。

顶端优势的原理在农业生产实践中应用的实例是棉花摘心。

10、无籽番茄(黄瓜、辣椒等):在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无籽果实。

要想没有授粉,就必须在花蕾期进行,因番茄的花是两性花,会自花传粉,所以还必须去掉雄蕊,来阻止传粉和受精的发生。

高中生物奥赛辅导资料大全-1

高中生物奥赛辅导资料大全-1

第十讲生态及动物行为一、竞赛中涉及的问题根据近年我国参赛选手介绍的情况来看,生态学及动物行为学所占的比例正在逐年增加,然而我国选手们恰恰在这方面比较薄弱。

这主要与现行的中学教材有关。

在本讲中,我们力求根据国际IBO竞赛纲要的具体要求,适当扩展同学们的知识面,增加一些信息量。

生态学与动物行为学的内容非常多,眼于篇幅,只能对一些重点内容进行讨论。

(一)生态因素及其对生物的影响生物有机体周围所有一切无机和有机的因子称为生态因素。

生态因素影响生物的形态、结构、生理和分布等。

诸多生态因素分别属于非生物因子和生物因子两类。

1.非生物因子(1)太阳能它是一切生命的最基本能源。

作为生态因素它包括能量、光质(波长或色)、光强度、光照长度等方面。

①光和植物:光照强度对植物形态结构和生长发育有重要作用。

按照对光照强度的要求不同,植物分为阳生植物、阴生植物和耐阴植物三种生态类型。

阳生植物要在阳光充足的环境中生长;阴生植物喜在潮湿、背阴的地方生长;耐阴植物介于两类之间,既能在阳地生长,也能在较阴地带生长。

日照长度能影响植物的生长、发育和开花。

按照对日照时间的要求,植物分长日照植物、短日照植物、中日照植物和中间型植物四类。

中日照植物在昼夜长短几乎相等的条件下才能开花,在甘蔗的某些品种中存在这种现象。

中间型植物受日照时间影响较小,不同日照都能开花,如番茄、黄瓜、刀豆、蒲公英等。

不同波长的光对植物的作用也不同。

如蓝紫光能抑制植物伸长,使植物矮化,促进花青素等色素的形成,也能控制和促进细胞分化。

另外,红光能促使茎的生长、植物开花和种子萌发;蓝光激活同化二氧化碳的酶类。

②光和动物由于动物是直接或间接以植物为食的,因此,直接影响植物分布的光也影响着动物的分布。

光对动物的热能代谢、生殖发育、生活周期、体表颜色、行为方式、地理分布等都有直接或间接的影响。

如光影响变温动物的活动,因为变温动物要依靠光照升高体温;光能促进动物生殖腺发育,如鸟类延长日照时间,能提高产卵量;紫外线能杀灭动物体表的微生物;光照的长短能影响鱼类徊游和鸟类的迁徙;光也跟动物的体色有关系,一般背光面色淡而朝光面色深。

高中生物奥赛指导讲解教案

高中生物奥赛指导讲解教案

高中生物奥赛指导讲解教案主题:生物奥林匹克竞赛知识指导目标:帮助学生了解生物奥赛考试内容、技巧及常见题型,提高参加生物奥赛的准备水平。

一、奥赛考试内容概述1.生物奥赛主要考察生物学的基础知识和实验技能。

2.题目涉及生物学的各个领域,包括细胞生物学、遗传学、生态学等。

3.考试形式多样,包括选择题、填空题、实验题等。

二、奥赛备考技巧1.熟悉考试大纲:了解考试范围,重点复习重点内容。

2.多做题:做题是提高解题能力的有效方法,可以通过练习题目来熟悉考试题型。

3.注重实验训练:实验题是生物奥赛的重要组成部分,需要具备实验技能和分析能力。

4.注意细节:生物题目常涉及生物学的细节知识,要仔细阅读题目,理解问题的本质。

三、奥赛常见题型解析1.选择题:理解题干的要求,仔细分析选项,排除干扰项,选择正确答案。

2.填空题:根据题目要求填写正确答案,注意书写规范。

3.实验题:分析实验过程和结果,正确解读数据,回答问题。

4.综合题:综合应用生物学知识解决问题,进行推理和分析。

四、实践操作1.每周安排时间做生物奥赛模拟题,检验自己的学习效果。

2.多参加生物实验,提高实验技能和数据分析能力。

3.和同学讨论、交流学习心得,加深对生物学知识的理解和应用。

五、总结反思1.每次复习结束后,及时总结弱项,制定下一步学习计划。

2.认真对待每一次考试,不断提高自己的学习水平。

3.保持积极的心态,相信自己的能力,勇敢迎接挑战。

通过以上指导讲解,相信学生能够更好地应对生物奥赛的挑战,提高自己的学习水平和竞赛成绩。

祝愿学生在生物奥赛中取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一生命的物质根底[知识梳理]一、组成生物体的化合物〔一〕无机化合物1.水是生命之源水是细胞的重要成分,一般发育旺盛的幼小细胞中含水量较大,生命活力差的细胞组织中含水量较小,休眠的种子和孢子中含水量一般低于10%。

水分子具有极性,每个水分子均可与其它四个水分子之间形成氢键。

水分子的极性与氢键的形成使水分子具有特殊的性质,如水分子具有较强的黏滞性。

黏滞性使水分子较其它液体均具有较强的外表X力,这有助于水从根运输到茎再到叶;水从叶片的气孔蒸发,对导管中的水产生蒸腾拉力,水的黏滞性使这种拉力一直延伸到根部。

外表X力使水分子可以水生昆虫在水面上跳动。

自由水的功能:代谢物质的良好溶剂,水是促进代谢反响的物质,水参与原生质结构的形成,水有调节各种生理作用的功能。

2.无机盐它在体内通常以离子状态存在,常见的阳离子有K+、Na+、Ca2+、Mg2+、Fe2+、Fe3+等;常见的阴离子有Cl-、SO42-、PO43-、HPO42-、H2PO4-、HCO3-等。

各种无机盐离子在体液中的浓度是相对稳定的,其主要作用有:对细胞的渗透压和pH起着重要的调节作用。

有些离子是酶的活化因子,如Mg+、Ca2+;有些离子是合成有机物的原料,如PO4+可用于合成磷酸、核苷酸等,Fe2+可用于合成血红蛋白等。

生物生存环境的PHX围为3~8.5。

细胞中的各种离子有一定的缓冲能力,使细胞内的PH保持相对恒定,以利细胞维持正常的生命活动。

动物体内无机盐与其作用一览表〔二〕、有机化合物1.碳是组成生物体的最根本元素碳原子核最外层有四个价电子,可与碳、氢、氧与氮原子形成四个强共价键。

碳原子与碳原子之间可以单键相结合,可也以双键或三键相结合。

碳原子能相互连接成链或环,从而生成各种大分子,这些结构称为有机物的碳链骨架。

碳链骨架结构的排列方式和长短,决定了有机化合物的根本性质。

2.糖类〔1〕.生物学功能糖类的主要功能有:构成生物体的重要成分,如糖被、〔植物、细菌、真菌等的〕细胞壁的成分;是细胞的主要能源物质。

〔2〕.组成元素与种类糖类是多羟基的醛或酮与其缩聚物和某些衍生物。

其组成元素只有C、H、O,分单糖、寡糖、多糖三类。

单糖的分子通式是〔CH2O)n,是不能水解的最简单的糖类。

根据碳原子数,单糖又可分为三碳—六碳糖。

葡萄糖和果糖六碳糖,分子式都是C6H12O6,但结构式不同,在化学上叫做同分异构体〔如图〕。

核糖〔C5H10O5〕和脱氧核糖〔C5H10O4〕都是五碳糖,分别是构成RNA和DNA的重要成分〔如图〕。

葡萄糖、果糖、麦芽糖等有复原性,为复原糖;淀粉、蔗糖等为非复原性糖。

寡糖〔低聚糖〕:是由少数几个单糖分子脱水缩合而得的糖。

常见的是含有2个单糖单位的双糖,如植物细胞内的蔗糖、麦芽糖,动物细胞内的乳糖,存在于藻类细菌、真菌和某些昆虫细胞内的海藻糖等。

多糖是由多个单糖缩聚而成链状大分子,与单糖、双糖不同,一般不溶于水,从而构成贮藏形式的糖,如高等植物细胞内的淀粉,高等动物细胞内的糖元。

纤维素是植物中最普遍的结构多糖。

糖类的复合物:主要是糖蛋白质和糖脂。

3.蛋白质〔1〕.种类与功能如按功能划分,可将蛋白质分为活性蛋白质和非活性蛋白质两大类。

活性蛋白质指在生命活动过程中具有活性的蛋白质。

主要种类有:作用为催化生物体内各种化学反响,如酶。

激素蛋白其作用是调节机体各种代谢过程,如:胰岛素、促性腺激素等。

运输和贮存蛋白主要运输、贮存各种小分子物质、离子、电子等,如血红蛋白、载体蛋白。

运动蛋白它与生物体运动有关,如细菌的纤毛蛋白、动物的肌球蛋白和肌动蛋白等。

防御蛋白防御异物侵入机体,如免疫球蛋白、干扰素等。

膜蛋白分布在细胞膜上,与膜的生物学功能密切相关。

受体蛋白其作用为承受和传递信息。

控制生长分化的蛋白控制生物的生长和组织分化,如组蛋白、各种生长因子。

非活性蛋白包括一大类对生物体起保护或支持作用的蛋白质。

主要种类有:胶原是哺乳动物皮肤的主要成分。

角蛋白其作用是保护或加强机械强度。

弹性蛋白存在于韧带、血管壁等处,其支持与润滑作用。

〔2〕.组成元素和根本组成单位蛋白质主要由C、H、O、N四种元素组成,多数还含有S。

氮是蛋白质的标志性元素,含量约占16%。

蛋白质的根本组成单位是氨基酸,其通式为。

组成天然蛋白质的氨基酸约有20种,都是L型的α氨基酸。

氨基酸与氨基酸之间可以发生缩合反响,形成的键为肽键。

肽又可划分为二肽、三肽与多肽〔三肽以上〕。

多肽都有链状排列的结构,叫多肽链。

蛋白质就是由一条多肽链或几条多肽链通过盘曲折叠形成的复杂的大分子。

〔3〕.结构蛋白质结构分一、二、三、四级结构〔见以下图〕。

在蛋白质分子中,不同氨基酸以一定数目和排列顺序组合形成的多肽链是蛋白质的一级结构。

蛋白质分子的高级结构决定于它的一级结构,其天然构象〔四级结构〕是在一定条件下的热力学上最稳定的结构。

〔4〕.变性蛋白质受到某些物理或化学因素作用时引起生物活性的丧失、溶解度降低以与其他物理化学因素的改变,这种变化称为蛋白质的变性。

变性的实质是由于维持高级结构的次级键遭到破坏而造成的天然构象的解体,但未涉与共价键的破坏。

有些变性是可逆的〔能复性〕,有些那么不可逆。

4.核酸〔1〕.生物学功能核酸是遗传信息的载体,存在于每一个细胞中。

核酸也是一切生物的遗传物质,对于生物体的遗传性、变异性和蛋白质的生物合成有极其重要的作用。

〔2〕.种类核酸分DNA和RNA两大类。

所有生物细胞都含有这两大类核酸〔病毒只含有DNA或RNA〕。

〔3〕.组成元素与根本组成单位核酸是由C、H、O、N、P等元素组成的高分子化合物。

其根本组成单位是核苷酸。

每个核酸分子是由几百个到几千个核苷酸互相连接而成的。

每个核苷酸含一分子碱基、一分子戊糖〔核糖或脱氧核糖〕与一分子的磷酸组成。

如以下图所示:5’﹣腺瞟吟核苷酸〔5’﹣AMP〕 3’﹣胞嘧啶脱氧核苷酸〔3’﹣dCMP〕DNA的碱基有四种〔A、T、G、C〕,RNA的碱基也有四种〔A、U、G、C〕。

这五种碱基的结构式如以下图所示:DNA中碱基的百分含量一定是A=T、G=C,不同种生物的碱基含量不同。

RNA中A﹣U、G﹣C之间并没有等当量的关系。

〔4〕.结构DNA一级结构中核苷酸之间唯一的连接方式是3’、5’﹣磷酸二酯键,如以下图所示。

所以DNA的一级结构是直线形或环形的结构。

DNA的二级结构是由两条反向平行的多核音酸链绕同一中心轴构成双螺旋结构。

5.脂类脂类是生物体内一大类重要的有机化合物,由C、H、O三种元素组成,有的〔如卵磷脂〕含有N、P等元素,不溶于水,但溶于乙醚、苯、氯仿和石油醚等有机溶剂。

〔1〕.生物学功能脂类是构成生物膜的重要成分;是动植物的贮能物质;在机体外表的脂类有防止机械损伤和水分过度散失的作用;脂类与其他物质相结合,构成了细胞之间的识别物质和细胞免疫的成分;某些脂类具有很强的生物活性。

〔2〕.种类①脂肪:也叫中性脂,一种脂肪分子是由一个甘油分子中的三个羟基分别与三个脂肪酸的末端羟基脱水连成酯键形成的。

脂肪是动植物细胞中的贮能物质,当动物体内直接能源过剩时,首先转化成糖元,然后转化成脂肪。

在植物体内就主要转化成淀粉,有的也能转化成脂肪。

②类脂:包括磷脂和糖脂,这两者除了包含醇、脂肪酸外,还包含磷酸、糖类等非脂性成分。

磷脂的这一结构使它成为一种兼性分子。

它的磷酸和含氮碱基一段是极性的,易与水相吸,构成磷脂分子的亲水性头部,而它的脂肪酸一端是非极性的,不与水相吸,构成磷脂分子的疏水性尾部。

当磷脂分子被水分子包围时,便会自动排成双分子层。

磷脂是构成细胞膜结构的重要成分。

细胞各种膜结构的形成和特性,都与磷脂分子的双性质密切相关。

③固醇:又叫甾醇,是含有四个碳环和一个羟基的烃类衍生物,是合成胆汁与某些激素的前体,如肾上腺皮质激素、性激素。

有的固醇类化合物在紫外线作用下会变成维生素D。

在人和动物体内常见的固醇为胆固醇。

生理功能:是构成细胞组织的结构大分子,如有些固醇类化合物是构成神经鞘的主要成分。

由于它有良好的绝缘性,对神经冲动的传递十分重要。

某些固醇类化合物可转变为维生素D。

固醇类化合物也是某些激素的前体。

例如:调节水分和盐类代谢的肾上腺皮质激素、促进性器官和第二性征发育的性激素都是固醇类化合物的衍生物。

含磷酸的脂类衍生物叫做磷酯,含糖的脂类衍生物叫做糖脂。

磷脂和糖脂都参与细胞结构特别是膜结构的形成,是脂类中的结构大分子。

二、其他重要化合物一、细胞内能合流通的物质——ATP1.ATP的结构ATP〔三磷酸腺苷〕是各种活细胞内普遍存在的一种高磷酸化合物〔水解时释放的能量在20~92kJ/mol的磷酸化合物〕。

ATP的分子简写成A-P~P~P,A代表由腺嘌呤和核糖组成的腺苷,P代表磷酸基团,~代表高能磷酸键。

ATP中大量化学能就贮存在高能磷酸键中。

ATP结构中的3个磷酸〔Pi〕可依次移去而生成二磷酸腺苷〔ADP〕和一磷酸腺苷〔AMP〕,ATP的作用ATP水解时释放出的能量,是生物体维持细胞分裂、根吸收矿质元素离子和肌肉收缩等生命活动所需能量的直接来源,是细胞内能量代谢的“流通货币〞。

在动物肌肉或其他兴奋性组织中,还有一种高能磷酸化合物即磷酸肌酸,它也是高能磷酸基的贮存者,其中的能量要兑换成“流通货币〞2.NAD+和NADP+NAD+又叫辅酶Ⅰ,全称烟酰胺腺嘌呤二核苷酸;NADP+又叫辅酶Ⅱ,全称烟酰胺腺嘌呤二核苷酸磷酸。

它们都是递氢体,能从底物里取得电子和氢。

NAD+和NADP+都是以分子中的烟酰胺局部来承受电子的,所以烟酰胺是它们的作用中心。

承受电子的过程如以下图所示:这里虽然从底物脱下来的两个电子都被承受了,但脱下来的两个氢原子却只有一个被承受,剩下的一个质子H暂时被细胞的缓冲能力接纳下来,留待参与其他反响。

因此,NAD+和NADP+的复原形式被写作NADH 和NADPH。

[典型例题]例1.当蛋白质溶液的pH值与蛋白质等电点一样时,蛋白质的BA.溶解度最大 B.溶解度最小C.溶解度与溶液pH无关D.蛋白质变性解析:蛋白质溶液的pH值与蛋白质等电点一样时,蛋白质所带的净电荷为零,蛋白质会发生集聚作用,故溶解度最小。

答案:B。

例2.组成蛋白质的氨基酸的α--碳原子是不对称的,但除外。

A.丙氨酸B.组氨酸C.甘氨酸D.谷氨酸解析:在组成蛋白质的20种氨基酸中,除甘氨酸外,各种氨基酸的α--碳原子都是不对称的,它们都和4个不同的基团相连。

答案:C。

例3.组成DNA的核苷酸包括三个局部,以下哪些描述是正确的〔多项选择〕?A.碱基一样 B.磷酸基团一样C.脱氧核糖一样D.以上三种物质都不同解析:组成DNA核苷酸中,碱基共有4种类型,磷酸均一样,脱氧核糖均一样。

答案:BC例4.氨基酸与蛋白质共有的特性是:A.胶体性质 B.沉淀反响 C.两性性质 D.双缩脲反响解析:氨基酸为兼性分子,由氨基酸组成的蛋白质也为两性分子。

相关文档
最新文档